EE227BT Discussion Section \#2

Exercise 1 (Congruence Transformations) Let $A \in \mathbb{S}^{n}, B \in \mathbb{R}^{n \times n}$. Assume that B is invertible. Then

$$
A \succeq 0 \Leftrightarrow B^{\top} A B \succeq 0
$$

Exercise 2 (Schur Complements)

Let $A \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{n \times m}$. Consider the block matrix

$$
X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

1. Give a necessary condition on A, B, C for X to be symmetric positive-definite.
2. Compute $\operatorname{det}(X)$ as a function of $S=D-C A^{-1} B$.

Exercise 3 (Kullback-Leibler divergence) For positive vectors $p, q \in \mathbb{R}_{++}^{n}$ of the same dimension, the Kullback-Leibler divergence of p relative to q is defined as:

$$
D(p \| q) \doteq \sum_{i=1}^{n}\left[p_{i}\left(\log p_{i}-\log q_{i}\right)-\left(p_{i}-q_{i}\right)\right]
$$

Prove that:

1. $D(p \| q) \geq 0$, with equality if and only if $p=q$.
2. The function $\left\{\begin{array}{l}D: \mathbb{R}_{++}^{n} \times \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}_{+} \\ D(p \| q)=\sum_{i=1}^{n}\left[p_{i}\left(\log p_{i}-\log q_{i}\right)-\left(p_{i}-q_{i}\right)\right]\end{array} \quad\right.$ is strictly convex.
