EE227BT Discussion Section #1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic
function, f :R? — R given by:

fw)=w"Aw —2b"w + ¢

where A € %, b € R? and ¢ € R.

1.
2.

Explain why the function f is convex.

Assume ¢ = 0. Give a concrete example of a matrix A > 0 and a vector b such that

the point w* = [—1 1]T is the unique minimizer of the quadratic function f(w).

Assume ¢ = 0. Give a concrete example of a matrix A > 0, and a vector b such that
the quadratic function f(w) has infinitely many minimizers and all of them lie on the
line w; + wy = 0.

. Assume ¢ = 0. Give a concrete example of a non-zero matrix A > 0 and a vector b

such that the quadratic function f(w) tends to —oo as we follow the direction defined
T
by the vector [1 0} :

Say that we have the data set {(z® y®)},_; ., of features 2 € R? and values
y® € R. Define X = [:1:'(1) x(”)}T and y = [y(l) y(”)}T. In terms of X and
y, find a matrix A, a vector b and a scalar ¢, so that we can express the sum of the

square losses Z(wa(i) — )2 as the quadratic function f(w) = w"Aw — 2b"w + c.

=1

. Which of the following can be true for the minimization of the sum of the square losses

of part (5):

(a) It can have a unique minimizer.
(b) It can have infinitely many minimizers, all of them lying on a single line.

(¢) It can be unbounded from below, i.e. there is some direction so that if we follow
this direction the loss tends asymptotically to —oc.

Solution 1 1. Consider any line u+tv, parametrized by t € R. Let g(t) be the restriction

2.

of f on the line, i.e. ¢g(t) = f(u+ tv). Then
g(t) = (T AV = 2(b"v —u" Av)t + (c 4+ u" Au — 20 )
which is a convex univariate quadratic, since v Av > 0.

A=1b=w"



3. A=ece',b=0, where e = [1 1}T.

T T T
4. A =egey,b=e, where e; = [1 O] and ey = [0 1} .
5. A=X"Xb=XTy,c=y"y.

6. (a) This will be the case when X "X = 0.
(b) This will be the case when Ap, (X T X) = 0.

(¢) This can not happen since Z(wa(i) —y)? = || Xw—y|% > 0.
i=1

Exercise 2 (Solving Least Squares with CVX) 1. Use the standard normal distri-
bution in order to generate a random 16 x 8 matrix X, and a random 16 x 1 vector y.
Then use CVX in order to solve the least squares problem:

min || Xw — y|?
min || Xw - y?
Check your answer by comparing with the analytic least squares solution.

2. Now assume that we are interested in finding a binary valued vector w for the least
squares problem, i.e. we would like to solve

p*=min || Xw—yl|3: w;€{0,1},i=1,...,8
weRS
Note that this problem is not convex, but we can form the following convex relaxation

pi, = min HXw—yH% 0<w; <1,i=1,...,8
weRS

Use CVX to find pi,. What is the relation between p* and pi,,?

int *
3. Finally use CVX to solve the LASSO problem

min || Xw — yll5 + Aw|
weRS

where A > 0 is a hyper-parameter. Use values of A in the interval [107%,105], and
create a plot of each coordinate w; of the optimal vector w versus the corresponding
hyper-parameter .

Solution 2



cvx_leastsq
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In [1]: import cvxpy as cvx
import numpy as np
import matplotlib.pyplot as plt

Random Instance Generation
= 16

= 8

np.random.rand (n, d)

= np.random.rand(n)

In [3]: Least Squares

= cvx.Variable (d)

objective = cvx.Minimize (cvx.sum_entries (cvx.square (X+«w — Vy)))
prob = cvx.Problem(objective)

print ("Optimal value", prob.solve())

print ("Optimal wvar")

= KX QB
Il

print (w.value)

K = np.dot (X.T, X)

detK = np.linalg.det (K)

wopt = np.linalg.solve (K, np.dot (X.T, y))
print ("Optimal var using normal equations")
print (wopt)

Optimal value 0.7269248580530685

Optimal var

[[-0.03744191]

.29492623]

.03587683]

.09939876]

.25274529]

.66684273]

.19989569]

.0470695811

Optimal var using normal equations

[-0.03744375 0.29492624 -0.03587498 0.09939864 -0.25274482 0.6668402
0.1998968 0.04707078]
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In [4]: # Interval Constrained Least Squares
w = cvx.Variable (d)
objective = cvx.Minimize (cvx.sum_entries (cvx.square (X+«w — Vy)))
constraints = [0 <= w, w <= 1]
prob = cvx.Problem(objective, constraints)
print ("Optimal value", prob.solve())
print ("Optimal var")
print (w.value)

Optimal value 0.8530015312527397
Optimal var

[[ 1.41279015e-10
.28935370e-01
.42273570e-10
.17538320e-02
.25442467e-11
.24910648e-01
.3764655%9e-01
.76480218e-02

O = 0w o RN
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In [5]: # LASSO
lam = cvx.Parameter (sign="positive")
w = cvx.Variable (d)

error = CVX.sum_squares (X*w — y)

obj = cvx.Minimize (error + lamxcvx.norm(w, 1))
prob = cvx.Problem(obj)

sq_penalty = []

11_penalty = []

w_values = []
lam_vals np.logspace (-4, 6)
for val in lam_vals:

lam.value = val

prob.solve ()
sg_penalty.append(error.value)
11_penalty.append(cvx.norm(w, 1) .value)
w_values.append (w.value)

# Plot entries of w vs lam
plt.subplot (212)
for i in range(d):
plt.plot (lam_vals, [wi[i,0] for wi in w_values])
plt.xlabel (r'$\lambda$', fontsize=16)
plt.ylabel(r'$w_{i}$', fontsize=16)
plt.xscale('log'")
plt.title(r'Entries of $w$ vs $\lambda$', fontsize=16)



w;

plt.tight_layout ()
plt.show ()
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Exercise 3 (A Simple Case Of LASSO) Say that we have the data set {(z@,y®)},i21
of features 2 € R% and values y¥ € R. Define X = [m(l) e x(")}T and y = [y(l) e y(”)]T.
For the sake of simplicity, assume that the data has been centered and whitened so that each
feature has mean 0 and variance 1 and the features are uncorrelated, i.e. X' X = nl.

Consider the linear least squares regression with regularization in the ¢;-norm, also known
as LASSO:

w* = arg min || Xw — y|3 + Allw|
weR?

1. Decompose this optimization problem in d univariate optimization problems.

If w} > 0, then what is the value of w;?

If wi < 0, then what is the value of w;?

What is the condition for w; to be 07

A

Now consider the case of ridge regression, which uses the the ¢, regularization A|jw||3.

w* = arg min || Xw —yl|3 + Mwl3
weR4

What is the new condition for w; to be 07 How does this differ from the condition
obtained in part (4)? What does this suggest about LASSO?

Solution 3 1.
d
1Xw = yll3 + Mwlly =Y [rwf =2y agw; + Awil] + 7y
i=1
where X = [ml a:d}.
2. If w > 0, then the first order optimality conditions for w; write
2nw; — 2y x;+ A =0

from which we obtain
2n
which is positive when

A

-
iy

y x B

3. If w; <0, then the first order optimality conditions for w; write
2nw} — 2y x; — A =0
from which we obtain
e 2n

which is negative when

A
-

i < T35
yr 5



4. From the previous parts w; = 0, when |y"z;| < %

5. In the case of ridge regression the optimal weight vector w is given by

-
Yy oz .
wi="——,i=1,...,d
Coon4 N
So the coordinate i is only zero when y'x; = 0, in contrast to LASSO where the
coordinate 7 is zero when y'z; € [—%, %} This suggest that LASSO forces a lot of
coordinates to be zero, i.e. induces sparsity to the optimal weight vector.



