EE227BT Discussion Section \#1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic function, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by:

$$
f(w)=w^{\top} A w-2 b^{\top} w+c
$$

where $A \in \mathbb{S}_{+}^{2}, b \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$.

1. Explain why the function f is convex.
2. Assume $c=0$. Give a concrete example of a matrix $A \succ 0$ and a vector b such that the point $w^{*}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$ is the unique minimizer of the quadratic function $f(w)$.
3. Assume $c=0$. Give a concrete example of a matrix $A \succeq 0$, and a vector b such that the quadratic function $f(w)$ has infinitely many minimizers and all of them lie on the line $w_{1}+w_{2}=0$.
4. Assume $c=0$. Give a concrete example of a non-zero matrix $A \succeq 0$ and a vector b such that the quadratic function $f(w)$ tends to $-\infty$ as we follow the direction defined by the vector $\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.
5. Say that we have the data set $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1, \ldots, n}$ of features $x^{(i)} \in \mathbb{R}^{2}$ and values $y^{(i)} \in \mathbb{R}$. Define $X=\left[\begin{array}{lll}x^{(1)} & \ldots & x^{(n)}\end{array}\right]^{\top}$ and $y=\left[\begin{array}{lll}y^{(1)} & \ldots & y^{(n)}\end{array}\right]^{\top}$. In terms of X and y, find a matrix A, a vector b and a scalar c, so that we can express the sum of the square losses $\sum_{i=1}^{n}\left(w^{\top} x^{(i)}-y^{(i)}\right)^{2}$ as the quadratic function $f(w)=w^{\top} A w-2 b^{\top} w+c$.
6. Which of the following can be true for the minimization of the sum of the square losses of part (5):
(a) It can have a unique minimizer.
(b) It can have infinitely many minimizers, all of them lying on a single line.
(c) It can be unbounded from below, i.e. there is some direction so that if we follow this direction the loss tends asymptotically to $-\infty$.

Solution 1 1. Consider any line $u+t v$, parametrized by $t \in \mathbb{R}$. Let $g(t)$ be the restriction of f on the line, i.e. $g(t) \doteq f(u+t v)$. Then

$$
g(t)=\left(v^{\top} A v\right) t^{2}-2\left(b^{\top} v-u^{\top} A v\right) t+\left(c+u^{\top} A u-2 b^{\top} u\right)
$$

which is a convex univariate quadratic, since $v^{\top} A v \geq 0$.
2. $A=I, b=w^{*}$.
3. $A=e e^{\top}, b=0$, where $e=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\top}$.
4. $A=e_{2} e_{2}^{\top}, b=e_{1}$, where $e_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$ and $e_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{\top}$.
5. $A=X^{\top} X, b=X^{\top} y, c=y^{\top} y$.
6. (a) This will be the case when $X^{\top} X \succ 0$.
(b) This will be the case when $\lambda_{\min }\left(X^{\top} X\right)=0$.
(c) This can not happen since $\sum_{i=1}^{n}\left(w^{\top} x^{(i)}-y^{(i)}\right)^{2}=\|X w-y\|_{2}^{2} \geq 0$.

Exercise 2 (Solving Least Squares with CVX) 1. Use the standard normal distribution in order to generate a random 16×8 matrix X, and a random 16×1 vector y. Then use CVX in order to solve the least squares problem:

$$
\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}
$$

Check your answer by comparing with the analytic least squares solution.
2. Now assume that we are interested in finding a binary valued vector w for the least squares problem, i.e. we would like to solve

$$
p^{*}=\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}: w_{i} \in\{0,1\}, i=1, \ldots, 8
$$

Note that this problem is not convex, but we can form the following convex relaxation

$$
p_{\mathrm{int}}^{*}=\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}: 0 \leq w_{i} \leq 1, i=1, \ldots, 8
$$

Use CVX to find $p_{\text {int }}^{*}$. What is the relation between p^{*} and $p_{\text {int }}^{*}$?
3. Finally use CVX to solve the LASSO problem

$$
\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

where $\lambda>0$ is a hyper-parameter. Use values of λ in the interval $\left[10^{-4}, 10^{6}\right]$, and create a plot of each coordinate w_{i} of the optimal vector w versus the corresponding hyper-parameter λ.

Solution 2

cvx_leastsq

August 29, 2017

```
In [1]: import cvxpy as cvx
    import numpy as np
    import matplotlib.pyplot as plt
In [2]: # Random Instance Generation
    n = 16
    d = 8
    X = np.random.rand (n,d)
    y = np.random.rand(n)
In [3]: # Least Squares
    w = cvx.Variable(d)
    objective = cvx.Minimize(cvx.sum_entries(cvx.square(X*w - y)))
    prob = cvx.Problem(objective)
    print("Optimal value", prob.solve())
    print("Optimal var")
    print(w.value)
    K = np.dot(X.T, X)
    detK = np.linalg.det(K)
    wopt = np.linalg.solve(K, np.dot(X.T, y))
    print("Optimal var using normal equations")
    print(wopt)
Optimal value 0.7269248580530685
Optimal var
[[-0.03744191]
    [ 0.29492623]
    [-0.03587683]
    [ 0.09939876]
    [-0.25274529]
    [ 0.66684273]
    [ 0.19989569]
    [ 0.04706958]]
Optimal var using normal equations
[-0.03744375 0.29492624 -0.03587498 0.09939864 -0.25274482 0.6668402
        0.1998968 0.04707078]
```

```
In [4]: # Interval Constrained Least Squares
    w = cvx.Variable(d)
    objective = cvx.Minimize(cvx.sum_entries(cvx.square(X*w - y)))
    constraints = [0 <= w, w <= 1]
    prob = cvx.Problem(objective, constraints)
    print("Optimal value", prob.solve())
    print("Optimal var")
    print(w.value)
Optimal value 0.8530015312527397
Optimal var
[[ 1.41279015e-10]
    [ 2.28935370e-01]
    [ 1.42273570e-10]
    [ 5.17538320e-02]
    [ 3.25442467e-11]
    [ 5.24910648e-01]
    [ 1.37646559e-01]
    [ 9.76480218e-02]]
In [5]: # LASSO
    lam = cvx.Parameter(sign="positive")
    w = cvx.Variable(d)
    error = cvx.sum_squares(X*w - y)
    obj = cvx.Minimize(error + lam*cvx.norm(w, 1))
    prob = cvx.Problem(obj)
    sq_penalty = []
    l1_penalty = []
    w_values = []
    lam_vals = np.logspace(-4, 6)
    for val in lam_vals:
        lam.value = val
        prob.solve()
        sq_penalty.append(error.value)
        l1_penalty.append(cvx.norm(w, 1).value)
        w_values.append(w.value)
    # Plot entries of w vs lam
    plt.subplot(212)
    for i in range(d):
        plt.plot(lam_vals, [wi[i,0] for wi in w_values])
    plt.xlabel(r'$\lambda$', fontsize=16)
    plt.ylabel(r'$w_{i}$', fontsize=16)
    plt.xscale('log')
    plt.title(r'Entries of $w$ vs $\lambda$', fontsize=16)
```

```
plt.tight_layout()
plt.show()
Entries of \(w\) vs \(\lambda\)
```


Exercise 3 (A Simple Case Of LASSO) Say that we have the data set $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1, \ldots, n}$ of features $x^{(i)} \in \mathbb{R}^{d}$ and values $y^{(i)} \in \mathbb{R}$. Define $X=\left[\begin{array}{llll}x^{(1)} & \ldots & x^{(n)}\end{array}\right]^{\top}$ and $y=\left[\begin{array}{lll}y^{(1)} & \ldots & y^{(n)}\end{array}\right]^{\top}$. For the sake of simplicity, assume that the data has been centered and whitened so that each feature has mean 0 and variance 1 and the features are uncorrelated, i.e. $X^{\top} X=n I$.

Consider the linear least squares regression with regularization in the ℓ_{1}-norm, also known as LASSO:

$$
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

1. Decompose this optimization problem in d univariate optimization problems.
2. If $w_{i}^{*}>0$, then what is the value of w_{i}^{*} ?
3. If $w_{i}^{*}<0$, then what is the value of w_{i}^{*} ?
4. What is the condition for w_{i}^{*} to be 0 ?
5. Now consider the case of ridge regression, which uses the the ℓ_{2} regularization $\lambda\|w\|_{2}^{2}$.

$$
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

What is the new condition for w_{i}^{*} to be 0 ? How does this differ from the condition obtained in part (4)? What does this suggest about LASSO?

Solution 31.

$$
\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}=\sum_{i=1}^{d}\left[n w_{i}^{2}-2 y^{\top} x_{i} w_{i}+\lambda\left|w_{i}\right|\right]+y^{\top} y
$$

where $X=\left[\begin{array}{lll}x_{1} & \ldots & x_{d}\end{array}\right]$.
2. If $w_{i}^{*}>0$, then the first order optimality conditions for w_{i}^{*} write

$$
2 n w_{i}^{*}-2 y^{\top} x_{i}+\lambda=0
$$

from which we obtain

$$
w_{i}^{*}=\frac{2 y^{\top} x_{i}-\lambda}{2 n}
$$

which is positive when

$$
y^{\top} x_{i}>\frac{\lambda}{2}
$$

3. If $w_{i}^{*}<0$, then the first order optimality conditions for w_{i}^{*} write

$$
2 n w_{i}^{*}-2 y^{\top} x_{i}-\lambda=0
$$

from which we obtain

$$
w_{i}^{*}=\frac{2 y^{\top} x_{i}+\lambda}{2 n}
$$

which is negative when

$$
y^{\top} x_{i}<-\frac{\lambda}{2}
$$

4. From the previous parts $w_{i}^{*}=0$, when $\left|y^{\top} x_{i}\right| \leq \frac{\lambda}{2}$.
5. In the case of ridge regression the optimal weight vector w is given by

$$
w_{i}^{*}=\frac{y^{\top} x_{i}}{n+\lambda}, i=1, \ldots, d
$$

So the coordinate i is only zero when $y^{\top} x_{i}=0$, in contrast to LASSO where the coordinate i is zero when $y^{\top} x_{i} \in\left[-\frac{\lambda}{2}, \frac{\lambda}{2}\right]$. This suggest that LASSO forces a lot of coordinates to be zero, i.e. induces sparsity to the optimal weight vector.

