
EE227BT Discussion Section #1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic
function, f : R2 → R given by:

f(w) = w>Aw − 2b>w + c

where A ∈ S2
+, b ∈ R2 and c ∈ R.

1. Explain why the function f is convex.

2. Assume c = 0. Give a concrete example of a matrix A � 0 and a vector b such that

the point w∗ =
[
−1 1

]>
is the unique minimizer of the quadratic function f(w).

3. Assume c = 0. Give a concrete example of a matrix A � 0, and a vector b such that
the quadratic function f(w) has infinitely many minimizers and all of them lie on the
line w1 + w2 = 0.

4. Assume c = 0. Give a concrete example of a non-zero matrix A � 0 and a vector b
such that the quadratic function f(w) tends to −∞ as we follow the direction defined

by the vector
[
1 0

]>
.

5. Say that we have the data set {(x(i), y(i))}i=1,...,n of features x(i) ∈ R2 and values

y(i) ∈ R. Define X =
[
x(1) . . . x(n)

]>
and y =

[
y(1) . . . y(n)

]>
. In terms of X and

y, find a matrix A, a vector b and a scalar c, so that we can express the sum of the

square losses
n∑
i=1

(w>x(i) − y(i))2 as the quadratic function f(w) = w>Aw − 2b>w + c.

6. Which of the following can be true for the minimization of the sum of the square losses
of part (5):

(a) It can have a unique minimizer.

(b) It can have infinitely many minimizers, all of them lying on a single line.

(c) It can be unbounded from below, i.e. there is some direction so that if we follow
this direction the loss tends asymptotically to −∞.

Solution 1 1. Consider any line u+tv, parametrized by t ∈ R. Let g(t) be the restriction
of f on the line, i.e. g(t)

.
= f(u+ tv). Then

g(t) = (v>Av)t2 − 2(b>v − u>Av)t+ (c+ u>Au− 2b>u)

which is a convex univariate quadratic, since v>Av ≥ 0.

2. A = I, b = w∗.
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3. A = ee>, b = 0, where e =
[
1 1

]>
.

4. A = e2e
>
2 , b = e1, where e1 =

[
1 0

]>
and e2 =

[
0 1

]>
.

5. A = X>X, b = X>y, c = y>y.

6. (a) This will be the case when X>X � 0.

(b) This will be the case when λmin(X>X) = 0.

(c) This can not happen since
n∑
i=1

(w>x(i) − y(i))2 = ‖Xw − y‖22 ≥ 0.

Exercise 2 (Solving Least Squares with CVX) 1. Use the standard normal distri-
bution in order to generate a random 16× 8 matrix X, and a random 16× 1 vector y.
Then use CVX in order to solve the least squares problem:

min
w∈R8

‖Xw − y‖22

Check your answer by comparing with the analytic least squares solution.

2. Now assume that we are interested in finding a binary valued vector w for the least
squares problem, i.e. we would like to solve

p∗ = min
w∈R8

‖Xw − y‖22 : wi ∈ {0, 1}, i = 1, . . . , 8

Note that this problem is not convex, but we can form the following convex relaxation

p∗int = min
w∈R8

‖Xw − y‖22 : 0 ≤ wi ≤ 1, i = 1, . . . , 8

Use CVX to find p∗int. What is the relation between p∗ and p∗int?

3. Finally use CVX to solve the LASSO problem

min
w∈R8

‖Xw − y‖22 + λ‖w‖1

where λ > 0 is a hyper-parameter. Use values of λ in the interval [10−4, 106], and
create a plot of each coordinate wi of the optimal vector w versus the corresponding
hyper-parameter λ.

Solution 2
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cvx_leastsq

August 29, 2017

In [1]: import cvxpy as cvx
import numpy as np
import matplotlib.pyplot as plt

In [2]: # Random Instance Generation
n = 16
d = 8
X = np.random.rand(n,d)
y = np.random.rand(n)

In [3]: # Least Squares
w = cvx.Variable(d)
objective = cvx.Minimize(cvx.sum_entries(cvx.square(X*w - y)))
prob = cvx.Problem(objective)
print("Optimal value", prob.solve())
print("Optimal var")
print(w.value)

K = np.dot(X.T, X)
detK = np.linalg.det(K)
wopt = np.linalg.solve(K, np.dot(X.T, y))
print("Optimal var using normal equations")
print(wopt)

Optimal value 0.7269248580530685
Optimal var
[[-0.03744191]
[ 0.29492623]
[-0.03587683]
[ 0.09939876]
[-0.25274529]
[ 0.66684273]
[ 0.19989569]
[ 0.04706958]]
Optimal var using normal equations
[-0.03744375 0.29492624 -0.03587498 0.09939864 -0.25274482 0.6668402

0.1998968 0.04707078]
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In [4]: # Interval Constrained Least Squares
w = cvx.Variable(d)
objective = cvx.Minimize(cvx.sum_entries(cvx.square(X*w - y)))
constraints = [0 <= w, w <= 1]
prob = cvx.Problem(objective, constraints)
print("Optimal value", prob.solve())
print("Optimal var")
print(w.value)

Optimal value 0.8530015312527397
Optimal var
[[ 1.41279015e-10]
[ 2.28935370e-01]
[ 1.42273570e-10]
[ 5.17538320e-02]
[ 3.25442467e-11]
[ 5.24910648e-01]
[ 1.37646559e-01]
[ 9.76480218e-02]]

In [5]: # LASSO
lam = cvx.Parameter(sign="positive")
w = cvx.Variable(d)
error = cvx.sum_squares(X*w - y)
obj = cvx.Minimize(error + lam*cvx.norm(w, 1))
prob = cvx.Problem(obj)

sq_penalty = []
l1_penalty = []
w_values = []
lam_vals = np.logspace(-4, 6)
for val in lam_vals:

lam.value = val
prob.solve()
sq_penalty.append(error.value)
l1_penalty.append(cvx.norm(w, 1).value)
w_values.append(w.value)

# Plot entries of w vs lam
plt.subplot(212)
for i in range(d):

plt.plot(lam_vals, [wi[i,0] for wi in w_values])
plt.xlabel(r'$\lambda$', fontsize=16)
plt.ylabel(r'$w_{i}$', fontsize=16)
plt.xscale('log')
plt.title(r'Entries of $w$ vs $\lambda$', fontsize=16)
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plt.tight_layout()
plt.show()
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Exercise 3 (A Simple Case Of LASSO) Say that we have the data set {(x(i), y(i))}i=1,...,n

of features x(i) ∈ Rd and values y(i) ∈ R. DefineX =
[
x(1) . . . x(n)

]>
and y =

[
y(1) . . . y(n)

]>
.

For the sake of simplicity, assume that the data has been centered and whitened so that each
feature has mean 0 and variance 1 and the features are uncorrelated, i.e. X>X = nI.

Consider the linear least squares regression with regularization in the `1-norm, also known
as LASSO:

w∗ = arg min
w∈Rd

‖Xw − y‖22 + λ‖w‖1

1. Decompose this optimization problem in d univariate optimization problems.

2. If w∗i > 0, then what is the value of w∗i ?

3. If w∗i < 0, then what is the value of w∗i ?

4. What is the condition for w∗i to be 0?

5. Now consider the case of ridge regression, which uses the the `2 regularization λ‖w‖22.

w∗ = arg min
w∈Rd

‖Xw − y‖22 + λ‖w‖22

What is the new condition for w∗i to be 0? How does this differ from the condition
obtained in part (4)? What does this suggest about LASSO?

Solution 3 1.

‖Xw − y‖22 + λ‖w‖1 =
d∑
i=1

[
nw2

i − 2y>xiwi + λ|wi|
]

+ y>y

where X =
[
x1 . . . xd

]
.

2. If w∗i > 0, then the first order optimality conditions for w∗i write

2nw∗i − 2y>xi + λ = 0

from which we obtain

w∗i =
2y>xi − λ

2n
which is positive when

y>xi >
λ

2

3. If w∗i < 0, then the first order optimality conditions for w∗i write

2nw∗i − 2y>xi − λ = 0

from which we obtain

w∗i =
2y>xi + λ

2n
which is negative when

y>xi < −
λ

2
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4. From the previous parts w∗i = 0, when |y>xi| ≤ λ
2
.

5. In the case of ridge regression the optimal weight vector w is given by

w∗i =
y>xi
n+ λ

, i = 1, . . . , d

So the coordinate i is only zero when y>xi = 0, in contrast to LASSO where the
coordinate i is zero when y>xi ∈

[
−λ

2
, λ
2

]
. This suggest that LASSO forces a lot of

coordinates to be zero, i.e. induces sparsity to the optimal weight vector.
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