EE227BT Discussion Section #1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic function, $f : \mathbb{R}^2 \to \mathbb{R}$ given by:

$$f(w) = w^{\top}Aw - 2b^{\top}w + c$$

where $A \in \mathbb{S}^2_+$, $b \in \mathbb{R}^2$ and $c \in \mathbb{R}$.

- 1. Explain why the function f is convex.
- 2. Assume c = 0. Give a concrete example of a matrix $A \succ 0$ and a vector b such that the point $w^* = \begin{bmatrix} -1 & 1 \end{bmatrix}^\top$ is the unique minimizer of the quadratic function f(w).
- 3. Assume c = 0. Give a concrete example of a matrix $A \succeq 0$, and a vector b such that the quadratic function f(w) has infinitely many minimizers and all of them lie on the line $w_1 + w_2 = 0$.
- 4. Assume c = 0. Give a concrete example of a **non-zero** matrix $A \succeq 0$ and a vector b such that the quadratic function f(w) tends to $-\infty$ as we follow the direction defined by the vector $\begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$.
- 5. Say that we have the data set $\{(x^{(i)}, y^{(i)})\}_{i=1,\dots,n}$ of features $x^{(i)} \in \mathbb{R}^2$ and values $y^{(i)} \in \mathbb{R}$. Define $X = \begin{bmatrix} x^{(1)} & \dots & x^{(n)} \end{bmatrix}^{\top}$ and $y = \begin{bmatrix} y^{(1)} & \dots & y^{(n)} \end{bmatrix}^{\top}$. In terms of X and y, find a matrix A, a vector b and a scalar c, so that we can express the sum of the square losses $\sum_{i=1}^{n} (w^{\top} x^{(i)} y^{(i)})^2$ as the quadratic function $f(w) = w^{\top} Aw 2b^{\top}w + c$.
- 6. Which of the following can be true for the minimization of the sum of the square losses of part (5):
 - (a) It can have a unique minimizer.
 - (b) It can have infinitely many minimizers, all of them lying on a single line.
 - (c) It can be unbounded from below, i.e. there is some direction so that if we follow this direction the loss tends asymptotically to $-\infty$.
- **Exercise 2 (Solving Least Squares with CVX)** 1. Use the standard normal distribution in order to generate a random 16×8 matrix X, and a random 16×1 vector y. Then use CVX in order to solve the least squares problem:

$$\min_{w \in \mathbb{R}^8} \|Xw - y\|_2^2$$

Check your answer by comparing with the analytic least squares solution.

2. Now assume that we are interested in finding a binary valued vector w for the least squares problem, i.e. we would like to solve

$$p^* = \min_{w \in \mathbb{R}^8} \|Xw - y\|_2^2 : w_i \in \{0, 1\}, i = 1, \dots, 8$$

Note that this problem is not convex, but we can form the following convex relaxation

$$p_{\text{int}}^* = \min_{w \in \mathbb{R}^8} \|Xw - y\|_2^2 : 0 \le w_i \le 1, i = 1, \dots, 8$$

Use CVX to find p_{int}^* . What is the relation between p^* and p_{int}^* ?

3. Finally use CVX to solve the LASSO problem

$$\min_{w \in \mathbb{R}^8} \|Xw - y\|_2^2 + \lambda \|w\|_1$$

where $\lambda > 0$ is a hyper-parameter. Use values of λ in the interval $[10^{-4}, 10^6]$, and create a plot of each coordinate w_i of the optimal vector w versus the corresponding hyper-parameter λ .

Exercise 3 (A Simple Case Of LASSO) Say that we have the data set $\{(x^{(i)}, y^{(i)})\}_{i=1,...,n}$ of features $x^{(i)} \in \mathbb{R}^d$ and values $y^{(i)} \in \mathbb{R}$. Define $X = \begin{bmatrix} x^{(1)} & \dots & x^{(n)} \end{bmatrix}^\top$ and $y = \begin{bmatrix} y^{(1)} & \dots & y^{(n)} \end{bmatrix}^\top$. For the sake of simplicity, assume that the data has been centered and whitened so that each feature has mean 0 and variance 1 and the features are uncorrelated, i.e. $X^\top X = nI$.

Consider the linear least squares regression with regularization in the ℓ_1 -norm, also known as LASSO:

$$w^* = \arg\min_{w \in \mathbb{R}^d} \|Xw - y\|_2^2 + \lambda \|w\|_1$$

- 1. Decompose this optimization problem in d univariate optimization problems.
- 2. If $w_i^* > 0$, then what is the value of w_i^* ?
- 3. If $w_i^* < 0$, then what is the value of w_i^* ?
- 4. What is the condition for w_i^* to be 0?
- 5. Now consider the case of ridge regression, which uses the the ℓ_2 regularization $\lambda \|w\|_2^2$.

$$w^* = \arg\min_{w \in \mathbb{R}^d} \|Xw - y\|_2^2 + \lambda \|w\|_2^2$$

What is the new condition for w_i^* to be 0? How does this differ from the condition obtained in part (4)? What does this suggest about LASSO?