
EE227BT Discussion Section #1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic
function, f : R2 → R given by:

f(w) = w>Aw − 2b>w + c

where A ∈ S2
+, b ∈ R2 and c ∈ R.

1. Explain why the function f is convex.

2. Assume c = 0. Give a concrete example of a matrix A � 0 and a vector b such that

the point w∗ =
[
−1 1

]>
is the unique minimizer of the quadratic function f(w).

3. Assume c = 0. Give a concrete example of a matrix A � 0, and a vector b such that
the quadratic function f(w) has infinitely many minimizers and all of them lie on the
line w1 + w2 = 0.

4. Assume c = 0. Give a concrete example of a non-zero matrix A � 0 and a vector b
such that the quadratic function f(w) tends to −∞ as we follow the direction defined

by the vector
[
1 0

]>
.

5. Say that we have the data set {(x(i), y(i))}i=1,...,n of features x(i) ∈ R2 and values

y(i) ∈ R. Define X =
[
x(1) . . . x(n)

]>
and y =

[
y(1) . . . y(n)

]>
. In terms of X and

y, find a matrix A, a vector b and a scalar c, so that we can express the sum of the

square losses
n∑

i=1

(w>x(i) − y(i))2 as the quadratic function f(w) = w>Aw − 2b>w + c.

6. Which of the following can be true for the minimization of the sum of the square losses
of part (5):

(a) It can have a unique minimizer.

(b) It can have infinitely many minimizers, all of them lying on a single line.

(c) It can be unbounded from below, i.e. there is some direction so that if we follow
this direction the loss tends asymptotically to −∞.

Exercise 2 (Solving Least Squares with CVX) 1. Use the standard normal distri-
bution in order to generate a random 16× 8 matrix X, and a random 16× 1 vector y.
Then use CVX in order to solve the least squares problem:

min
w∈R8

‖Xw − y‖22

Check your answer by comparing with the analytic least squares solution.
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2. Now assume that we are interested in finding a binary valued vector w for the least
squares problem, i.e. we would like to solve

p∗ = min
w∈R8

‖Xw − y‖22 : wi ∈ {0, 1}, i = 1, . . . , 8

Note that this problem is not convex, but we can form the following convex relaxation

p∗int = min
w∈R8

‖Xw − y‖22 : 0 ≤ wi ≤ 1, i = 1, . . . , 8

Use CVX to find p∗int. What is the relation between p∗ and p∗int?

3. Finally use CVX to solve the LASSO problem

min
w∈R8

‖Xw − y‖22 + λ‖w‖1

where λ > 0 is a hyper-parameter. Use values of λ in the interval [10−4, 106], and
create a plot of each coordinate wi of the optimal vector w versus the corresponding
hyper-parameter λ.

Exercise 3 (A Simple Case Of LASSO) Say that we have the data set {(x(i), y(i))}i=1,...,n

of features x(i) ∈ Rd and values y(i) ∈ R. DefineX =
[
x(1) . . . x(n)

]>
and y =

[
y(1) . . . y(n)

]>
.

For the sake of simplicity, assume that the data has been centered and whitened so that each
feature has mean 0 and variance 1 and the features are uncorrelated, i.e. X>X = nI.

Consider the linear least squares regression with regularization in the `1-norm, also known
as LASSO:

w∗ = arg min
w∈Rd

‖Xw − y‖22 + λ‖w‖1

1. Decompose this optimization problem in d univariate optimization problems.

2. If w∗i > 0, then what is the value of w∗i ?

3. If w∗i < 0, then what is the value of w∗i ?

4. What is the condition for w∗i to be 0?

5. Now consider the case of ridge regression, which uses the the `2 regularization λ‖w‖22.

w∗ = arg min
w∈Rd

‖Xw − y‖22 + λ‖w‖22

What is the new condition for w∗i to be 0? How does this differ from the condition
obtained in part (4)? What does this suggest about LASSO?
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