EE227BT Discussion Section \#1

Exercise 1 (Quadratics And Least Squares) Consider the two dimensional quadratic function, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by:

$$
f(w)=w^{\top} A w-2 b^{\top} w+c
$$

where $A \in \mathbb{S}_{+}^{2}, b \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$.

1. Explain why the function f is convex.
2. Assume $c=0$. Give a concrete example of a matrix $A \succ 0$ and a vector b such that the point $w^{*}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{\top}$ is the unique minimizer of the quadratic function $f(w)$.
3. Assume $c=0$. Give a concrete example of a matrix $A \succeq 0$, and a vector b such that the quadratic function $f(w)$ has infinitely many minimizers and all of them lie on the line $w_{1}+w_{2}=0$.
4. Assume $c=0$. Give a concrete example of a non-zero matrix $A \succeq 0$ and a vector b such that the quadratic function $f(w)$ tends to $-\infty$ as we follow the direction defined by the vector $\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$.
5. Say that we have the data set $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1, \ldots, n}$ of features $x^{(i)} \in \mathbb{R}^{2}$ and values $y^{(i)} \in \mathbb{R}$. Define $X=\left[\begin{array}{lll}x^{(1)} & \ldots & x^{(n)}\end{array}\right]^{\top}$ and $y=\left[\begin{array}{lll}y^{(1)} & \ldots & y^{(n)}\end{array}\right]^{\top}$. In terms of X and y, find a matrix A, a vector b and a scalar c, so that we can express the sum of the square losses $\sum_{i=1}^{n}\left(w^{\top} x^{(i)}-y^{(i)}\right)^{2}$ as the quadratic function $f(w)=w^{\top} A w-2 b^{\top} w+c$.
6. Which of the following can be true for the minimization of the sum of the square losses of part (5):
(a) It can have a unique minimizer.
(b) It can have infinitely many minimizers, all of them lying on a single line.
(c) It can be unbounded from below, i.e. there is some direction so that if we follow this direction the loss tends asymptotically to $-\infty$.

Exercise 2 (Solving Least Squares with CVX) 1. Use the standard normal distribution in order to generate a random 16×8 matrix X, and a random 16×1 vector y. Then use CVX in order to solve the least squares problem:

$$
\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}
$$

Check your answer by comparing with the analytic least squares solution.
2. Now assume that we are interested in finding a binary valued vector w for the least squares problem, i.e. we would like to solve

$$
p^{*}=\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}: w_{i} \in\{0,1\}, i=1, \ldots, 8
$$

Note that this problem is not convex, but we can form the following convex relaxation

$$
p_{\text {int }}^{*}=\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}: 0 \leq w_{i} \leq 1, i=1, \ldots, 8
$$

Use CVX to find $p_{\text {int }}^{*}$. What is the relation between p^{*} and $p_{\text {int }}^{*}$?
3. Finally use CVX to solve the LASSO problem

$$
\min _{w \in \mathbb{R}^{8}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

where $\lambda>0$ is a hyper-parameter. Use values of λ in the interval $\left[10^{-4}, 10^{6}\right]$, and create a plot of each coordinate w_{i} of the optimal vector w versus the corresponding hyper-parameter λ.

Exercise 3 (A Simple Case Of LASSO) Say that we have the data set $\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1, \ldots, n}$ of features $x^{(i)} \in \mathbb{R}^{d}$ and values $y^{(i)} \in \mathbb{R}$. Define $X=\left[\begin{array}{llll}x^{(1)} & \ldots & x^{(n)}\end{array}\right]^{\top}$ and $y=\left[\begin{array}{llll}y^{(1)} & \ldots & y^{(n)}\end{array}\right]^{\top}$. For the sake of simplicity, assume that the data has been centered and whitened so that each feature has mean 0 and variance 1 and the features are uncorrelated, i.e. $X^{\top} X=n I$.

Consider the linear least squares regression with regularization in the ℓ_{1}-norm, also known as LASSO:

$$
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{1}
$$

1. Decompose this optimization problem in d univariate optimization problems.
2. If $w_{i}^{*}>0$, then what is the value of w_{i}^{*} ?
3. If $w_{i}^{*}<0$, then what is the value of w_{i}^{*} ?
4. What is the condition for w_{i}^{*} to be 0 ?
5. Now consider the case of ridge regression, which uses the the ℓ_{2} regularization $\lambda\|w\|_{2}^{2}$.

$$
w^{*}=\arg \min _{w \in \mathbb{R}^{d}}\|X w-y\|_{2}^{2}+\lambda\|w\|_{2}^{2}
$$

What is the new condition for w_{i}^{*} to be 0 ? How does this differ from the condition obtained in part (4)? What does this suggest about LASSO?

