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Agenda

1. Motivations
2. Overview of data science
3. Some smart grid applications

– Optimization-friendly models of complex energy systems
– Text analytics for maintenance & safety
– Robust energy management
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EDF Research & Development

• +2,000 researchers
• Mission to improve safety, reliability & profitability of EDF Group 

assets:
- Power Generation assets: Renewable Energy, Nuclear, Thermal..
- Power Transmission and Distribution assets
- 3rd Parties asset management

• Bring Data Science to EDF Business through applied research and 
demonstration projects.



Siebel Energy Institute
Advancing the science of smart energy

SEI funds research in data analytics for the electrical smart grid, the oil 
and gas industry, and other modern energy systems.

http://www.siebelenergyinstitute.org/

SEI is a consortium of 
international 
universities focused on 
advancing data analytics 
research for energy 
systems in an open, 
collaborative and publicly-
available manner.

http://www.siebelenergyinstitute.org/


SumUp Analytics
The voice of people, markets, machines

SumUp is a startup 
specializing in predictive 
text intelligence, with 
solutions tailored for the 
energy markets.



Robust energy management
Of a Combined Heat and Power (CHP) Plant

Basic problem: adjust 24-hour production variables so as to 
minimize operational costs, under operational and demand 
constraints, with demand not exactly known in advance.

CHP generation:
• Cheap. 
• Environmentally friendly.
System has thousands of 
production variables.



Design of a complex energy system
Using optimization-friendly models

Basic problem: adjust the design parameters so as to optimize 
the average performance of the system.

Most energy systems have 
complex dynamics, which 
are highly dependent on 
design variables (shape of 
turbines, location of 
buildings, thickness of 
insulating material, etc).



Predictive maintenance
Via text analytics

Can we use text analy0cs on technician maintenance reports to 
help diagnose / predict maintenance or safety issues?

Predictive maintenance is based on 
installing sensors on all the 
relevant machinery, and 
collecting/analyzing petabytes of 
data.

• High setup costs.
• Capital intensive.
• ROI unclear.



What is data science?

Data Science 
= 

Machine Learning, Statistics 
+

Optimization, control

(Predict, diagnose)

(Act)

Analogy: driving



Outline of this brief tour…

• Representa)on of data
• Unsupervised learning
• Supervised learning
• Op)miza)on models



Data sets

Today ``data'' covers many things: 
• Numbers: physical measurements, prices, economic and 

index indicators, etc.
• Text: news, safety reports, SEC filings, PR documents, analyst 

reports, etc.
• Images & videos: satellite, TV broadcasts, interviews, 

transcripts, etc.

Many of these data sets can be put in numerical, tabular form



Example: representing text collections

Sentence: Gold drops as China tightens, down 2 percent on week.
Dictionary: gold, silver, china, u.s., bernanke, tightens
Numerical form of sentence: x = (1,0,1,0,0,1)

Any collection of documents can be represented in tabular form:
• A column represents a single document.
• A row represents the “score” of a particular term across 

documents.



Unsupervised learning
Market data

Can we make sense of this market data?



Unsupervised learning
Senate voting data (2004-2006)

Are there any pa8erns you see?



Unsupervised learning
Principal component analysis

PCA algorithm:
• Find direction of highest variance
• Project data orthogonal to that 

direction
• Repeat on projected points
• Stop until satisfactory level of 

cumulative variance



Unsupervised learning
PCA of market data

Variance explained vs. # components • First ten components 
explain 80% of the variance.

• Highest component all 
involves troubled financials 
(ABC, FTU, MER, AIG, MS).



Unsupervised learning
Senate voting data: projecting data

Highest-variance direction 
recovers party line!

Allows to score Senators.



Unsupervised learning
Beyond PCA: graphical model for interest rate data
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All assets are correlated

Conditional independence graph:
Discovers structure 



Supervised learning
Overview

In supervised learning, data points come with “side” information:
• Real numbers
• Binary
• Other
Goal is to predict the “side information” for a new data point.

Example: based on time-series data, predict failure of an equipment.



Supervised learning
Model fitting



Supervised learning
Classification

Data set comes with labels
• Task: predict the label of a 

new point
• Method: separate training 

data with a plane
• Result: predict label of a 

new point based on which 
side it falls

In sparse learning, we also need to iden>fy the key features that are 
involved in the predic>on.



Optimization
Linear programming model

Linear program:

LPs and variants can be used to describe many decision problems, 
e.g. energy management or optimal design of engineering systems.

• x is a vector of “decision 
variables”

• Constraints are linear on x



Example
Model of energy production

Linear program:

In energy production applications:
• x is a vector of production variables. 
• Ax represented produced items.
• Vector b represents demand.
• Vector c represents cost.

Some variables can be binary, leading to a more complex model.



Robust optimization
Robust LP

Robust linear program:

• Vector b is unknown, but bounded 
in a set B

• Constraints are satisfied for every b 
in set B

In practice, data in LPs may not be exactly known at solution time.



Summary
Which data science for which case?

To apply data science in practice:

Task Model to use
Diagnose, understand big picture
Prepare data for other tasks

Unsupervised learning

Predict Supervised learning
Automate decisions Optimization



Robust energy management
Of a Combined Heat and Power (CHP) Plant

Basic problem: adjust 24-hour produc?on variables so as to 
minimize opera?onal costs, under opera?onal and demand 
constraints, with demand not exactly known in advance.

CHP generation:
• Cheap. 
• Environmentally friendly.
System has thousands of 
production variables.



Robust energy management
Variables and constraints

The production vector x contains 
• 840 binary variables which represent all-or-nothing states 

(On/Off mode), 
• 672 continuous variables which represent the amount of gas 

consumed by the equipment or the level of energy 
produced, etc.

• Among the 2,518 constraints, only 24 of them are subject 
to uncertainty: Every hour, we impose that the heat 
delivered to the network satisfies the heat demand. 



Building the model
Fitting uncertainty model to historical data

• b now corresponds to the estimated 
demand vector (over the next 24-
hour period).

• Matrix B allows to account for 
“ripple effects” in uncertainty.

Simple uncertainty model:

Model can be fitted with supervised learning methods.



Results
In terms of worst-case cost

Measuring performance 
via “worst-case” cost (over 
allowable uncertainty):
• Original LP model can 

lead to unsatisfied 
constraints.

• Robust LP and more 
sophisticated variants 
bring down worst-case 
cost greatly.



Design of a complex energy system
Renovation of a set of 22 buildings

Goal: For a set of 22 buildings, 
optimize renovation parameters 
(wall thicknesses, isolation, etc), 
so as to minimize average 
energy consumption, taking into 
account 
• Constraints on parameters.
• Temperature (comfort) limits.
• Uncertainty on future 

demand.



Classical approach

Classical approach:
• Setup a (complex) simulation model as 

accurate as possible.
• Optimize the simulation model by 

exhaustive or heuristic search in 
parameter space.

Simulation 
model of 
system

Performance, 
Cost

Demand

Design parameters

Challenges in classical approach:
• Parameter search is complicated 

and time-consuming.
• Might produce spurious optima, 

or not converge.



Optimization-friendly approach
Basic idea

Model system in a way that guarantees that the parameter 
search is easy.
• So-called “posynomial models” are examples of models that 

can effectively optimized.
• They generalize “power laws” that govern (or, accurately 

model) many physical systems.



Optimization-friendly approach
Procedure

• Use a (complex, “un-friendly”) simulation model to obtain a 
set of input-output data.

• Model the input-output behavior by a (friendly) proxy model.
• Optimize the proxy model.
The approach involves:
• Sampling the parameter space;
• For each set of parameter values, get an input-output pair.
• From those pairs, learning the model.



Getting simulation data
Using Dymola simulation model

• n = 3, 174 simulations.
• n sample points split into training and validation set (50-

50).
• Simulated 2,4192,000s (28 days) with ∆t = 3,600s.
• Latin hypercube sampling in [0, 1] for parameters (5 of 

them)



Model Fitting Results
With a posynomial model 

Using sparse machine 
learning we identified a 
model with 44 terms that 
is ~4% accurate, for both 
energy and temperature.

This is the function below, 
with specific values of x, a, 
and n=44:



Parameter optimization 
With a posynomial model 

Optimization problem:

• p: vector of parameters
• Set H describes constraints on p
• Ê, M are proxy energy and temperature functions



Parameter optimization results
With a posynomial model 



Parameter optimization results
With a posynomial model 



Unsupervised learning
Text data
ASRS data: 

A collection of ~25K 
reports on flight safety 
written by commercial 
pilots in the US, 
maintained by NASA.

Goals:
• Understand and 

diagnose issues.
• If possible, predict 

incidents.



Unsupervised learning
PCA of ASRS data

Highest variance directions 
correspond to four main pilot 
tasks:
• Navigate (fly)
• Aviate (on runway)
• Communicate (with tower)
• Manage

Communications / runway issues predominant in big airports



Supervised learning
Sparsity: learning the relevant features
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Goal: Analyze the relevant 
features in classifying reports 
from one airport against all 
others
• At DFW we find the terms 

“Rwy36R” and “TxwF”.
• This corresponds to an 

intersection with lots of 
near-miss collisions, due to 
lack of visibility from Tower.



Conclusion and perspec/ves
• Methodology

• Estimating demand uncertainty based on statistical models
• Optimization-friendly models: Kriging (sampling) methods

• Applications, looking forward
- Text mining approach to support predictive maintenance of power 

assets. 
- Applications of complex modeling / control to Electric Grid
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THANK YOU!
QUESTIONS?

Today’s presentation will be 
made available on the 
IEEE Smart Grid Portal

Smartgrid.ieee.org


