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Agenda

1. Motivations

2. Overview of data science

3. Some smart grid applications
— Optimization-friendly models of complex energy systems
— Text analytics for maintenance & safety

— Robust energy management
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EDF Research & Development &

>~ EDF

- +2,000 researchers

- Mission to improve safety, reliability & profitability of EDF Group
assets:

- Power Generation assets: Renewable Energy, Nuclear, Thermal..
- Power Transmission and Distribution assets

- 3rd Parties asset management

- Bring Data Science to EDF Business through applied research and
demonstration projects.
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Siebel Energy Institute SIEBEL

ENERGY INSTITUTE
Advancing the science of smart energy

SEl is a consortium of

international
e Kt i univers?ties focused on
M | | advancing data analytics
= : research for energy
o L oDt systems in an open,
L collaborative and publicly-

available manner.

SEI funds research in data analytics for the electrical smart grid, the oil
and gas industry, and other modern energy systems.

http://www.siebelenergyinstitute.org/
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http://www.siebelenergyinstitute.org/

SumUp Analytics

Julll
The voice of people, markets, machines - \’

SumUp is a startup
specializing in predictive
text intelligence, with
solutions tailored for the
energy markets.
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Robust energy management
Of a Combined Heat and Power (CHP) Plant

CHP generation:
Cheap.
Environmentally friendly.

System has thousands of
production variables.

— {1

Basic problem: adjust 24-hour production variables so as to
minimize operational costs, under operational and demand
constraints, with demand not exactly known in advance.
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Design of a complex energy system
Using optimization-friendly models

Most energy systems have
complex dynamics, which
are highly dependent on
design variables (shape of
turbines, location of
buildings, thickness of
insulating material, etc).

Basic problem: adjust the design parameters so as to optimize
the average performance of the system.
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Predictive maintenance
Via text analytics

Predictive maintenance is based on
installing sensors on all the
relevant machinery, and
collecting/analyzing petabytes of
data.

High setup costs.
Capital intensive.
ROI unclear.

Can we use text analytics on technician maintenance reports to
help diagnose / predict maintenance or safety issues?
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What is data science?

Data Science

Machine Learning, Statistics (Predict, diagnose)
+
Optimization, control (Act)

Analogy: driving
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Outline of this brief tour...

Representation of data
Unsupervised learning
Supervised learning

Optimization models
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Data sets

Today data" covers many things:

- Numbers: physical measurements, prices, economic and
index indicators, etc.

- Text: news, safety reports, SEC filings, PR documents, analyst
reports, etc.

- Images & videos: satellite, TV broadcasts, interviews,
transcripts, etc.

Many of these data sets can be put in numerical, tabular form
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Example: representing text collections

Sentence: Gold drops as China tightens, down 2 percent on week.
Dictionary: gold, silver, china, u.s., bernanke, tightens

Numerical form of sentence: x=(1,0,1,0,0,1)

Any collection of documents can be represented in tabular form:
- A column represents a single document.

- Arow represents the “score” of a particular term across
documents.
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Unsupervised learning
Market data

stock market log-returns

1 1 1 1 1 1 1
O 10 20 30 40 50 80 70 80

Can we make sense of this market data?
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Unsupervised learning
Senate voting data (2004-2006)
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Are there any patterns you see?
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Unsupervised learning

Principal component analysis

PCA algorithm:

- Find direction of highest variance

- Project data orthogonal to that
direction

- Repeat on projected points

- Stop until satisfactory level of
cumulative variance
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Unsupervised learning
PCA of market data

Variance explained vs. # components  *©  FIrst ten components
- | explain 80% of the variance.

- Highest component all
involves troubled financials
(ABC, FTU, MER, AIG, MS).

0.4

03

0.2

0.1

| 1 | 1 | | 1
0 10 20 30 40 50 60 70 80
index of singular value
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Unsupervised learning
Senate voting data: projecting data
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Unsupervised learning
Beyond PCA: graphical model for interest rate data
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Correlation graph: Conditional independence graph:
All assets are correlated Discovers structure
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Supervised learning
Overview

In supervised learning, data points come with “side” information:
- Real numbers

- Binary

- Other

Goal is to predict the “side information” for a new data point.

Example: based on time-series data, predict failure of an equipment.
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Supervised learning

Model fitting

P4
|
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Equation of fitted line: y = 0.40x+0.51

Sum of areas = 0.51
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Supervised learning
Classification

Data set comes with labels

- Task: predict the label of a
new point

- Method: separate training
data with a plane

- Result: predict label of a
new point based on which
side it falls

In sparse learning, we also need to identify the key features that are
involved in the prediction.
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Optimization
Linear programming model
Linear program:

T

min ¢ x subject to Axr = b
I

- X is a vector of “decision
variables”

- Constraints are linear on x

LPs and variants can be used to describe many decision problems,
e.g. energy management or optimal design of engineering systems.
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Example
Model of energy production

Linear program: min ¢’ & subject to Ar = b
I

In energy production applications:

- X is a vector of production variables.

Ax represented produced items.

r{ o
—nnn)

Vector b represents demand.

rna‘c

Vector c represents cost.

Some variables can be binary, leading to a more complex model.
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Robust optimization
Robust LP

In practice, data in LPs may not be exactly known at solution time.

Robust linear program:
min ¢’z subject to Ar = bfor all b € B

| - Vector b is unknown, but bounded
inasetB

- Constraints are satisfied for every b
in set B
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Summary
Which data science for which case?

To apply data science in practice:

Task Model to use

Diagnose, understand big picture Unsupervised learning
Prepare data for other tasks

Predict Supervised learning

Automate decisions Optimization
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Robust energy management
Of a Combined Heat and Power (CHP) Plant

CHP generation:
Cheap.
Environmentally friendly.

System has thousands of
production variables.

— {1

Basic problem: adjust 24-hour production variables so as to
minimize operational costs, under operational and demand
constraints, with demand not exactly known in advance.
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Robust energy management
Variables and constraints

The production vector x contains

840 binary variables which represent all-or-nothing states
(On/Off mode),

672 continuous variables which represent the amount of gas
consumed by the equipment or the level of energy
produced, etc.

Among the 2,518 constraints, only 24 of them are subject
to uncertainty: Every hour, we impose that the heat
delivered to the network satisfies the heat demand.
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Building the model

Fitting uncertainty model to historical data

Simple uncertainty model: B = {b* Bu:ueR? |ul. < p}

- b now corresponds to the estimated
demand vector (over the next 24-
hour period).

, 'J - Matrix B allows to account for
.L, W N “. - ” .
ripple effects” in uncertainty.

Model can be fitted with supervised learning methods.
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Results

In terms of worst-case cost _
Measuring performance

via “worst-case” cost (over
allowable uncertainty):

- Original LP model can
lead to unsatisfied
constraints.

- Robust LP and more
sophisticated variants
bring down worst-case
cost greatly.
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Design of a complex energy system
Renovation of a set of 22 buildings

Goal: For a set of 22 buildings,
optimize renovation parameters
.. (wall thicknesses, isolation, etc),
| SO as to minimize average
energy consumption, taking into
account

Befefiede

T T

- Constraints on parameters.
- Temperature (comfort) limits.

- Uncertainty on future
demand.
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Classical approach

Simulation

Performance
Demand model of L2 ’
Cost
system
Design parameters J
Classical approach: Challenges in classical approach:
- Setup a (complex) simulation model as . parameter search is complicated
accurate as possible. and time-consuming.
. Optlmlze the simulation model by . |V||ght produce Spurious optima’
exhaustive or heuristic search in or not converge.
parameter space.
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Optimization-friendly approach

Basic idea

Model system in a way that guarantees that the parameter
search is easy.

- So-called “posynomial models” are examples of models that
can effectively optimized.

- They generalize “power laws” that govern (or, accurately
model) many physical systems.

f(p) = z1p1"'py"? + zop|*' Py
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Optimization-friendly approach

Procedure

Use a (complex, “un-friendly”) simulation model to obtain a
set of input-output data.

Model the input-output behavior by a (friendly) proxy model.
Optimize the proxy model.
The approach involves:
Sampling the parameter space;
For each set of parameter values, get an input-output pair.

From those pairs, learning the model.

e < IEEE
SMARTGRID Ay Tt




Getting simulation data

Using Dymola simulation model

n = 3, 174 simulations.

n sample points split into training and validation set (50-
50).

Simulated 2,4192,000s (28 days) with At = 3,600s.

Latin hypercube sampling in [0, 1] for parameters (5 of
them)
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Model Fitting Results

With a posynomial model

o= Training error Using sparse machine

= L learning we identified a
model with 44 terms that
is ~4% accurate, for both
energy and temperature.

2

Relative Error
-
=

-
o
-]
) 4

This is the function below,
0 20 - 40 60 80 with specific values of x, a,
parsl and n=44:

0.02

f(p) = 1Py "'py " .. p5 . ATnp) Py p5™
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Parameter optimization

With a posynomial model

Optimization problem:

minimize AE(p) A) M(p)
pER® E M

subjectto peH

p: vector of parameters
Set H describes constraints on p
E, M are proxy energy and temperature functions
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Parameter optimization results

Optimal Parameter Values : Normalized Oplignal Cost

08

06

04

0 0.2 04 06 08 1 0 0.2 04 06 08 1
Temp. A Power Temp \ Power

o (Clear trade-off between power consumption and temperature deviation
» Power-temperature trade-off depends on p;, ps, and ps
» Trade-off does not depend on p; and p3
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Parameter optimization results

With a posynomial model

Power Consumption Temperature Deviation
3000. v v v v : 0.28 v e N
. * Rational Quadratic g ®® «* * e
* Posynomial
2500 e Traningoata 026 ™ . ® - . LA ™ . e *
o J
-
2000 . 1 024} v * Ratonal Quadratic |
2 * Posynomial
1500 0.22 Training Data
. " @ . ® & §F 8 8 F g & & 9 F
1000} o o o o * NN EEE R 0.2 .
- .
.
500 ) 0,13l i
0 0.2 0.4 0.6 08 1 0 0.2 04 06 08 1
Temp. A Power Temp. A Power

Figure 14: Dymola simulation of optimal parameters versus sampled data.
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Unsupervised learning

Text data
ASRS data: Goals:
* Understand and
A collection of ~25K diagnose issues.
reports on flight safety  |f possible, predict
written by commercial iIncidents.

pilots in the US,
maintained by NASA.

\ 7
e A |

— 9 IEEE
SM ARTG R| D Advancing Technology

for Humanity




Unsupervised learning
PCA of ASRS data

qousa Highest variance directions

OWS
rejoined
doublechkmg

5 correspond to four main pilot

- e . tasks:
%%u'? - Navigate (fly)
e g mpey,  © Aviate (on runway)
: - Communicate (with tower)

diry
h l

- Manage

ssssssss

0SS
firstofticer

\ cc]mtrgjler
Communications / runway issues predominant in big airports
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Supervised learning
Sparsity: learning the relevant features

Goal: Analyze the relevant
features in classifying reports
wawawa from one airport against all
< T & ~ others

- At DFW we find the terms
— “Rwy36R"” and “TxwF”.

xxxxx

ooooooooooooo

nnnnnn

RRRRRR

Crossing

- This corresponds to an
\ S intersection with lots of
WWWWWW near-miss collisions, due to
lack of visibility from Tower.
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Conclusion and perspectives

- Methodology
* Estimating demand uncertainty based on statistical models
* Optimization-friendly models: Kriging (sampling) methods

- Applications, looking forward

- Text mining approach to support predictive maintenance of power
assets.

- Applications of complex modeling / control to Electric Grid
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THANK YOU!
QUESTIONS?

Today's presentation will be
made available on the

IEEE Smart Grid Portal
Smartgrid.ieee.org
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