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Abstract— Robustness in Model Predictive Control (MPC) is
the main focus of this work. After a definition of the conceptual
framework and of the problem’s setting, we will analyze
how a technique developed for studying robustness in Convex
Optimization can be applied to address the problem of robust-
ness in the MPC case. Therefore, exploiting this relationship
between Control and Optimization, we will tackle robustness
issues for the first setting through methods developed in the
second framework. Proofs for our results are included. As an
application of this Robust MPC result, we shall consider a Path
Planning problem and discuss some simulations thereabout.

I. INTRODUCTION

Model Predictive Control is a methodology intended to
devise, given an explicit model of a system, sequences
of control inputs which could be dynamically updated as
soon as new observations of the output may be available
throughout time. These controls are obtained as the result
of a constrained optimization problem over a certain time
span, where the index to be minimized is a function of the
outputs and the inputs of the system. In general the time
horizon can be variable, but in this work we shall consider
it fixed; the constraints act on the states and on the inputs
of the system.

The problem of Robustness for MPC, both referred to
model uncertainty and noise, is a fundamental question.
As described in [1], some results have been attained in
the linear, time-invariant (LTI) case. All of them have to
deal with computational constraints, which often make the
problem intractable or infinite.

Another way to look at the issue is the following:
if tackling the problem from a control standpoint often
clashes with the computational requirements needed by the
inner optimization problem, why not addressing it through
optimization techniques? This is the main idea of another
approach for enforcing robustness, that of Minimax MPC
[2]. Similar to this last one is the approach that we employ
in this paper.

That of Adjustable Robust Solutions is a theory developed
by Nemirovski et al, see [3], [4] . Simply stated, starting
from a classical optimization problem with some determin-
istic uncertainty, the idea is to extend the number of decision
variables if some of them can be adjusted to the uncertainty
parameters of the problem, i.e. if they depend on them (it
can be thought as a sort of feedback); the new variables will
make this relation between the optimization domain and the
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uncertainty explicit. This brings first of all more flexibility
to the feasibility set of the problem (which tends to be
quite conservative in the robust counterpart case), and in
some cases may as well result in a computationally tractable
problem, or at least in a tractable approximation of it.
This is obtained through the known semidefinite relaxation
technique [5].

The outline of the paper is as follows: after a formal
description of the MPC problem, we shall introduce the idea
of Adjustable Robust Variables, and show how they can be
used in an optimization procedure. Then, we will extend and
apply these concepts to the MPC setting, and demonstrate
how robustness can be achieved. Furthermore, we will
describe a testbed that we developed for simulations, and
talk over some results we attained. Extensions, possible
applications, remarks and future work conclude the paper.

II. SETTING

Let the linear model of a system be described by

∑
:
{

xt+1 = Atxt + Btut

yt+1 = Ct+1xt+1, xt = x0.
(1)

Here xk ∈ Rn, uk ∈ Rm, yk ∈ Rp denote the
state, control and output signals. We decide to deal with
the general case of time-varying matrices. We make the
hypothesis that the state is observable, and, for the moment,
that the equations have no additive noise or uncertain terms.

Assuming to have a reference trajectory to track from
time t over a span of N steps, [yd

t+1, y
d
t+2, . . . , y

d
t+N ], the

MPC problem can be formulated at time t as the solution
of the following open-loop optimization problem:

minyt+n,ut+n−1,n=1,...,N J(yt+1, ut, N)

=
N∑

n=1

{
(yt+n − yd

t+n)T Qn(yt+n − yd
t+n)

+uT
t+n−1Rnut+n−1

}
, (2)

subject to (these are general constraints on the state and
the input):

F1ut+n−1 ≤ g1, (3)

E2yt+n + F2ut+n−1 ≤ g2, ∀n = 1, . . . , N.

As previously stated, we shall consider that N is fixed.
Moreover, the matrices Qn and Rn in the weighted norms
are assumed to be positive definite, for all n.
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The optimization problem gives an optimal solution for
the control u throughout the whole time span; never-
theless, just the first values of it will be applied, say
ut, ut+1, .., ut+m; then the observation yt+m+1 shall be
collected and the optimum in the new time frame [t +
m, t + m + N ] recomputed, and so on. Choosing suitably
the objective function, as well as the constraints, it can be
demonstrated that stability is attained.

It should be already quite clear how the computational
tractability issue is fundamental for the actual application of
the algorithm. In a robust framework, where the numerical
burden is intrinsically more demanding, this need becomes
even more stringent.

III. ROBUSTNESS IN MPC

There are two ways to introduce uncertainty in a model:
stochastically, if we assume that the uncertainty can be
described in probabilistic terms; deterministically, if on the
contrary we can just define some set inside which the
uncertain term is supposed to lie: we are in other words
bounding this term. The two approaches imply completely
different ways to solve the problem. In this paper we shall
embrace the second view.

Furthermore, as said before, the uncertainty can affect the
model in two ways: as an exogenous disturbance, or as a
possible range for the parameters of the system. In general,
the reader will see how the optimization method we are
going to exploit can deal with both kinds of randomness.
Nevertheless, as an application to the MPC setting, we will
only develop the theory tailored to the first of the two kinds.

A. Introducing some uncertainty

Assume our model encompasses also an additional ex-
ogenous disturbance ξ in the state equation:

∑

ξ

:
{

xt+1 = Atxt + Btut + Etξt

yt = Ctxt, xt = x0;
(4)

The new signal ξk ∈ Rq . We shall assume that the
variable ξt is bounded within an ellipsoid Ξt,

Ξt = {ξt|ξT
t Stξt ≤ ρ2, ρ > 0, St % 0}.

Developing the state equation N times ahead, starting at
time t and clustering the terms into properly sized vectors,
we get to:

x = c + ∆u + Ωξ,

y = Cx; (5)

where:

x = [xt+1, . . . , xt+N ]T ;

y = [yt+1, . . . , yt+N ]T ;

u = [ut, ut+1, . . . , ut+N−1]
T ;

ξ = [ξt, ξt+1, . . . , ξt+N−1]
T ;

c =





At

At+1At

At+2At+1At

...
At+N−1A...




xt;

C =





Ct 0 ... 0
0 Ct+1 0 ...
0 0 Ct+2 ...
... ... ...

...
0 ... 0 Ct+N−1




;

∆ =





Bt 0 ... ... 0
At+1Bt Bt+1 0 ... 0

At+2At+1Bt At+2Bt+1 Bt+2 0 ...
... ... ... ...

...
At+N−1A... ... ... ... Bt+N−1




;

Ω =





Et 0 ... ... 0
At+1Et Et+1 0 ... 0

At+2At+1Et At+2Et+1 Et+2 0 ...
... ... ... ...

...
At+N−1A... ... ... ... Et+N−1




.

The objective function then can be expressed as:

J(yk+1, uk, N) = (y − yd)T Q(y − yd) + uT Ru, (6)

where we clustered the aforementioned matrices Qn and
Rn into the new Q and R.

B. Adjustable Robust Counterpart

Nemirovski and coworkers [3], have proposed the follow-
ing technique for dealing with uncertain linear programs.
Consider the problem:

{minx{cT x : Ax ≤ b}}ζ≡[A,b,c]∈Z ,

where Z is a given nonempty compact set inside which
the parameters of the problem lie; as a general method, we
can associate to it its Robust Counterpart,

minx

{
supζ≡[A,b,c]∈Z cT x : Ax−b ≤ 0, ∀ζ ≡ [A, b, c] ∈ Z

}
.

Here all possible realizations of ζ have to be satisfied;
therefore, it is possibly an infinite optimization problem and
as such computationally intractable. In the Robust Counter-
part (RC) approach, all the variables represent decisions
that must be made before the realization of the unknown
parameters: they are “here and now decisions”.

In some cases, though, part of the variables might tune
themselves to the varying data, or at least to a part of them:
they’re “wait and see decisions”. In general, every variable
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xi might have its own “information basis”, i.e. depend on
a prescribed portion ζi of the past realized data ζ.

Let us now split the vector into two parts: a “non-
adjustable” one and an “adjustable” one, x = (u, v)T ;
furthermore, assume that the objective is normalized w.r.t.
the non-adjustable variables1:

{minu,v{cT u : Uu + V v ≤ b}}ζ≡[U,V,b]∈Z ,

We can then define the (RC) and the so called Adjustable
Robust Counterpart, (ARC):

minu

{
cT u : ∃v∀(ζ ≡ [U, V, b] ∈ Z) : Uu + V v ≤ b

}
;

minu

{
cT u : ∀(ζ ≡ [U, V, b] ∈ Z)∃v : Uu + V v ≤ b

}
.

It is straightforward to realize that the ARC is more
flexible than RC, i.e. it has a larger robust feasible set,
enabling better optimal values while still satisfying all
possible realizations of the constraints.

Unfortunately, it turns out that in some cases the ARC can
be computationally harder than the RC. This spurs the intro-
duction of a simplification on how the adjustable variables
can tune themselves upon the uncertain data: we shall then
consider affine dependence between the adjustable variables
and the uncertain parameters. Posing v = w + W ζ, we
obtain the Affinely Adjustable Robust Counterpart (AARC)
of the uncertain LP:

minu,w,W
{
cT u : Uu + V (w + W ζ) ≤ b,∀(ζ ≡ [U, V, b] ∈ Z)

}

≡ minu
{
cT u : ∀(ζ ≡ [U, V, b] ∈ Z)∃(v, W ) :

Uu + V (w + W ζ) ≤ b,
}
. (7)

C. AARC for MPC

Having introduced the robust MPC setting with an ex-
ogenous disturbance, we shall adapt the aforementioned
theory to this case considering an affine dependence of the
input on the past realized data: these, being realized, are
not uncertain. We will assume a “full” information basis,
that is we shall exploit all the past available data.

Consider the following relations:

ut = ut
t;

ut+1 = ut+1
t+1 + ξtu

t
t+1;

ut+2 = ut+2
t+2 + ξt+1u

t+1
t+2 + ξtu

t
t+2;

... (8)

We can compact them as:

u = v + W ξ, (9)

1This does not affect the generality of the problem, as we can always
restate it in epigraphic form.

This way the new optimization variables are contained
in the vector v and in the matrix W . The output equation
becomes:

y = Cc + C∆(v + W ξ) + CΩξ. (10)

Plugging this term into the objective function at time t,
we end up with:

J(yt+1, ut, N) =

(Cc + C∆(v + W ξ) + CΩξ − yd)T Q(Cc + C∆(v + W ξ) + CΩξ − yd)

+(v + W ξ)T R(v + W ξ). (11)

Define the following three quantities, depending on the
degree of their dependence on the uncertainties’ vector:

α = cT CT QCc + cT CT QC∆v − cT CT Qyd + (yd)T Qyd −

− (yd)T QCc − (yd)T QC∆v + vT ∆T CT QC∆v +

+ vT ∆T CT QCc − vT ∆T CT Qyd + vT Rv;

β = W T Rv + W T ∆T CT QCc + W T ∆T CT QC∆v +

+ ΩT CT QCc + ΩT CT Q∆Cv − W T ∆T CT Qyd − ΩT CT Qyd;

γ = W T ∆T CT QC∆W + W T ∆T CT QCΩ + ΩT CT QC∆W +

+ ΩT CT QCΩ + W T RW.

(12)

Recasting the MPC problem at time t, with a time
horizon of N steps, exploiting the quantities above and the
epigraphic form, we obtain the following:

min t,

s.t. t − J(yt+1, ut, N) ≥ 0, ∀ξ ∈ Ξt,

that is

min t, (13)

s.t. t − α − βT ξ − ξT β − ξT γξ ≥ 0, ∀ξ ∈ Ξt.

For the moment, we disregard the input and state con-
straints. As explained in [3], we can relax the constraint
in the optimization problem before obtaining a semidefinite
program; the following lemma and theorem show how to
do this:

Lemma 1: : For every v, W, the implication

∀s, ζ : s2 ≤ 1 , ζT (ρ−2Sl)ζ ≤ 1, l = 1, . . . , L

⇓
α + 2ζT βs + ζT γζ ≥ 0

is valid iff there’s feasibility for the constraint:

∀ζ ∈ Ξ, α + 2ζT β + ζT γζ ≥ 0.

Manipulating this lemma (refer to [3] for further details),
we get to the following result:

Theorem 1: : The explicit semidefinite program
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minλ,v,W,t t,

s.t.

(
γ + ρ−2

∑L
l=1 λlSl β

βT α −
∑L

l=1 λl

)
* 0

λ ≥ 0. (14)

is an approximation to the Affinely Adjustable Robust
Counterpart (in the case L=1, there’s equivalence between
the two).

For specifications about the quality of the approximation,
please refer to the cited literature. As said, the advantage
attained through this new expression is twofold: the new
formulation of the optimization problem has first a more
flexible feasibility set (as already shown before), then it
can be codified into a computationally tractable program.

Exploiting these two results, and after proper manipula-
tions, we can recast the optimization problem as an LMI.

D. Main Result

Theorem 2: : The explicit semidefinite program




P
(

WT I 0
vT 0T 1

)




W v
I 0
0T 1



 M−1




% 0, (15)

where the matrices P and M will be defined in the
proof, is an approximation to the Affinely Adjustable Robust
Counterpart (in the case L=1, there’s even equivalence
between the two) and describe one of the constraints of
the optimization problem (13).

Proof: To begin with, assume the uncertainty set is
actually an intersection of spheres, rather than ellipsoids;
in other words, consider Sl = IN−1×N−1. This assumption
doesn’t affect the generality of the results. As sated before,
we shall use all the past realized data (we have “full”
information basis), therefore for this particular instance
L = N − 1.

Starting from equation (13), exploiting the trick in
Lemma (1) and recasting the problem in semidefinite form,
as Theorem (1) shows, we obtain that the optimization
problem can be expressed as:

minλ,v,W,t t,

s.t.

(
t − γ + ρ−2

∑L
l=1 λlSl −β

−βT −α −
∑L

l=1 λl

)
* 0

λ ≥ 0. (16)

Let us focus on the constraint of the problem in the LMI
form; it can be rewritten explicitly in terms of the decision
variables as:

(
t + ρ−2 ∑ L

l=1 λlSl 0
0 −

∑ L
l=1 λl

)
−

[
W T I 0
vT 0T 1

]




R + ∆T CT QC∆ ∆T CT QCΩ ∆T CT Q(Cc − yd)

ΩT CT QC∆ ΩT CT QCΩ ΩT CT Q(Cc − yd)

(Cc − yd)T QC∆ (Cc − yd)T QCΩ (Cc − yd)T Q(Cc − yd)








W v
I 0

0T 1



 % 0.

Unfortunately, this whole term is non-linear, which makes
the problem difficult to handle computationally. Neverthe-
less, the multiplicative matrix in the second term can be
expressed as:




∆T CT QC∆ ∆T CT QCΩ ∆T CT Q(Cc − yd)
ΩT CT QC∆ ΩT CT QCΩ ΩT CT Q(Cc − yd)

(Cc − yd)T QC∆ (Cc − yd)T QCΩ (Cc − yd)T Q(Cc − yd)



 +

+




R 0 0
0 0 0
0 0 0



 =




∆T CT

ΩT CT

(Cc − yd)T



 Q
[

C∆ CΩ (Cc − yd)
]

+




R 0 0
0 0 0
0 0 0



 .

This fact, along with the observation that all the matrices
are full rank, and that Q is by assumption positive definite,
enables us to infer that the first term is positive definite;
therefore, the multiplicative matrix as a whole is also
positive definite, being the sum of a positive definite matrix,
and of a non-negative definite one (the second additive
matrix). Hereinafter, we shall refer to this multiplicative
matrix as M.

It is then possible to apply the Schur Complement, (refer
to [6] for more details) to the whole expression; after

naming

(
t + ρ−2

∑L
l=1 λlSl 0

0 −
∑L

l=1 λl

)
= P, we

obtain:





P
(

WT I 0
vT 0T 1

)




W v
I 0
0T 1



 M−1




% 0.

This last expression is an LMI for a constraint in our
optimization problem; therefore, it can be enforced in a
computationally tractable way through simulation toolboxes
like SeDuMi. We have demonstrated that the feasibility set
of the possibly infinite robust optimization problem can
be reduced, under the hypothesis of having an ellipsoidal
uncertainty set, to a finite-dimensional semidefinite program
involving LMI’s. Therefore, the robust optimization is com-
putationally tractable.

E. Introduction of the Constraints

At this point, we want to enforce some constraints of
the form (3). For easiness we shall consider only the first
constraint:
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F1ut+n−1 ≤ g1, n = 1, . . . , N.

Vectorizing the inputs and clustering the matrices, we
obtain:

F1u ≤ g1.

After substituting the inputs:

F1(v + W ξ) ≤ g1.

In the optimization problem, we shall refer to the (N−1)
projections of this vector of inequalities. We will show that
these constraints can be expressed in the same way as the
former one. Define:

αu
i = g

1i
− (F1v)i;

βu
i = −(F1W )i;

γu
i = 0; i = 1, . . . , N − 1.

Then, the former inequality can be expressed as:

(
γu + ρ−2

∑L
l=1 λl,iSl,i βu

βuT

αu −
∑L

l=1 λl,i

)
* 0

λi ≥ 0, i = 1, . . . , N − 1. (17)

All these (N−1) constraints can be incorporated into the
big optimization program exploiting the fact that, given two

matrices A and B, A * 0 and B * 0 ⇔
(

A 0
0 B

)
* 0.

IV. SIMULATIONS

We have implemented the methodology through increas-
ingly complex simulations in MATLAB. The special tool-
box that we made use of is SeDuMi [7]. As shown, the
method is in general valid for any linear, time-varying
model; we restricted the simulation to an LTI setting though.
As usual in MPC, the weighting matrices Q and R have
been selected empirically, depending on the magnitude
of the two terms in the objective function, as well as
on the relative weight and bias we desired to wield to
our control action. Figure (1) shows a three dimensional
example, where we wish to track a trajectory that ends
up in the origin. In this particular instance, we have kept
the uncertainty rather small; in fact, it has a bound on
its magnitude of 10−4. The time horizon has been set to
N = 25. Depending on the magnitude of the eigenvalues
of the system and output matrices, we can possibly increase
the time horizon and be able to achieve a satisfactory
converging behavior.

It is interesting to check how “robust” our control
action can be. To do so, we have benchmarked, with
different uncertainty levels (magnitude of the exogenous
input, compared to that of the control input), the optimal
control obtained through the AARC approach, with the
“ideal” optimal control computed with the knowledge of the
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Fig. 1. N = 25; ‖ρ‖ ≤ 10−4; y0 = [2; 1.5; 0.2].
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Fig. 2. N = 25; ‖ρ‖ ≤ 10−2; y0 = [2; 1.5; 0.2].

disturbances. The comparison has been made evaluating the
average of the outcomes of n experiments over the value
of the objective function. Table (1) shows the results using
50 realizations for the uncertainties. It can be observed that
a dimensional increase in the magnitude of ρ (compared in
percentage with the magnitude of the input signals) does not
correspond to a comparable increase in the error (“price”)
between the results attained with the ideal control and
those referring to the AARC one, even though the objective
function depends quadratically on the disturbances. As a
matter of fact, figure (2) shows that the results with a larger
ρ, though less precise, are not particularly deteriorated.

V. CONCLUSIONS AND FUTURE WORK

This paper has been proposing a way to investigate
robustness in an MPC framework, exploiting a relaxation
technique employed in convex optimization. After a rig-
orous derivation of the results, simulations have shown
the viability of the method. The authors are currently
investigating the inclusion of convex state constraints in the
framework. There are already some results in literature that
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ρ Jav w/ Ideal Control Jav w/ AARC Control Price (%)
10−6(10−3%) 7.2071 7.2071 10−8%
0.0001(0.1%) 7.2071 7.2071 10−3%

0.001(1%) 7.2071 7.2073 0.01%
0.01(10%) 7.2083 7.2244 0.5%
0.05(20%) 7.2098 7.7330 6.5%

Table 1: Ideal optimal control, Optimal AARC control vs. uncertainty level.

could be a significative starting point, see [8]. Furthermore,
a testbed has been developed in order to apply this results to
the current Berkeley Aerial Robot (BEAR) research project.
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