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Abstract

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then
searching for linear relations among the embedded data points. The embedding is performed
implicitly, by specifying the inner products between each pair of points in the embedding space.
This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite
matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying
the geometry of the embedding space and inducing a notion of similarity in the input space—classical
model selection problems in machine learning. In this paper we show how the kernel matrix can
be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel
matrix associated with both training and test data this gives a powerful transductive algorithm—
using the labeled part of the data one can learn an embedding also for the unlabeled part. The
similarity between test points is inferred from training points and their labels. Importantly, these
learning problems are convex, so we obtain a method for learning both the model class and the
function without local minima. Furthermore, this approach leads directly to a convex method for
learning the 2-norm soft margin parameter in support vector machines, solving an important open
problem.

Keywords: kernel methods, learning kernels, transduction, model selection, support vector ma-
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1. Introduction

Recent advances in kernel-based learning algorithms have brought the field of machine learning
closer to the desirable goal of autonomy—the goal of providing learning systems that require as
little intervention as possible on the part of a human user. In particular, kernel-based algorithms
are generally formulated in terms of convex optimization problems, which have a single global
optimum and thus do not require heuristic choices of learning rates, starting configurations or
other free parameters. There are, of course, statistical model selection problems to be faced within
the kernel approach; in particular, the choice of the kernel and the corresponding feature space are
central choices that must generally be made by a human user. While this provides opportunities for
prior knowledge to be brought to bear, it can also be difficult in practice to find prior justification
for the use of one kernel instead of another. It would be desirable to explore model selection
methods that allow kernels to be chosen in a more automatic way based on data.

It is important to observe that we do not necessarily need to choose a kernel function, specifying
the inner product between the images of all possible data points when mapped from an input space
X to an appropriate feature space F . Since kernel-based learning methods extract all information
needed from inner products of training data points in F , the values of the kernel function at pairs
which are not present are irrelevant. So, there is no need to learn a kernel function over the entire
sample space to specify the embedding of a finite training data set via a kernel function mapping.
Instead, it is sufficient to specify a finite-dimensional kernel matrix (also known as a Gram matrix)
that contains as its entries the inner products in F between all pairs of data points. Note also that
it is possible to show that any symmetric positive semidefinite matrix is a valid Gram matrix, based
on an inner product in some Hilbert space. This suggests viewing the model selection problem in
terms of Gram matrices rather than kernel functions.

In this paper our main focus is transduction—the problem of completing the labeling of a
partially labeled dataset. In other words, we are required to make predictions only at a finite set
of points, which are specified a priori. Thus, instead of learning a function, we only need to learn a
set of labels. There are many practical problems in which this formulation is natural—an example
is the prediction of gene function, where the genes of interest are specified a priori, but the function
of many of these genes is unknown.

We will address this problem by learning a kernel matrix corresponding to the entire dataset, a
matrix that optimizes a certain cost function that depends on the available labels. In other words,
we use the available labels to learn a good embedding, and we apply it to both the labeled and
the unlabeled data. The resulting kernel matrix can then be used in combination with any of a
number of existing learning algorithms that use kernels. One example that we discuss in detail is
the support vector machine (SVM), where our methods yield a new transduction method for SVMs
that scales polynomially with the number of test points. Furthermore, this approach will offer us a
method to optimize the 2-norm soft margin parameter for these SVM learning algorithms, solving
an important open problem.

All this can be done in full generality by using techniques from semidefinite programming
(SDP), a branch of convex optimization that deals with the optimization of convex functions over
the convex cone of positive semidefinite matrices, or convex subsets thereof. Any convex set of
kernel matrices is a set of this kind. Furthermore, it turns out that many natural cost functions,
motivated by error bounds, are convex in the kernel matrix.

A second application of the ideas that we present here is to the problem of combining data from
multiple sources. Specifically, assume that each source is associated with a kernel function, such
that a training set yields a set of kernel matrices. The tools that we develop in this paper make
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it possible to optimize over the coefficients in a linear combination of such kernel matrices. These
coefficients can then be used to form linear combinations of kernel functions in the overall classifier.
Thus this approach allows us to combine possibly heterogeneous data sources, making use of the
reduction of heterogeneous data types to the common framework of kernel matrices, and choosing
coefficients that emphasize those sources most useful in the classification decision.

In Section 2, we recall the main ideas from kernel-based learning algorithms, and introduce a
variety of criteria that can be used to assess the suitability of a kernel matrix: the hard margin, the
1-norm and 2-norm soft margin, and the kernel alignment. Section 3 reviews the basic concepts of
semidefinite programming. In Section 4 we put these ideas together and consider the optimization
of the various criteria over sets of kernel matrices. For a set of linear combinations of fixed kernel
matrices, these optimization problems reduce to SDP. If the linear coefficients are constrained to
be positive, they can be simplified even further, yielding a quadratically-constrained quadratic
program, a special case of the SDP framework. If the linear combination contains the identity
matrix, we obtain a convex method for optimizing the 2-norm soft margin parameter in support
vector machines. Section 5 presents statistical error bounds that motivate one of our cost functions.
Empirical results are reported in Section 6.

Notation

Vectors are represented in bold notation, e.g., v ∈ Rn, and their scalar components in italic
script, e.g., v1, v2, . . . , vn. Matrices are represented in italic script, e.g., X ∈ Rm×n. For a square,
symmetric matrix X, X " 0 means that X is positive semidefinite, while X # 0 means that X is
positive definite. For a vector v, the notations v ≥ 0 and v > 0 are understood componentwise.

2. Kernel Methods

Kernel-based learning algorithms (see, for example, Cristianini and Shawe-Taylor, 2000; Schölkopf
and Smola, 2002; Shawe-Taylor and Cristianini, 2004) work by embedding the data into a Hilbert
space, and searching for linear relations in such a space. The embedding is performed implicitly,
by specifying the inner product between each pair of points rather than by giving their coordinates
explicitly. This approach has several advantages, the most important deriving from the fact that
the inner product in the embedding space can often be computed much more easily than the
coordinates of the points themselves.

Given an input set X , and an embedding space F , we consider a map Φ : X → F . Given two
points xi ∈ X and xj ∈ X , the function that returns the inner product between their images in the
space F is known as the kernel function.

Definition 1 A kernel is a function k, such that k(x, z) = 〈Φ(x), Φ(z)〉 for all x, z ∈ X , where Φ
is a mapping from X to an (inner product) feature space F . A kernel matrix is a square matrix
K ∈ Rn×n such that Kij = k(xi,xj) for some x1, . . . ,xn ∈ X and some kernel function k.

The kernel matrix is also known as the Gram matrix. It is a symmetric, positive semidefinite
matrix, and since it specifies the inner products between all pairs of points {xi}n

i=1, it completely
determines the relative positions of those points in the embedding space.

Since in this paper we will consider a finite input set X , we can characterize kernel functions
and matrices in the following simple way.

Proposition 2 Every positive semidefinite and symmetric matrix is a kernel matrix. Conversely,
every kernel matrix is symmetric and positive semidefinite.
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Notice that, if we have a kernel matrix, we do not need to know the kernel function, nor the
implicitly defined map Φ, nor the coordinates of the points Φ(xi). We do not even need X to be a
vector space; in fact in this paper it will be a generic finite set. We are guaranteed that the data are
implicitly mapped to some Hilbert space by simply checking that the kernel matrix is symmetric
and positive semidefinite.

The solutions sought by kernel-based algorithms such as the support vector machine (SVM) are
affine functions in the feature space:

f(x) = 〈w, Φ(x)〉 + b,

for some weight vector w ∈ F . The kernel can be exploited whenever the weight vector can be
expressed as a linear combination of the training points, w =

∑n
i=1 αiΦ(xi), implying that we can

express f as

f(x) =
n∑

i=1

αik(xi,x) + b.

For example, for binary classification, we can use a thresholded version of f(x), i.e., sign (f(x)), as
a decision function to classify unlabeled data. If f(x) is positive, then we classify x as belonging
to class +1; otherwise, we classify x as belonging to class −1. An important issue in applications
is that of choosing a kernel k for a given learning task; intuitively, we wish to choose a kernel that
induces the “right” metric in the input space.

2.1 Criteria Used in Kernel Methods

Kernel methods choose a function that is linear in the feature space by optimizing some criterion
over the sample. This section describes several such criteria (see, for example, Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). All of these
criteria can be considered as measures of separation of the labeled data. We first consider the hard
margin optimization problem.

Definition 3 Hard Margin Given a labeled sample Sl = {(x1, y1), . . . , (xn, yn)}, the hyperplane
(w∗, b∗) that solves the optimization problem

min
w,b

〈w,w〉 (1)

subject to yi(〈w, Φ(xi)〉 + b) ≥ 1, i = 1, . . . , n,

realizes the maximal margin classifier with geometric margin γ = 1/‖w∗‖2, assuming it exists.

Geometrically, γ corresponds to the distance between the convex hulls (the smallest convex sets
that contain the data in each class) of the two classes (Bennett and Bredensteiner, 2000).

By transforming (1) into its corresponding Lagrangian dual problem, the solution is given by

ω(K) = 1/γ2

= 〈w∗,w∗〉
= max

α
2αTe − αT G(K)α : α ≥ 0, αTy = 0, (2)

where e is the n-vector of ones, α ∈ Rn, G(K) is defined by Gij(K) = [K]ijyiyj = k(xi,xj)yiyj ,
and α ≥ 0 means αi ≥ 0, i = 1, . . . , n.

The hard margin solution exists only when the labeled sample is linearly separable in feature
space. For a non-linearly-separable labeled sample Sl, we can define the soft margin. We consider
the 1-norm and 2-norm soft margins.
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Definition 4 1-norm Soft Margin Given a labeled sample Sl = {(x1, y1), . . . , (xn, yn)}, the
hyperplane (w∗, b∗) that solves the optimization problem

min
w,b,ξ

〈w,w〉 + C
n∑

i=1

ξi (3)

subject to yi(〈w, Φ(xi)〉 + b) ≥ 1 − ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n

realizes the 1-norm soft margin classifier with geometric margin γ = 1/‖w∗‖2. This margin is also
called the 1-norm soft margin.

As for the hard margin, we can express the solution of (3) in a revealing way by considering the
corresponding Lagrangian dual problem:

ωS1(K) = 〈w∗,w∗〉 + C
n∑

i=1

ξi,∗ (4)

= max
α

2αTe − αT G(K)α : C ≥ α ≥ 0, αTy = 0.

Definition 5 2-norm Soft Margin Given a labeled sample Sl = {(x1, y1), . . . , (xn, yn)}, the
hyperplane (w∗, b∗) that solves the optimization problem

min
w,b,ξ

〈w,w〉 + C
n∑

i=1

ξ2
i (5)

subject to yi(〈w, Φ(xi)〉 + b) ≥ 1 − ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n

realizes the 2-norm soft margin classifier with geometric margin γ = 1/‖w∗‖2. This margin is also
called the 2-norm soft margin.

Again, by considering the corresponding dual problem, the solution of (5) can be expressed as

ωS2(K) = 〈w∗,w∗〉 + C
n∑

i=1

ξ2
i,∗ (6)

= max
α

2αTe − αT

(
G(K) +

1
C

In

)
α : α ≥ 0, αTy = 0.

With a fixed kernel, all of these criteria give upper bounds on misclassification probability (see,
for example, Chapter 4 of Cristianini and Shawe-Taylor, 2000). Solving these optimization problems
for a single kernel matrix is therefore a way of optimizing an upper bound on error probability.

In this paper, we allow the kernel matrix to be chosen from a class of kernel matrices. Previous
error bounds are not applicable in this case. However, as we will see in Section 5, the margin γ
can be used to bound the performance of support vector machines for transduction, with a linearly
parameterized class of kernels.

We do not discuss further the merit of these different cost functions, deferring to the current
literature on classification, where these cost functions are widely used with fixed kernels. Our goal
is to show that these cost functions can be optimized—with respect to the kernel matrix—in an
SDP setting.
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Finally, we define the alignment of two kernel matrices (Cristianini et al., 2001, 2002). Given
an (unlabeled) sample S = {x1, . . . ,xn}, we use the following (Frobenius) inner product between
Gram matrices, 〈K1, K2〉F = trace(KT

1 K2) =
∑n

i,j=1 k1(xi,xj)k2(xi,xj).

Definition 6 Alignment The (empirical) alignment of a kernel k1 with a kernel k2 with respect
to the sample S is the quantity

Â(S, k1, k2) =
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F
,

where Ki is the kernel matrix for the sample S using kernel ki.

This can also be viewed as the cosine of the angle between two bi-dimensional vectors K1 and
K2, representing the Gram matrices. Notice that we do not need to know the labels for the sample
S in order to define the alignment of two kernels with respect to S. However, when the vector
y of {±1} labels for the sample is known, we can consider K2 = yyT —the optimal kernel since
k2(xi,xj) = 1 if yi = yj and k2(xi,xj) = −1 if yi *= yj . The alignment of a kernel k with k2 with
respect to S can be considered as a quality measure for k:

Â(S, K,yyT ) =
〈K,yyT 〉F√

〈K, K〉F 〈yyT ,yyT 〉F
=

〈
K,yyT

〉
F

n
√

〈K, K〉F
, (7)

since
〈
yyT ,yyT

〉
F

= n2.

3. Semidefinite Programming (SDP)

In this section we review the basic definition of semidefinite programming as well as some important
concepts and key results. Details and proofs can be found in Boyd and Vandenberghe (2003).

Semidefinite programming (Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996;
Boyd and Vandenberghe, 2003) deals with the optimization of convex functions over the convex
cone1 of symmetric, positive semidefinite matrices

P =
{
X ∈ Rp×p | X = XT , X " 0

}
,

or affine subsets of this cone. Given Proposition 2, P can be viewed as a search space for possible
kernel matrices. This consideration leads to the key problem addressed in this paper—we wish to
specify a convex cost function that will enable us to learn the optimal kernel matrix within P using
semidefinite programming.

3.1 Definition of Semidefinite Programming

A linear matrix inequality, abbreviated LMI, is a constraint of the form

F (u) := F0 + u1F1 + . . . + uqFq + 0.

Here, u is the vector of decision variables, and F0, . . . , Fq are given symmetric p × p matrices.
The notation F (u) + 0 means that the symmetric matrix F is negative semidefinite. Note that
such a constraint is in general a nonlinear constraint; the term “linear” in the name LMI merely

1. S ⊆ Rd is a convex cone if and only if ∀x,y ∈ S and ∀λ, µ ≥ 0, we have λx + µy ∈ S.
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emphasizes that F is affine in u. Perhaps the most important feature of an LMI constraint is its
convexity: the set of u that satisfy the LMI is a convex set.

An LMI constraint can be seen as an infinite set of scalar, affine constraints. Indeed, for a given
u, F (u) + 0 if and only if zT F (u)z ≤ 0 for every z; every constraint indexed by z is an affine
inequality, in the ordinary sense, i.e., the left-hand side of the inequality is a scalar, composed of
a linear term in u and a constant term. Alternatively, using a standard result from linear algebra,
we may state the constraint as

∀Z ∈ P : trace(F (u)Z) ≤ 0. (8)

This can be seen by writing down the spectral decomposition of Z and using the fact that zT F (u)z ≤
0 for every z.

A semidefinite program (SDP) is an optimization problem with a linear objective, and linear
matrix inequality and affine equality constraints.

Definition 7 A semidefinite program is a problem of the form

min
u

cTu (9)

subject to F j(u) = F j
0 + u1F

j
1 + . . . + uqF

j
q + 0, j = 1, . . . , L

Au = b,

where u ∈ Rq is the vector of decision variables, c ∈ Rq is the objective vector, and matrices
F j

i = (F j
i )T ∈ Rp×p are given.

Given the convexity of its LMI constraints, SDPs are convex optimization problems. The usefulness
of the SDP formalism stems from two important facts. First, despite the seemingly very specialized
form of SDPs, they arise in a host of applications; second, there exist interior-point algorithms to
solve SDPs that have good theoretical and practical computational efficiency (Vandenberghe and
Boyd, 1996).

One very useful tool to reduce a problem to an SDP is the so-called Schur complement lemma;
it will be invoked repeatedly.

Lemma 8 (Schur Complement Lemma) Consider the partitioned symmetric matrix

X = XT =
(

A B
BT C

)
,

where A,C are square and symmetric. If det(A) *= 0, we define the Schur complement of A in X
by the matrix S = C −BT A−1B. The Schur Complement Lemma states that if A # 0, then X " 0
if and only if S " 0.

To illustrate how this lemma can be used to cast a nonlinear convex optimization problem as
an SDP, consider the following result:

Lemma 9 The quadratically constrained quadratic program (QCQP)

min
u

f0(u) (10)

subject to fi(u) ≤ 0, i = 1, . . . , M,
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with fi(u) ! (Aiu + bi)T (Aiu + bi) − cT
i u − di, is equivalent to the semidefinite programming

problem

min
u,t

t (11)

subject to
(

I A0u + b0

(A0u + b0)T c0
Tu + d0 + t

)
" 0,

(
I Aiu + bi

(Aiu + bi)T cT
i u + di

)
" 0, i = 1, . . . , M.

This can be seen by rewriting the QCQP (10) as

min
u,t

t

subject to t − f0(u) ≥ 0,
−fi(u) ≥ 0, i = 1, . . . , M.

Note that for a fixed and feasible u, t = f0 (u) is the optimal solution. The convex quadratic
inequality t − f0(u) = (t + c0

Tu + d0) − (A0u + b0)T I−1(A0u + b0) ≥ 0 is now equivalent to the
following LMI, using the Schur Complement Lemma 8:

(
I A0u + b0

(A0u + b0)T c0
Tu + d0 + t

)
" 0.

Similar steps for the other quadratic inequality constraints finally yield (11), an SDP in standard
form (9), equivalent to (10). This shows that a QCQP can be cast as an SDP. Of course, in practice
a QCQP should not be solved using general-purpose SDP solvers, since the particular structure of
the problem at hand can be efficiently exploited. The above show that QCQPs, and in particular
linear programming problems, belong to the SDP family.

3.2 Duality

An important principle in optimization—perhaps even the most important principle—is that of
duality. To illustrate duality in the case of an SDP, we will first review basic concepts in duality
theory and then show how they can be extended to semidefinite programming. In particular, duality
will give insights into optimality conditions for the semidefinite program.

Consider an optimization problem with n variables and m scalar constraints:

min
u

f0(u) (12)

subject to fi(u) ≤ 0, i = 1, . . . , m,

where u ∈ Rn. In the context of duality, problem (12) is called the primal problem; we denote its
optimal value p∗. For now, we do not assume convexity.

Definition 10 Lagrangian The Lagrangian L : Rn+m → R corresponding to the minimization
problem (12) is defined as

L(u, λ) = f0(u) + λ1f1(u) + . . . + λmfm(u).

The λi ∈ R, i = 1, . . . , m are called Lagrange multipliers or dual variables.
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One can now notice that

h(u) = max
λ≥0

L(u, λ) =
{

f0(u) if fi(u) ≤ 0, i = 1, . . . , m
+∞ otherwise.

So, the function h(u) coincides with the objective f0(u) in regions where the constraints fi(u) ≤ 0,
i = 1, . . . , m, are satisfied and h(u) = +∞ in infeasible regions. In other words, h acts as a

“barrier” of the feasible set of the primal problem. Thus we can as well use h(u) as objective
function and rewrite the original primal problem (12) as an unconstrained optimization problem:

p∗ = min
u

max
λ≥0

L(u, λ). (13)

The notion of weak duality amounts to exchanging the “min” and “max” operators in the above
formulation, resulting in a lower bound on the optimal value of the primal problem. Strong duality
refers to the case when this exchange can be done without altering the value of the result: the
lower bound is actually equal to the optimal value p∗. While weak duality always hold, even if
the primal problem (13) is not convex, strong duality may not hold. However, for a large class of
generic convex problems, strong duality holds.

Lemma 11 Weak duality For all functions f0, f1, . . . , fm in (12), not necessarily convex, we can
exchange the max and the min and get a lower bound on p∗:

d∗ = max
λ≥0

min
u

L(u, λ) ≤ min
u

max
λ≥0

L(u, λ) = p∗.

The objective function of the maximization problem is now called the (Lagrange) dual function.

Definition 12 (Lagrange) dual function The (Lagrange) dual function g : Rm → R is defined
as

g(λ) = min
u

L(u, λ)

= min
u

f0(u) + λ1f1(u) + . . . + λmfm(u). (14)

Furthermore g(λ) is concave, even if the fi(u) are not convex.

The concavity can easily be seen by considering first that for a given u, L(u, λ) is an affine function
of λ and hence is a concave function. Since g(λ) is the pointwise minimum of such concave functions,
it is concave.

Definition 13 Lagrange dual problem The Lagrange dual problem is defined as

d∗ = max
λ≥0

g(λ).

Since g(λ) is concave, this will always be a convex optimization problem, even if the primal is not.
By weak duality, we always have d∗ ≤ p∗, even for non-convex problems. The value p∗−d∗ is called
the duality gap. For convex problems, we usually (although not always) have strong duality at the
optimum, i.e.,

d∗ = p∗,

which is also referred to as a zero duality gap. For convex problems, a sufficient condition for zero
duality gap is provided by Slater’s condition:

Lemma 14 Slater’s condition If the primal problem (12) is convex and is strictly feasible,
i.e., ∃ u0 : fi(u0) < 0, i = 1, . . . , m, then

p∗ = d∗.
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3.3 SDP Duality and Optimality Conditions

Consider for simplicity the case of an SDP with a single LMI constraint, and no affine equalities:

p∗ = min
u

cTu subject to F (u) = F0 + u1F1 + . . . uqFq + 0. (15)

The general case of multiple LMI constraints and affine equalities can be handled by elimination
of the latter and using block-diagonal matrices to represent the former as a single LMI.

The classical Lagrange duality theory outlined in the previous section does not directly apply
here, since we are not dealing with finitely many constraints in scalar form; as noted earlier, the
LMI constraint involves an infinite number of such constraints, of the form (8). One way to handle
such constraints is to introduce a Lagrangian of the form

L(u, Z) = cTu + trace(ZF (u)),

where the dual variable Z is now a symmetric matrix, of the same size as F (u). We can check that
such a Lagrange function fulfills the same role assigned to the function defined in Definition 10 for
the case with scalar constraints. Indeed, if we define h(u) = maxZ&0 L(u, Z) then

h(u) = max
Z&0

L(u, Z) =
{

cTu if F (u) + 0,
+∞ otherwise.

Thus, h(u) is a barrier for the primal SDP (15), that is, it coincides with the objective of (15) on
its feasible set, and is infinite otherwise. Notice that to the LMI constraint we now associate a
multiplier matrix, which will be constrained to the positive semidefinite cone.

In the above, we made use of the fact that, for a given symmetric matrix F ,

φ(F ) := sup
Z&0

trace(ZF )

is +∞ if F has a positive eigenvalue, and zero if F is negative semidefinite. This property is obvious
for diagonal matrices, since in that case the variable Z can be constrained to be diagonal without
loss of generality. The general case follows from the fact that if F has the eigenvalue decomposition
F = UΛUT , where Λ is a diagonal matrix containing the eigenvalues of F , and U is orthogonal,
then trace(ZF ) = trace(Z ′Λ), where Z ′ = UT ZU spans the positive semidefinite cone whenever Z
does.

Using the above Lagrangian, one can cast the original problem (15) as an unconstrained opti-
mization problem:

p∗ = min
u

max
Z&0

L(u, Z).

By weak duality, we obtain a lower bound on p∗ by exchanging the min and max:

d∗ = max
Z&0

min
u

L(u, Z) ≤ min
u

max
Z&0

L(u, Z) = p∗.

The inner minimization problem is easily solved analytically, due to the special structure of the
SDP. We obtain a closed form for the (Lagrange) dual function:

g(Z) = min
u

L(u, Z) = min
u

cTu + trace(ZF0) +
q∑

i=1

ui trace(ZFi)

=
{

trace(ZF0) if ci = −trace(ZFi), i = 1, . . . , q
−∞ otherwise.
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The dual problem can be explicitly stated as follows:

d∗ = max
Z&0

min
u

L(u, Z) = max
Z

trace(ZF0) subject to Z " 0, ci = −trace(ZFi), i = 1, . . . , q. (16)

We observe that the above problem is an SDP, with a single LMI constraint and q affine equalities
in the matrix dual variable Z.

While weak duality always holds, strong duality may not, even for SDPs. Not surprisingly, a
Slater-type condition ensures strong duality. Precisely, if the primal SDP (15) is strictly feasible,
that is, there exists a u0 such that F (u0) ≺ 0, then p∗ = d∗. If, in addition, the dual problem is
also strictly feasible, meaning that there exists a Z # 0 such that ci = trace(ZFi), i = 1, . . . , q,
then both primal and dual optimal values are attained by some optimal pair (u∗, Z∗). In that case,
we can characterize such optimal pairs as follows. In view of the equality constraints of the dual
problem, the duality gap can be expressed as

p∗ − d∗ = cTu∗ − trace(Z∗F0)
= −trace(Z∗F (u∗)).

A zero duality gap is equivalent to trace(Z∗F (u∗)) = 0, which in turn is equivalent to Z∗F (u∗) = O,
where O denotes the zero matrix, since the product of a positive semidefinite and a negative
semidefinite matrix has zero trace if and only if it is zero.

To summarize, consider the SDP (15) and its Lagrange dual (16). If either problem is strictly
feasible, then they share the same optimal value. If both problems are strictly feasible, then the
optimal values of both problems are attained and coincide. In this case, a primal-dual pair (u∗, Z∗)
is optimal if and only if

F (u∗) + 0,
Z∗ " 0,
ci = −trace(Z∗Fi), i = 1, . . . , q,
Z∗F (u∗) = O.

The above conditions represent the expression of the general Karush-Kuhn-Tucker (KKT) condi-
tions in the semidefinite programming setting. The first three sets of conditions express that u∗

and Z∗ are feasible for their respective problems; the last condition expresses a complementarity
condition.

For a pair of strictly feasible primal-dual SDPs, solving the primal minimization problem is
equivalent to maximizing the dual problem and both can thus be considered simultaneously. Al-
gorithms indeed make use of this relationship and use the duality gap as a stopping criterion. A
general-purpose program such as SeDuMi (Sturm, 1999) handles those problems efficiently. This
code uses interior-point methods for SDP (Nesterov and Nemirovsky, 1994); these methods have
a worst-case complexity of O(q2p2.5) for the general problem (15). In practice, problem structure
can be exploited for great computational savings: e.g., when F (u) ∈ Rp×p consists of L diagonal
blocks of size pi, i = 1, . . . , L, these methods have a worst-case complexity of O(q2(

∑L
i=1 p2

i )p
0.5)

(Vandenberghe and Boyd, 1996).

4. Algorithms for Learning Kernels

We work in a transduction setting, where some of the data (the training set Sntr = {(x1, y1), . . . , (xntr , yntr)})
are labeled, and the remainder (the test set Tnt = {xntr+1, . . . ,xntr+nt}) are unlabeled, and the
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aim is to predict the labels of the test data. In this setting, optimizing the kernel corresponds to
choosing a kernel matrix. This matrix has the form

K =
(

Ktr Ktr,t

KT
tr,t Kt

)
, (17)

where Kij = 〈Φ(xi), Φ(xj)〉, i, j = 1, . . . , ntr, ntr + 1, . . . , ntr + nt. By optimizing a cost function
over the “training-data block” Ktr, we want to learn the optimal mixed block Ktr,t and the optimal
“test-data block” Kt.

This implies that training and test-data blocks must somehow be entangled: tuning training-
data entries in K (to optimize their embedding) should imply that test-data entries are automati-
cally tuned in some way as well. This can be achieved by constraining the search space of possible
kernel matrices: we control the capacity of the search space of possible kernel matrices in order to
prevent overfitting and achieve good generalization on test data.

We first consider a general optimization problem in which the kernel matrix K is restricted to
a convex subset K of P, the positive semidefinite cone. We then consider two specific examples.
The first is the set of positive semidefinite matrices with bounded trace that can be expressed as a
linear combination of kernel matrices from the set {K1, . . . , Km}. That is, K is the set of matrices
K satisfying

K =
m∑

i=1

µiKi, (18)

K " 0,
trace(K) ≤ c.

In this case, the set K lies in the intersection of a low-dimensional linear subspace with the positive
semidefinite cone P. Geometrically this can be viewed as computing all embeddings (for every
Ki), in disjoint feature spaces, and then weighting these. The set {K1, . . . , Km} could be a set of
initial “guesses” of the kernel matrix, e.g., linear, Gaussian or polynomial kernels with different
kernel parameter values. Instead of fine-tuning the kernel parameter for a given kernel using cross-
validation, one can now evaluate the given kernel for a range of kernel parameters and then optimize
the weights in the linear combination of the obtained kernel matrices. Alternatively, the Ki could
be chosen as the rank-one matrices Ki = vivT

i , with vi a subset of the eigenvectors of K0, an initial
kernel matrix, or with vi some other set of orthogonal vectors. A practically important form is the
case in which a diverse set of possibly good Gram matrices Ki (similarity measures/representations)
has been constructed, e.g., using heterogeneous data sources. The challenge is to combine these
measures into one optimal similarity measure (embedding), to be used for learning.

The second example of a restricted set K of kernels is the set of positive semidefinite matrices
with bounded trace that can be expressed as a linear combination of kernel matrices from the set
{K1, . . . , Km}, but with the parameters µi constrained to be non-negative. That is, K is the set of
matrices K satisfying

K =
m∑

i=1

µiKi,

µi ≥ 0 i ∈ {1, . . . , m}
K " 0,

trace(K) ≤ c.
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This further constrains the class of functions that can be represented. It has two advantages:
we shall see that the corresponding optimization problem has significantly reduced computational
complexity, and it is more convenient for studying the statistical properties of a class of kernel
matrices.

As we will see in Section 5, we can estimate the performance of support vector machines for
transduction using properties of the class K. As explained in Section 2, we can use a thresholded
version of f(x), i.e., sign (f(x)), as a binary classification decision. Using this decision function,
we will prove that the proportion of errors on the test data Tn (where, for convenience, we suppose
that training and test data have the same size ntr = nt = n) is, with probability 1 − δ (over the
random draw of the training set Sn and test set Tn), bounded by

1
n

n∑

i=1

max {1 − yif(xi), 0} +
1√
n

(
4 +

√
2 log(1/δ) +

√
C(K)
nγ2

)
, (19)

where γ is the 1-norm soft margin on the data and C(K) is a certain measure of the complexity
of the kernel class K. For instance, for the class K of positive linear combinations defined above,
C(K) ≤ mc, where m is the number of kernel matrices in the combination and c is the bound on
the trace. So, the proportion of errors on the test data is bounded by the average error on the
training set and a complexity term, determined by the richness of the class K and the margin γ.
Good generalization can thus be expected if the error on the training set is small, while having a
large margin and a class K that is not too rich.

The next section presents the main optimization result of the paper: minimizing a generalized
performance measure ωC,τ (K) with respect to the kernel matrix K can be realized in a semidefinite
programming framework. Afterwards, we prove a second general result showing that minimizing
ωC,τ (K) with respect to a kernel matrix K, constrained to the linear subspace K =

∑m
i=1 µiKi with

µ ≥ 0, leads to a quadratically constrained quadratic programming (QCQP) problem. Maximizing
the margin of a hard margin SVM with respect to K, as well as both soft margin cases can then
be treated as specific instances of this general result and will be discussed in later sections.

4.1 General Optimization Result

In this section, we first of all show that minimizing the generalized performance measure

ωC,τ (K) = max
α

2αTe − αT (G(K) + τI)α : C ≥ α ≥ 0, αTy = 0, (20)

with τ ≥ 0, on the training data with respect to the kernel matrix K, in some convex subset K of
positive semidefinite matrices with trace equal to c,

min
K∈K

ωC,τ (Ktr) s.t. trace(K) = c, (21)

can be realized in a semidefinite programming framework.
We first note a fundamental property of the generalized performance measure, a property that

is crucial for the remainder of the paper.

Proposition 15 The quantity

ωC,τ (K) = max
α

2αTe − αT (G(K) + τI)α : C ≥ α ≥ 0, αTy = 0,

is convex in K.
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This is easily seen by considering first that 2αTe−αT (G(K) + τI)α is an affine function of K,
and hence is a convex function as well. Secondly, we notice that ωC,τ (K) is the pointwise maximum
of such convex functions and is thus convex. The constraints C ≥ α ≥ 0, αTy = 0 are obviously
convex.

Problem (21) is now a convex optimization problem. The following theorem shows that, for a
suitable choice of the set K, this problem can be cast as an SDP.

Theorem 16 Given a labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the set of labels denoted
y ∈ Rntr , the kernel matrix K ∈ K that optimizes (21), with τ ≥ 0, can be found by solving the
following convex optimization problem:

min
K,t,λ,ν ,δ

t (22)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) + τIntr e + ν − δ + λy

(e + ν − δ + λy)T t − 2CδTe

)
" 0,

ν ≥ 0,
δ ≥ 0.

Proof We begin by substituting ωC,τ (Ktr), as defined in (20), into (21), which yields

min
K∈K

max
α

2αTe − αT (G(Ktr) + τIntr)α : C ≥ α ≥ 0, αTy = 0, trace(K) = c, (23)

with c a constant. Assume that Ktr # 0, hence G(Ktr) # 0 and G(Ktr)+τIntr # 0 since τ ≥ 0 (the
following can be extended to the general semidefinite case). From Proposition 15, we know that
ωC,τ (Ktr) is convex in Ktr and thus in K. Given the convex constraints in (23), the optimization
problem is thus certainly convex in K. We write this as

min
K∈K,t

t : t ≥ max
α

2αTe − αT (G(Ktr) + τIntr)α, (24)

C ≥ α ≥ 0, αTy = 0, trace(K) = c.

We now express the constraint t ≥ maxα 2αTe−αT (G(Ktr)+τIntr)α as an LMI using duality. In
particular, duality will allow us to drop the minimization and the Schur complement lemma then
yields an LMI.

Define the Lagrangian of the maximization problem (20) by

L(α, ν,λ, δ) = 2αTe − αT (G(Ktr) + τIntr)α + 2νT α + 2λyT α + 2δT (Ce − α),

where λ ∈ R and ν, δ ∈ Rntr . By duality, we have

ωC,τ (Ktr) = max
α

min
ν≥0,δ≥0,λ

L(α, ν,λ, δ) = min
ν≥0,δ≥0,λ

max
α

L(α, ν,λ, δ).

Since G(Ktr) + τIntr # 0, at the optimum we have

α = (G(Ktr) + τIntr)
−1(e + ν − δ + λy),

and we can form the dual problem

ωC,τ (Ktr) = min
ν ,δ,λ

(e + ν − δ + λy)T (G(Ktr) + τIntr)
−1(e + ν − δ + λy) + 2CδTe : ν ≥ 0, δ ≥ 0.
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This implies that for any t > 0, the constraint ωC,τ (Ktr) ≤ t holds if and only if there exist
ν ≥ 0, δ ≥ 0 and λ such that

(e + ν − δ + λy)T (G(Ktr) + τIntr)
−1(e + ν − δ + λy) + 2CδTe ≤ t,

or, equivalently (using the Schur complement lemma), such that
(

G(Ktr) + τIntr e + ν − δ + λy
(e + ν − δ + λy)T t − 2CδTe

)
" 0

holds. Taking this into account, (24) can be expressed as

min
K,t,λ,ν ,δ

t

subject to trace(K) = c,

K ∈ K,(
G(Ktr) + τIntr e + ν − δ + λy

(e + ν − δ + λy)T t − 2CδTe

)
" 0,

ν ≥ 0,
δ ≥ 0,

which yields (22). Notice that ν ≥ 0 ⇔ diag(ν) " 0, and is thus an LMI; similarly for δ ≥ 0.

Notice that if K = {K " 0}, this optimization problem is an SDP in the standard form (9). Of
course, in that case there is no constraint to ensure entanglement of training and test-data blocks.
Indeed, it is easy to see that the criterion would be optimized with a test matrix Kt = O.

Consider the constraint K = span{K1, . . . , Km} ∩ {K " 0}. We obtain the following convex
optimization problem:

min
K

ωC,τ (Ktr) (25)

subject to trace(K) = c,

K " 0,

K =
m∑

i=1

µiKi,

which can be written in the standard form of a semidefinite program, in a manner analogous to
(22):

min
µ,t,λ,ν ,δ

t (26)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑

i=1

µiKi " 0,

(
G(

∑m
i=1 µiKi,tr) + τIntr e + ν − δ + λy

(e + ν − δ + λy)T t − 2CδTe

)
" 0,

ν ≥ 0,
δ ≥ 0.
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To solve this general optimization problem, one has to solve a semidefinite programming prob-
lem. General-purpose programs such as SeDuMi (Sturm, 1999) use interior-point methods to solve
SDP problems (Nesterov and Nemirovsky, 1994). These methods are polynomial time. How-
ever, applying the complexity results mentioned in Section 3.3 leads to a worst-case complexity
O
(
(m + ntr)2(n2 + n2

tr)(n + ntr)0.5
)
, or roughly O

(
(m + ntr)2n2.5

)
, in this particular case.

Consider a further restriction on the set of kernel matrices, where the matrices are restricted to
positive linear combinations of kernel matrices {K1, . . . , Km} ∩ {K " 0}:

K =
m∑

i=1

µiKi, µ ≥ 0.

For this restricted linear subspace of the positive semidefinite cone P, we can prove the following
theorem:

Theorem 17 Given a labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the set of labels denoted
y ∈ Rntr , the kernel matrix K =

∑m
i=1 µiKi that optimizes (21), with τ ≥ 0, under the additional

constraint µ ≥ 0 can be found by solving the following convex optimization problem, and considering
its dual solution:

max
α,t

2αTe − ταT α − ct (27)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
C ≥ α ≥ 0,

where r ∈ Rm with trace(Ki) = ri.

Proof Solving problem (21) subject to K =
∑m

i=1 µiKi, with Ki " 0, and the extra constraint
µ ≥ 0 yields

min
K

max
α : C≥α≥0,αT y=0

2αTe − αT (G(Ktr) + τIntr)α

subject to trace(K) = c,

K " 0,

K =
m∑

i=1

µiKi,

µ ≥ 0,

when ωC,τ (Ktr) is expressed using (20). We can omit the second constraint, because this is implied
by the last two constraints, if Ki " 0. The problem then reduces to

min
µ

max
α : C≥α≥0,αT y=0

2αTe − αT (G(
m∑

i=1

µiKi,tr) + τIntr)α

subject to µT r = c,

µ ≥ 0,
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where Ki,tr = Ki(1 : ntr, 1 : ntr). We can write this as

min
µ : µ≥0,µT r=c

max
α : C≥α≥0,αT y=0

2αTe − αT

(
diag(y)(

m∑

i=1

µiKi,tr)diag(y) + τIntr

)
α

= min
µ : µ≥0,µT r=c

max
α : C≥α≥0,αT y=0

2αTe −
m∑

i=1

µiα
T diag(y)Ki,trdiag(y)α − ταT α

= min
µ : µ≥0,µT r=c

max
α : C≥α≥0,αT y=0

2αTe −
m∑

i=1

µiα
T G(Ki,tr)α − ταT α

= max
α : C≥α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αTe −
m∑

i=1

µiα
T G(Ki,tr)α − ταT α,

with G(Ki,tr) = diag(y)Ki,trdiag(y). The interchange of the order of the minimization and the
maximization is justified (see, e.g., Boyd and Vandenberghe, 2003) because the objective is convex
in µ (it is linear in µ) and concave in α, because the minimization problem is strictly feasible in
µ, and the maximization problem is strictly feasible in α (we can skip the case for all elements of
y having the same sign, because we cannot even define a margin in such a case). We thus obtain

max
α : C≥α≥0,αT y=0

min
µ : µ≥0,µT r=c

2αTe −
m∑

i=1

µiα
T G(Ki,tr)α − ταT α

= max
α : C≥α≥0,αT y=0

[
2αTe − ταT α − max

µ : µ≥0,µT r=c

(
m∑

i=1

µiα
T G(Ki,tr)α

)]

= max
α : C≥α≥0,αT y=0

[
2αTe − ταT α − max

i

(
c

ri
αT G(Ki,tr)α

)]
.

Finally, this can be reformulated as

max
α,t

2αTe − ταT α − ct

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
C ≥ α ≥ 0,

which proves the theorem.

This convex optimization problem, a QCQP more precisely, is a special instance of an SOCP
(second-order cone programming problem), which is in turn a special form of SDP (Boyd and
Vandenberghe, 2003). SOCPs can be solved efficiently with programs such as SeDuMi (Sturm,
1999) or Mosek (Andersen and Andersen, 2000). These codes use interior-point methods (Nesterov
and Nemirovsky, 1994) which yield a worst-case complexity of O(mn3

tr). This implies a major
improvement compared to the worst-case complexity of a general SDP. Furthermore, the codes
simultaneously solve the above problem and its dual form. They thus return optimal values for the
dual variables as well—this allows us to obtain the optimal weights µi, for i = 1, . . . , m.
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4.2 Hard Margin

In this section, we show how maximizing the margin of a hard margin SVM with respect to the
kernel matrix can be realized in the semidefinite programming framework derived in Theorem 16.

Inspired by (19), let us try to find the kernel matrix K in some convex subset K of positive
semidefinite matrices for which the corresponding embedding shows maximal margin on the training
data, keeping the trace of K constant:

min
K∈K

ω(Ktr) s.t. trace(K) = c. (28)

Note that ω(Ktr) = ω∞,0(Ktr). From Proposition 15, we then obtain the following important
result:

Corollary 18 The quantity

ω(K) = max
α

2αTe − αT G(K)α : α ≥ 0, αTy = 0,

is convex in K.

So, a fundamental property of the inverse margin is that it is convex in K. This is essential,
since it allows us to optimize this quantity in a convex framework. The following theorem shows
that, for a suitable choice of the set K, this convex optimization problem can be cast as an SDP.

Theorem 19 Given a linearly separable labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the
set of labels denoted y ∈ Rntr , the kernel matrix K ∈ K that optimizes (28) can be found by solving
the following problem:

min
K,t,λ,ν

t (29)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν + λy

(e + ν + λy)T t

)
" 0,

ν ≥ 0.

Proof Observe ω(Ktr) = ω∞,0(Ktr). Apply Theorem 16 for C = ∞ and τ = 0.

If K = {K " 0}, there is no constraint to ensure that a large margin on the training data will
give a large margin on the test data: a test matrix Kt = O would optimize the criterion.

If we restrict the kernel matrix to a linear subspace K = span{K1, . . . , Km} ∩ {K " 0}, we
obtain

min
K

ω(Ktr) (30)

subject to trace(K) = c,

K " 0,

K =
m∑

i=1

µiKi,
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which can be written in the standard form of a semidefinite program, in a manner analogous to
(29):

min
µi,t,λ,ν

t (31)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑

i=1

µiKi " 0,

(
G(

∑m
i=1 µiKi,tr) e + ν + λy

(e + ν + λy)T t

)
" 0,

ν ≥ 0.

Notice that the SDP approach is consistent with the bound in (19). The margin is optimized over
the labeled data (via the use of Ki,tr), while the positive semidefiniteness and the trace constraint
are imposed for the entire kernel matrix K (via the use of Ki). This leads to a general method
for learning the kernel matrix with semidefinite programming, when using a margin criterion for
hard margin SVMs. Applying the complexity results mentioned in Section 3.3 leads to a worst-
case complexity O

(
(m + ntr)2n2.5

)
when using general-purpose interior-point methods to solve this

particular SDP.
Furthermore, this gives a new transduction method for hard margin SVMs. Whereas Vapnik’s

original method for transduction scales exponentially in the number of test samples, the new SDP
method has polynomial time complexity.

Remark. For the specific case in which the Ki are rank-one matrices Ki = vivT
i , with vi orthonor-

mal (e.g., the normalized eigenvectors of an initial kernel matrix K0), the semidefinite program
reduces to a QCQP:

max
α,t

2αTe − ct (32)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αTy = 0,
α ≥ 0,

with v̆i = diag(y) vi(1 : ntr).
This can be seen by observing that, for Ki = vivT

i , with vT
i vj = δij , we have that

∑m
i=1 µiKi "

0 is equivalent to µ ≥ 0. So, we can apply Theorem 17, with τ = 0 and C = ∞, where
1
ri

αT G(Ki,tr) α = αT diag(y) vi(1 : ntr) vi(1 : ntr)T diag(y) α = (v̆T
i α)2.

4.3 Hard Margin with Kernel Matrices that are Positive Linear Combinations

To learn a kernel matrix from this linear class K, one has to solve a semidefinite programming
problem: interior-point methods (Nesterov and Nemirovsky, 1994) are polynomial time, but have
a worst-case complexity O

(
(m + ntr)2n2.5

)
in this particular case.

We now restrict K to the positive linear combinations of kernel matrices:

K =
m∑

i=1

µiKi, µ ≥ 0.
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Assuming positive weights yields a smaller set of kernel matrices, because the weights need not
be positive for K to be positive semidefinite, even if the components Ki are positive semidefinite.
Moreover, the restriction has beneficial computational effects: (1) the general SDP reduces to a
QCQP, which can be solved with significantly lower complexity O(mn3

tr); (2) the constraint can
result in improved numerical stability—it prevents the algorithm from using large weights with
opposite sign that cancel. Finally, we shall see in Section 5 that the constraint also yields better
estimates of the generalization performance of these algorithms.

Theorem 20 Given a labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the set of labels denoted
y ∈ Rntr , the kernel matrix K =

∑m
i=1 µiKi that optimizes (21), with τ ≥ 0, under the additional

constraint µ ≥ 0 can be found by solving the following convex optimization problem, and considering
its dual solution:

max
α,t

2αTe − ct (33)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
α ≥ 0.

where r ∈ Rm with trace(Ki) = ri.

Proof Apply Theorem 17 for C = ∞ and τ = 0.

Note once again that the optimal weights µi, i = 1, . . . , m, can be recovered from the primal-
dual solution found by standard software such as SeDuMi (Sturm, 1999) or Mosek (Andersen and
Andersen, 2000).

4.4 1-Norm Soft Margin

For the case of non-linearly separable data, we can consider the 1-norm soft margin cost function
in (3). Training the SVM for a given kernel involves minimizing this quantity with respect to w, b,
and ξ, which yields the optimal value (4): obviously this minimum is a function of the particular
choice of K, which is expressed explicitly in (4) as a dual problem. Let us now optimize this
quantity with respect to the kernel matrix K, i.e., let us try to find the kernel matrix K ∈ K for
which the corresponding embedding yields minimal ωS1(Ktr), keeping the trace of K constant:

min
K∈K

ωS1(Ktr) s.t. trace(K) = c. (34)

This is again a convex optimization problem.

Theorem 21 Given a labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the set of labels denoted
y ∈ Rntr , the kernel matrix K ∈ K that optimizes (34), can be found by solving the following convex
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optimization problem:

min
K,t,λ,ν ,δ

t (35)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) e + ν − δ + λy

(e + ν − δ + λy)T t − 2CδTe

)
" 0,

ν ≥ 0,
δ ≥ 0.

Proof Observe ωS1(Ktr) = ωC,0(Ktr). Apply Theorem 16 for τ = 0.

Again, if K = {K " 0}, this is an SDP. Adding the additional constraint (18) that K is a linear
combination of fixed kernel matrices leads to the following SDP:

min
µi,t,λ,ν ,δ

t (36)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑

i=1

µiKi " 0,

(
G(

∑m
i=1 µiKi,tr) e + ν − δ + λy

(e + ν − δ + λy)T t − 2CδTe

)
" 0,

ν, δ ≥ 0.

Remark. For the specific case in which the Ki are rank-one matrices Ki = vivT
i , with vi or-

thonormal (e.g., the normalized eigenvectors of an initial kernel matrix K0), the SDP reduces to a
QCQP using Theorem 17, with τ = 0, in a manner analogous to the hard margin case:

max
α,t

2αTe − ct (37)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αTy = 0,
C ≥ α ≥ 0,

with v̆i = diag(y) vi(1 : ntr).
Solving the original learning problem subject to the extra constraint µ ≥ 0 yields, after applying

Theorem 17, with τ = 0:

max
α,t

2αTe − ct (38)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
C ≥ α ≥ 0.
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4.5 2-Norm Soft Margin

For the case of non-linearly separable data, we can also consider the 2-norm soft margin cost
function (5). Again, training for a given kernel will minimize this quantity with respect to w, b,
and ξ and the minimum is a function of the particular choice of K, as expressed in (6) in dual
form. Let us now optimize this quantity with respect to the kernel matrix K:

min
K∈K

ωS2(Ktr) s.t. trace(K) = c. (39)

This is again a convex optimization problem, and can be restated as follows.

Theorem 22 Given a labeled sample Sntr = {(x1, y1), . . . , (xntr , yntr)} with the set of labels denoted
y ∈ Rntr , the kernel matrix K ∈ K that optimizes (39) can be found by solving the following
optimization problem:

min
K,t,λ,ν

t (40)

subject to trace(K) = c,

K ∈ K,(
G(Ktr) + 1

C Intr e + ν + λy
(e + ν + λy)T t

)
" 0,

ν ≥ 0.

Proof Observe ωS2(Ktr) = ω∞,τ (Ktr). Apply Theorem 16 for C = ∞.

Again, if K = {K " 0}, this is an SDP. Moreover, constraining K to be a linear combination
of fixed kernel matrices, we obtain

min
µi,t,λ,ν

t (41)

subject to trace

(
m∑

i=1

µiKi

)
= c,

m∑

i=1

µiKi " 0,




G(

∑m
i=1 µiKi,tr) + 1

C Intr e + ν + λy

(e + ν + λy)T t



 " 0,

ν ≥ 0.

Also, when the Ki are rank-one matrices, Ki = vivT
i , with vi orthonormal, we obtain a QCQP:

max
α,t

2αTe − 1
C

αT α − ct (42)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

αTy = 0,
α ≥ 0,

48



Learning the Kernel Matrix with Semidefinite Programming

and, finally, imposing the constraint µ ≥ 0 yields

max
α,t

2αTe − 1
C

αT α − ct (43)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
α ≥ 0,

following a similar derivation as before: apply Theorem 17 with C = ∞, and, for (42), observe that
µ ≥ 0 is equivalent to

∑m
i=1 µiKi " 0 if Ki = vivT

i and vT
i vj = δij .

4.6 Learning the 2-Norm Soft Margin Parameter τ = 1/C

This section shows how the 2-norm soft margin parameter of SVMs can be learned using SDP or
QCQP. More details can be found in De Bie et al. (2003).

In the previous section, we tried to find the kernel matrix K ∈ K for which the corresponding
embedding yields minimal ωS2(Ktr), keeping the trace of K constant. Since in the dual formulation
(6) the identity matrix induced by the 2-norm formulation appears in exactly the same way as the
other matrices Ki, we can treat it on the same basis and optimize its weight to obtain the optimal
dual formulation, i.e., to minimize ωS2(Ktr). Since this weight now happens to correspond to the
parameter τ = 1/C, optimizing it corresponds to learning the 2-norm soft margin parameter and
thus has a significant meaning.

Since the parameter τ = 1/C can be treated in the same way as the weights µi, tuning it
such that the quantity ωS2(Ktr, τ) is minimized can be viewed as a method for choosing τ . First
of all, consider the dual formulation (6) and notice that ωS2(Ktr, τ) is convex in τ = 1/C (being
the pointwise maximum of affine and thus convex functions in τ). Secondly, since τ → ∞ leads
to ωS2(Ktr, τ) → 0, we impose the constraint trace (K + τIn) = c. This results in the following
convex optimization problem:

min
K∈K,τ≥0

ωS2(Ktr, τ) s.t. trace (K + τIn) = c.

According to Theorem 22, this can be restated as follows:

min
K,t,λ,ν ,τ

t (44)

subject to trace (K + τIn) = c,

K ∈ K,(
G(Ktr) + τIntr e + ν + λy
(e + ν + λy)T t

)
" 0,

ν, τ ≥ 0.
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Again, if K = {K " 0}, this is an SDP. Imposing the additional constraint that K is a linear
function of fixed kernel matrices, we obtain the SDP

min
µi,t,λ,ν ,τ

t (45)

subject to trace

(
m∑

i=1

µiKi + τIn

)
= c,

m∑

i=1

µiKi " 0,




G(

∑m
i=1 µiKi,tr) + τIntr e + ν + λy

(e + ν + λy)T t



 " 0,

ν, τ ≥ 0,

and imposing the additional constraint that the Ki are rank-one matrices, we obtain a QCQP:

max
α,t

2αTe − ct (46)

subject to t ≥ (v̆T
i α)2, i = 1, . . . , m

t ≥ 1
n

αT α

αTy = 0,
α ≥ 0,

with v̆i = diag(y) v̄i = diag(y) vi(1 : ntr). Finally, imposing the constraint that µ ≥ 0 yields the
following:

max
α,t

2αTe − ct (47)

subject to t ≥ 1
ri

αT G(Ki,tr)α, i = 1, . . . , m

t ≥ 1
n

αT α (48)

αTy = 0,
α ≥ 0,

which, as before, is a QCQP.
Solving (47) corresponds to learning the kernel matrix as a positive linear combination of kernel

matrices according to a 2-norm soft margin criterion and simultaneously learning the 2-norm soft
margin parameter τ = 1/C. Comparing (47) with (33), we can see that this reduces to learning an
augmented kernel matrix K ′ as a positive linear combination of kernel matrices and the identity
matrix, K ′ = K + τIn =

∑m
i=1 µiKi + τIn, using a hard margin criterion. However, there is an

important difference: when evaluating the resulting classifier, the actual kernel matrix K is used,
instead of the augmented K ′ (see, for example, Shawe-Taylor and Cristianini, 1999).

For m = 1, we notice that (45) directly reduces to (47) if K1 " 0. This corresponds to
automatically tuning the parameter τ = 1/C for a 2-norm soft margin SVM with kernel matrix
K1. So, even when not learning the kernel matrix, this approach can be used to tune the 2-norm
soft margin parameter τ = 1/C automatically.

50



Learning the Kernel Matrix with Semidefinite Programming

4.7 Alignment

In this section, we consider the problem of optimizing the alignment between a set of labels and
a kernel matrix from some class K of positive semidefinite kernel matrices. We show that, if K is
a class of linear combinations of fixed kernel matrices, this problem can be cast as an SDP. This
result generalizes the approach presented in Cristianini et al. (2001, 2002).

Theorem 23 The kernel matrix K ∈ K which is maximally aligned with the set of labels y ∈ Rntr

can be found by solving the following optimization problem:

max
A,K

〈Ktr,yyT 〉F (49)

subject to trace(A) ≤ 1
(

A KT

K In

)
" 0

K ∈ K,

where In is the identity matrix of dimension n.

Proof We want to find the kernel matrix K which is maximally aligned with the set of labels y:

max
K

Â(S, Ktr,yyT )

subject to K ∈ K, trace(K) = 1.

This is equivalent to the following optimization problem:

max
K

〈Ktr,yyT 〉F (50)

subject to 〈K, K〉F = 1
K ∈ K, trace(K) = 1.

To express this in the standard form (9) of a semidefinite program, we need to express the quadratic
equality constraint 〈K, K〉F = 1 as an LMI. First, notice that (50) is equivalent to

max
K

〈Ktr,yyT 〉F (51)

subject to 〈K, K〉F ≤ 1
K ∈ K.

Indeed, we are maximizing an objective which is linear in the entries of K, so at the optimum
K = K∗, the constraint 〈K, K〉F = trace(KT K) ≤ 1 is achieved: 〈K∗, K∗〉F = 1. The quadratic
inequality constraint in (51) is now equivalent to

∃A : KT K + A and trace(A) ≤ 1.

Indeed, A − KT K " 0 implies trace(A − KT K) = trace(A) − trace(KT K) ≥ 0 because of linearity
of the trace. Using the Schur complement lemma, we can express A − KT K " 0 as an LMI:

A − KT K " 0 ⇔
(

A KT

K In

)
" 0.
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We can thus rewrite the optimization problem (50) as

max
A,K

〈Ktr,yyT 〉F

subject to trace(A) ≤ 1
(

A KT

K In

)
" 0

K ∈ K,

which corresponds to (49).

Notice that, when K is the set of all positive semidefinite matrices, this is an SDP (an inequality
constraint corresponds to a one-dimensional LMI; consider the entries of the matrices A and K as
the unknowns, corresponding to the ui in (9)). In that case, one solution of (49) is found by simply
selecting Ktr = c

nyyT , for which the alignment (7) is equal to one and thus maximized.
Adding the additional constraint (18) that K is a linear combination of fixed kernel matrices

leads to

max
K

〈
Ktr,yyT

〉
F

(52)

subject to 〈K, K〉F ≤ 1,
K " 0,

K =
m∑

i=1

µiKi,

which can be written in the standard form of a semidefinite program, in a similar way as for (49):

max
A,µi

〈
m∑

i=1

µiKi,tr,yyT

〉

F

(53)

subject to trace(A) ≤ 1,
(

A
∑m

i=1 µiKT
i∑m

i=1 µiKi In

)
" 0,

m∑

i=1

µiKi " 0.

Remark. For the specific case where the Ki are rank-one matrices Ki = vivT
i , with vi orthonormal

(e.g., the normalized eigenvectors of an initial kernel matrix K0), the semidefinite program reduces
to a QCQP (see Appendix A):

max
µi

m∑

i=1

µi(v̄T
i y)2 (54)

subject to
m∑

i=1

µ2
i ≤ 1

µi ≥ 0, i = 1, . . . , m
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with v̄i = vi(1 : ntr). This corresponds exactly to the QCQP obtained as an illustration in
Cristianini et al. (2002), which is thus entirely captured by the general SDP result obtained in this
section.

Solving the original learning problem (52) subject to the extra constraint µ ≥ 0 yields

max
K

〈
Ktr,yyT

〉
F

subject to 〈K, K〉F ≤ 1,
K " 0,

K =
m∑

i=1

µiKi,

µ ≥ 0.

We can omit the second constraint, because this is implied by the last two constraints, if Ki " 0.
This reduces to

max
µ

〈
m∑

i=1

µiKi,tr,yyT

〉

F

subject to

〈
m∑

i=1

µiKi,
m∑

j=1

µjKj

〉

F

≤ 1,

µ ≥ 0,

where Ki,tr = Ki(1 : ntr, 1 : ntr). Expanding this further yields
〈

m∑

i=1

µiKi,tr,yyT

〉

F

=
m∑

i=1

µi
〈
Ki,tr,yyT

〉
F

= µTq, (55)〈
m∑

i=1

µiKi,
m∑

j=1

µjKj

〉

F

=
m∑

i,j=1

µiµj 〈Ki, Kj〉F

= µT Sµ (56)

with qi =
〈
Ki,tr,yyT

〉
F

= trace(Ki,tryyT ) = trace(yT Ki,try) = yT Ki,try and Sij = 〈Ki, Kj〉F ,
where q ∈ Rm, S ∈ Rm×m. We used the fact that trace(ABC) = trace(BCA) (if the products are
well-defined). We obtain the following learning problem:

max
µ

µTq

subject to µT Sµ ≤ 1,
µ ≥ 0,

which is a QCQP.

4.8 Induction

In previous sections we have considered the transduction setting, where it is assumed that the
covariate vectors for both training (labeled) and test (unlabeled) data are known beforehand. While
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this setting captures many realistic learning problems, it is also of interest to consider possible
extensions of our approach to the more general setting of induction, in which the covariates are
known beforehand only for the training data.

Consider the following situation. We learn the kernel matrix as a positive linear combination of
normalized kernel matrices Ki. Those Ki are obtained through the evaluation of a kernel function or
through a known procedure (e.g., a string-matching kernel), yielding Ki " 0. So, K =

∑m
i=1 µiKi "

0. Normalization is done by replacing Ki(k, l) by Ki(k, l)/
√

Ki(k, k) · Ki(l, l). In this case, the
extension to an induction setting is elegant and simple.

Let ntr be the number of training data points (all labeled). Consider the transduction problem
for those ntr data points and one unknown test point, e.g., for a hard margin SVM. The optimal
weights µ∗

i , i = 1, . . . , m are learned by solving (33):

max
α,t

2αTe − ct (57)

subject to t ≥ 1
ntr + 1

αT G(Ki,tr)α, i = 1, . . . , m

αTy = 0,
α ≥ 0.

Even without knowing the test point and the entries of the Ki’s related to it (column and row
ntr +1), we know that K(ntr +1, ntr +1) = 1 because of the normalization. So, trace(Ki) = ntr +1.
This allows solving for the optimal weights µ∗

i , i = 1, . . . , m and the optimal SVM parameters
α∗

j , j = 1, . . . , ntr and b∗, without knowing the test point. When a test point becomes available,
we complete the Ki’s by computing their (ntr +1)-th column and row (evaluate the kernel function
or follow the procedure and normalize). Combining those Ki with weights µ∗

i yields the final kernel
matrix K, which can then be used to label the test point:

y = sign(
m∑

i=1

ntr∑

j=1

µ∗
iαjKi(xj , x)).

Remark: The optimal weights are independent of the number of unknown test points that
are considered in this setting. Consider the transduction problem (57) for l unknown test points
instead of one unknown test point:

max
α̃,t̃

2α̃Te − ct̃ (58)

subject to t̃ ≥ 1
ntr + l

α̃T G(Ki,tr)α̃, i = 1, . . . , m

α̃Ty = 0,
α̃ ≥ 0.

One can see that solving (58) is equivalent to solving (57) where the optimal values relate as
α̃∗ = ntr+l

ntr+1α∗ and t̃∗ = ntr+l
ntr+1 t∗ and where the optimal weights µ∗

i , i = 1, . . . , m are the same.
Tackling the induction problem in full generality remains a challenge for future work. Obviously,

one could consider the transduction case with zero test points, yielding the induction case. If the
weights µi are constrained to be nonnegative and furthermore the matrices Ki are guaranteed to
be positive semidefinite, the weights can be reused at new test points. To deal with induction in
a general SDP setting, one could solve a transduction problem for each new test point. For every
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test point, this leads to solving an SDP of dimension ntr + 1, which is computationally expensive.
Clearly there is a need to explore recursive solutions to the SDP problem that allow the solution of
the SDP of dimension ntr to be used in the solution of an SDP of dimension ntr +1. Such solutions
would of course also have immediate applications to on-line learning problems.

5. Error Bounds for Transduction

In the problem of transduction, we have access to the unlabeled test data, as well as the labeled
training data, and the aim is to optimize accuracy in predicting the test data. We assume that the
data are fixed, and that the order is chosen randomly, yielding a random partition into a labeled
training set and an unlabeled test set. For convenience, we suppose here that the training and
test sets have the same size. Of course, if we can show a performance guarantee that holds with
high probability over uniformly chosen training/test partitions of this kind, it also holds with high
probability over an i.i.d. choice of the training and test data, since permuting an i.i.d. sample leaves
the distribution unchanged.

The following theorem gives an upper bound on the error of a kernel classifier on the test data
in terms of the average over the training data of a certain margin cost function, together with
properties of the kernel matrix. We focus on the 1-norm soft margin classifier, although our results
extend in a straightforward way to other cases, including the 2-norm soft margin classifier. The
1-norm soft margin classifier chooses a kernel classifier f to minimize a weighted combination of a
regularization term, ‖w‖2, and the average over the training sample of the slack variables,

ξi = max (1 − yif(xi), 0) .

We can view this regularized empirical criterion as the Lagrangian for the constrained minimization
of

1
n

n∑

i=1

ξi =
1
n

n∑

i=1

max(1 − yif(xi), 0)

subject to the upper bound ‖w‖2 ≤ 1/γ2.
Fix a sequence of 2n pairs (X1, Y1), . . . , (X2n, Y2n) from X×Y. Let π : {1, . . . , 2n} → {1, . . . , 2n}

be a random permutation, chosen uniformly, and let (xi, yi) = (Xπ(i), Yπ(i)). The first half of this
randomly ordered sequence is the training data Tn = ((x1, y1), . . . , (xn, yn)), and the second half
is the test data Sn = ((xn+1, yn+1), . . . , (x2n, y2n)). For a function f : X → R, the proportion of
errors on the test data of a thresholded version of f can be written as

er(f) =
1
n
|{n + 1 ≤ i ≤ 2n : yif(xi) ≤ 0}|.

We consider kernel classifiers obtained by thresholding kernel expansions of the form

f(x) = 〈w, Φ(x)〉 =
2n∑

i=1

αik(xi,x), (59)

where w =
∑2n

i=1 αiΦ(xi) is chosen with bounded norm,

‖w‖2 =
2n∑

i,j=1

αiαjk(xi,xj) = αT Kα ≤ 1
γ2

, (60)

and K is the 2n × 2n kernel matrix with Kij = k(xi,xj).
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Let FK denote the class of functions on S of the form (59) satisfying (60), for some K ∈ K,

FK =

{
xj 5→

2n∑

i=1

αiKij : K ∈ K, αT Kα ≤ 1
γ2

}
,

where K is a set of positive semidefinite 2n × 2n matrices. We also consider the class of kernel
expansions obtained from certain linear combinations of a fixed set {K1, . . . , Km} of kernel matrices:
Define the class FKc as

Kc =




K =
m∑

j=1

µjKj : K " 0, µj ∈ R, trace(K) ≤ c




 ,

and the class FK+
c

as

K+
c =






m∑

j=1

µjKj : K " 0, µj ≥ 0, trace(K) ≤ c




 .

Theorem 24 For every γ > 0, with probability at least 1−δ over the data (xi, yi) chosen as above,
every function f ∈ FK has er(f) no more than

1
n

n∑

i=1

max {1 − yif(xi), 0} +
1√
n

(
4 +

√
2 log(1/δ) +

√
C(K)
nγ2

)
,

where
C(K) = Emax

K∈K
σT Kσ,

with the expectation over σ chosen uniformly from {±1}2n.
Furthermore,

C(Kc) = cEmax
K∈K

σT K

trace(K)
σ,

and this is always no more than cn, and

C(K+
c ) ≤ c min

(
m,n max

j

λj

trace(Kj)

)
,

where λj is the largest eigenvalue of Kj.

Notice that the test error is bounded by a sum of the average over the training data of a margin
cost function plus a complexity penalty term that depends on the ratio between the trace of the
kernel matrix and the squared margin parameter, γ2. The kernel matrix here is the full matrix,
combining both test and training data.

The proof of the theorem is in Appendix B. The proof technique for the first part of the
theorem was introduced by Koltchinskii and Panchenko (2002), who used it to give error bounds
for boosting algorithms.

Although the theorem requires the margin parameter γ to be specified in advance, it is straight-
forward to extend the result to give an error bound that holds with high probability over all values
of γ. In this case, the log(1/δ) in the bound would be replaced by log(1/δ) + | log(1/γ)| and the
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constants would increase slightly. See, for example, Proposition 8 and its applications in the work
of Bartlett (1998).

The result is presented for the 1-norm soft margin classifier, but the proof uses only two prop-
erties of the cost function a 5→ max{1 − a, 0}: that it is an upper bound on the indicator function
for a ≤ 0, and that it satisfies a Lipschitz constraint on [0,∞). These conditions are also satisfied
by the cost function associated with the 2-norm soft margin classifier, a 5→ (max{1 − a, 0})2, for
example.

The bound on the complexity C(K+
B) of the kernel class K+

B is easier to check than the bound
on C(KB). The first term in the minimum shows that the set of positive linear combinations of a
small set of kernel matrices is not very complex. The second term shows that if, for each matrix in
the set, the largest eigenvalue does not dominate the sum of the eigenvalues (the trace), then the
set of positive linear combinations is not too complex, even if the set is large. In either case, the
upper bound is linear in c, the upper bound on the trace of the combined kernel matrix.

6. Empirical Results

We first present results on benchmark data sets, using kernels Ki that are derived from the same
input vector. The goal here is to explore different possible representations of the same data source,
and to choose a representation or combinations of representations that yield the best performance.
We compare to the soft margin SVM with an RBF kernel, in which the hyperparameter is tuned
via cross-validation. Note that in our framework there is no need for cross-validation to tune the
corresponding kernel hyperparameters. Moreover, when using the 2-norm soft margin SVM, the
methods are directly comparable, because the hyperparameter C is present in both cases.

In the second section we explore the use of our framework to combine kernels that are built
using data from heterogeneous sources. Here our main interest is in comparing the combined
classifier to the best individual classifier. To the extent that the heterogeneous data sources provide
complementary information, we might expect that the performance of the combined classifier can
dominate that of the best individual classifier.

6.1 Benchmark Data Sets

We present results for hard margin and soft margin support vector machines. We use a kernel
matrix K =

∑3
i=1 µiKi, where the Ki’s are initial “guesses” of the kernel matrix. We use a

polynomial kernel function k1(x1,x2) = (1+xT
1 x2)d for K1, a Gaussian kernel function k2(x1,x2) =

exp(−0.5(x1 − x2)T (x1 − x2)/σ) for K2 and a linear kernel function k3(x1,x2) = xT
1 x2 for K3.

Afterwards, all Ki are normalized. After evaluating the initial kernel matrices {Ki}3
i=1, the weights

{µi}3
i=1 are optimized in a transduction setting according to a hard margin, a 1-norm soft margin

and a 2-norm soft margin criterion, respectively; the semidefinite programs (31), (36) and (41) are
solved using the general-purpose optimization software SeDuMi (Sturm, 1999), leading to optimal
weights {µ∗

i }3
i=1. Next, the weights {µi}3

i=1 are constrained to be non-negative and optimized
according to the same criteria, again in a transduction setting: the second order cone programs
(33), (38) and (43) are solved using the general-purpose optimization software Mosek (Andersen
and Andersen, 2000), leading to optimal weights {µ∗

i,+}3
i=1. For positive weights, we also report

results in which the 2-norm soft margin hyperparameter C is tuned according to (47).
Empirical results on standard benchmark datasets are summarized in Tables 1, 2 and 3.2 The

Wisconsin breast cancer dataset contained 16 incomplete examples which were not used. The breast

2. It is worth noting that the first three columns of these columns are based on an inductive algorithm whereas
the last two columns are based on a transductive algorithm. This may favor the kernel combinations in the last
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cancer, ionosphere and sonar data were obtained from the UCI repository. The heart data were
obtained from STATLOG and normalized. Data for the 2-norm problem data were generated as
specified by Breiman (1998). Each dataset was randomly partitioned into 80% training and 20%
test sets. The reported results are the averages over 30 random partitions. The kernel parameters
for K1 and K2 are given in Tables 1, 2 and 3 by d and σ respectively. For each of the kernel
matrices, an SVM is trained using the training block Ktr and tested using the mixed block Ktr,t

as defined in (17). The margin γ (for a hard margin criterion) and the optimal soft margin cost
functions ω∗

S1 and ω∗
S2 (for soft margin criteria) are reported for the initial kernel matrices Ki, as

well as for the optimal
∑

i µ
∗
i Ki and

∑
i µ

∗
i,+Ki. Furthermore, the average test set accuracy (TSA),

the average value for C and the average weights over the 30 partitions are listed. For comparison,
the performance of the best soft margin SVM with an RBF (Gaussian) kernel is reported—the soft
margin hyperparameter C and the kernel parameter σ for the Gaussian kernel were tuned using
cross-validation over 30 random partitions of the training set.

Note that not every Ki gives rise to a linearly separable embedding of the training data, in which
case no hard margin classifier can be found (indicated with a dash). The matrices

∑
i µ

∗
i Ki and∑

i µ
∗
i,+Ki however, always allow the training of a hard margin SVM and its margin is indeed larger

than the margin for each of the different components Ki—this is consistent with the SDP/QCQP
optimization. For the soft margin criteria, the optimal value of the cost function for

∑
i µ

∗
i Ki and∑

i µ
∗
i,+Ki is smaller than its value for the individual Ki—again consistent with the SDP/QCQP

optimizations. Notice that constraining the weights µi to be positive results in slightly smaller
margins and larger cost functions, as expected.

Furthermore, the number of test set errors for
∑

i µ
∗
i Ki and

∑
i µ

∗
i,+Ki is in general comparable

in magnitude to the best value achieved among the different components Ki. Also notice that∑
i µ

∗
i,+Ki does often almost as well as

∑
i µ

∗
i Ki, and sometimes even better: we can thus achieve

a substantial reduction in computational complexity without a significant loss of performance.
Moreover, the performance of

∑
i µ

∗
i Ki and

∑
i µ

∗
i,+Ki is comparable with the best soft margin

SVM with an RBF kernel. In making this comparison note that the RBF SVM requires tuning of
the kernel parameter using cross-validation, while the kernel learning approach achieves a similar
effect without cross-validation.3 Moreover, when using the 2-norm soft margin SVM with tuned
hyperparameter C, we no longer need to do cross-validation for C. This leads to a smaller value of
the optimal cost function ω∗

S2 (compared to the case SM2, with C = 1) and performs well on the
test set, while offering the advantage of automatically adjusting C.

One might wonder why there is a difference between the SDP and the QCQP approach for
the 2-norm data, since both seem to find positive weights µi. However, it must be recalled that

two columns and thus the results should be interpreted with caution. However, it is also worth noting that the
transduction is a weak form of transduction that is based only on the norm of the test data point.

3. The experiments were run on a 2GHz Windows XP machine. We used the programs SeDuMi to solve the SDP
for kernel learning and Mosek to solve multiple QP’s for cross-validated SVM and the QCQP for kernel learning
with positive weights. The run time for the SDP is on the order of minutes (approximately 10 minutes for 300
data points and 5 kernels), while the run time for the QP and QCQP is on the order of seconds (approximately 1
second for 300 data points and 1 kernel, and approximately 3 seconds for 300 data points and 5 kernels). Thus, we
see that kernel learning with positive weights, which requires only a QCQP solution, achieves an accuracy which is
comparable to the full SDP approach at a fraction of the computational cost, and our tentative recommendation
is that the QCQP approach is to be preferred. It is worth noting, however, that special-purpose implementations
of SDPs that take advantage of the structure of the kernel learning problem may well yield significant speed-ups,
and the recommendation should be taken with caution. Finally, the QCQP approach also compares favorably in
terms of run time to the multiple runs of a QP that are required for cross-validation, and should be considered
a viable alternative to cross-validation, particularly given the high variance associated with cross-validation in
small data sets.
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K1 K2 K3
∑

i µ∗
i Ki

∑
i µ∗

i,+Ki best c/v RBF

Heart d = 2 σ = 0.5
HM γ 0.0369 0.1221 - 0.1531 0.1528

TSA 72.9 % 59.5 % - 84.8 % 84.6 % 77.7 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.09/2.68/0.41 0.01/2.60/0.39

SM1 ω∗
S1 58.169 33.536 74.302 21.361 21.446

TSA 79.3 % 59.5 % 84.3 % 84.8 % 84.6 % 83.9 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.09/2.68/0.41 0.01/2.60/0.39

SM2 ω∗
S2 32.726 25.386 45.891 15.988 16.034

TSA 78.1 % 59.0 % 84.3 % 84.8 % 84.6 % 83.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -0.08/2.54/0.54 0.01/2.47/0.53

SM2,C ω∗
S2 19.643 25.153 16.004 15.985

TSA 81.3 % 59.6 % 84.7 % 84.6 % 83.2 %
C 0.3378 1.18e+7 0.2880 0.4365
µ1/µ2/µ3 1.04/0/0 0/3.99/0 0/0/0.53 0.01/0.80/0.53

Sonar d = 2 σ = 0.1
HM γ 0.0246 0.1460 0.0021 0.1517 0.1459

TSA 80.9 % 85.8 % 74.2 % 84.6 % 85.8 % 84.2 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -2.23/3.52/1.71 0/3/0

SM1 ω∗
S1 87.657 23.288 102.68 21.637 23.289

TSA 78.1 % 85.6 % 73.3 % 84.6 % 85.6 % 84.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -2.20/3.52/1.69 0/3/0

SM2 ω∗
S2 45.048 15.893 53.292 15.219 15.893

TSA 79.1 % 85.2 % 76.7 % 84.5 % 85.2 % 84.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 -1.78/3.46/1.32 0/3/0

SM2,C ω∗
S2 20.520 15.640 20.620 15.640

TSA 60.9 % 84.6 % 51.0 % 84.6 % 84.2 %
C 0.2591 0.6087 0.2510 0.6087
µ1/µ2/µ3 0.14/0/0 0/2.36/0 0/0/0.02 0/2.34/0

Table 1: SVMs trained and tested with the initial kernel matrices K1, K2, K3 and with the optimal
kernel matrices

∑
i µ

∗
i Ki and

∑
i µ

∗
i,+Ki. For hard margin SVMs (HM), the resulting

margin γ is given—a dash meaning that no hard margin classifier could be found; for soft
margin SVMs (SM1 = 1-norm soft margin with C = 1, SM2 = 2-norm soft margin with
C = 1 and SM2,C = 2-norm soft margin with auto tuning of C) the optimal value of the
cost function ω∗

S1 or ω∗
S2 is given. Furthermore, the test-set accuracy (TSA), the average

weights and the average C-values are given. For c we used c =
∑

i trace(Ki) for HM,
SM1 and SM2. The initial kernel matrices are evaluated after being multiplied by 3. This
assures we can compare the different γ for HM, ω∗

S1 for SM1 and ω∗
S2 for SM2, since the

resulting kernel matrix has a constant trace (thus, everything is on the same scale). For
SM2,C we use c =

∑
i trace(Ki) + trace(In). This not only allows comparing the different

ω∗
S2 for SM2,C but also it allows comparing ω∗

S2 between SM2 and SM2,C (since we choose
C = 1 for SM2, we have that trace

(∑m
i=1 µiKi + 1

C In
)

is constant in both cases, so again,
we are on the same scale). Finally, the column ’best c/v RBF’ reports the performance
of the best soft margin SVM with RBF kernel, tuned using cross-validation.

the values in Table 3 are averages over 30 randomizations—for some randomizations the SDP has
actually found negative weights, although the averages are positive.

As a further example illustrating the flexibility of the SDP framework, consider the following
setup. Let {Ki}5

i=1 be Gaussian kernels with σ = 0.01, 0.1, 1, 10, 100 respectively. Combining
those optimally with µi ≥ 0 for a 2-norm soft margin SVM, with tuning of C, yields the results
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K1 K2 K3
∑

i µ∗
i Ki

∑
i µ∗

i,+Ki best c/v RBF

Breast cancer d = 2 σ = 0.5
HM γ 0.0036 0.1055 - 0.1369 0.1219

TSA 92.9 % 89.0 % - 95.5 % 94.4 % 96.1 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.90/2.35/-1.25 0.65/2.35/0

SM1 ω∗
S1 77.012 44.913 170.26 26.694 33.689

TSA 96.4 % 89.0 % 87.7 % 95.5 % 94.4 % 96.7 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.90/2.35/-1.25 0.65/2.35/0

SM2 ω∗
S2 43.138 35.245 102.51 20.696 21.811

TSA 96.4 % 88.5 % 87.4 % 95.4 % 94.3 % 96.8 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 2.32/2.13/-1.46 0.89/2.11/0

SM2,C ω∗
S2 27.682 33.685 41.023 25.267

TSA 94.5 % 89.0 % 87.3 % 94.4 % 96.8 %
C 0.3504 1.48e+8 0.3051 6.77e+7
µ1/µ2/µ3 1.15/0/0 0/3.99/0 0/0/0.72 0.87/3.13/0

Ionosphere d = 2 σ = 0.5
HM γ 0.0613 0.1452 - 0.1623 0.1616

TSA 91.2 % 92.0 % - 94.4 % 94.4 % 93.9 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.08/2.18/-0.26 0.79/2.21/0

SM1 ω∗
S1 30.786 23.233 52.312 18.117 18.303

TSA 94.5 % 92.1 % 83.1 % 94.8 % 94.5 % 94.0 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.23/2.07/-0.30 0.90/2.10/0

SM2 ω∗
S2 18.533 17.907 31.662 13.382 13.542

TSA 94.7 % 92.0 % 91.6 % 94.5 % 94.4 % 94.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 1.68/1.73/-0.41 1.23/1.78/0

SM2,C ω∗
S2 14.558 17.623 18.975 13.5015

TSA 93.5 % 92.1 % 90.0 % 94.6 % 94.2 %
C 0.4144 5.8285 0.3442 0.8839
µ1/µ2/µ3 1.59/0/0 0/3.83/0 0/0/1.09 1.24/1.61/0

Table 2: See the caption to Table 1 for explanation.

K1 K2 K3
∑

i µ∗
i Ki

∑
i µ∗

i,+Ki best c/v RBF

2-norm d = 2 σ = 0.1
HM γ 0.1436 0.1072 0.0509 0.2170 0.2169

TSA 94.6 % 55.4 % 94.3 % 96.6 % 96.6 % 96.3 %
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.03/1.91/1.06 0.06/1.88/1.06

SM1 ω∗
S1 23.835 43.509 22.262 10.636 10.641

TSA 95.0 % 55.4 % 95.7 % 96.6 % 96.6 % 97.5 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.03/1.91/1.06 0.06/1.88/1.06

SM2 ω∗
S2 16.134 32.631 11.991 7.9780 7.9808

TSA 95.9 % 55.4 % 95.6 % 96.6 % 96.6 % 97.2 %
C 1 1 1 1 1
µ1/µ2/µ3 3/0/0 0/3/0 0/0/3 0.05/1.54/1.41 0.08/1.51/1.41

SM2,C ω∗
S2 16.057 32.633 7.9880 7.9808

TSA 96.2 % 55.4 % 96.6 % 96.6 % 97.2 %
C 0.8213 0.5000 0.3869 0.8015
µ1/µ2/µ3 2.78/0/0 0/2/0 0/0/1.42 0.08/1.25/1.41

Table 3: See the caption to Table 1 for explanation.

in Table 4—averages over 30 randomizations in 80% training and 20% test sets. The test set
accuracies obtained for

∑
i µ

∗
i,+Ki are competitive with those for the best soft margin SVM with an

RBF kernel, tuned using cross-validation. The average weights show that some kernels are selected
and others are not. Effectively we obtain a data-based choice of smoothing parameter without
recourse to cross-validation.
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µ1,+ µ2,+ µ3,+ µ4,+ µ5,+ C TSA SM2,C TSA best c/v RBF
Breast Cancer 0 0 3.24 0.94 0.82 3.6e+08 97.1 % 96.8 %
Ionosphere 0.85 0.85 2.63 0.68 0 4.0e+06 94.5 % 94.2 %
Heart 0 3.89 0.06 1.05 0 2.5e+05 84.1 % 83.2 %
Sonar 0 3.93 1.07 0 0 3.2e+07 84.8 % 84.2 %
2-norm 0.49 0.49 0 3.51 0 2.0386 96.5 % 97.2 %

Table 4: The initial kernel matrices {Ki}5
i=1 are Gaussian kernels with σ = 0.01, 0.1, 1, 10, 100

respectively. For c we used c =
∑

i trace(Ki)+trace(In). {µi,+}5
i=1 are the average weights

of the optimal kernel matrix
∑

i µ
∗
i,+Ki for a 2-norm soft margin SVM with µi ≥ 0 and

tuning of C. The average C-value is given as well. The test set accuracies (TSA) of the
optimal 2-norm soft margin SVM with tuning of C (SM2,C) and the best crossvalidation
soft margin SVM with RBF kernel (best c/v RBF) are reported.

In Cristianini et al. (2002) empirical results are given for optimization of the alignment using a
kernel matrix K =

∑N
i=1 µivivT

i . The results show that optimizing the alignment indeed improves
the generalization power of Parzen window classifiers. As explained in Section 4.7, it turns out that
in this particular case, the SDP in (53) reduces to exactly the quadratic program that is obtained
in Cristianini et al. (2002) and thus those results also provide support for the general framework
presented in the current paper.

6.2 Combining Heterogeneous Data

6.2.1 Reuters-21578 Data Set

To explore the value of this approach for combining data from heterogeneous sources, we run
experiments on the Reuters-21578 data set, using two different kernels. The first kernel K1 is derived
as a linear kernel from the “bag-of-words” representation of the different documents, capturing
information about the frequency of terms in the different documents (Salton and McGill, 1983).
K1 is centered and normalized. The second kernel K2 is constructed by extracting 500 concepts
from documents via probabilistic latent semantic analysis (Cai and Hofmann, 2003). This kernel
can be viewed as arising from a document-concept-term graphical model, with the concepts as
hidden nodes. After inferring the conditional probabilities of the concepts, given a document, a
linear kernel is applied to the vector of these probabilistic “concept memberships,” representing each
document. Also K2 is then centered and normalized. The concept-based document information
contained in K2 is likely to be partly overlapping and partly complementary to the term-frequency
information in K1. Although the “bag-of-words” and graphical model representation are clearly
heterogeneous, they can both be cast into a homogeneous framework of kernel matrices, allowing
the information that they convey to be combined according to K = µ1K1 + µ2K2.

The Reuters-21578 dataset consists of Reuters newswire stories from 1987 (www.davidlewis.
com/resources/testcollections/reuters21578/). After a preprocessing stage that includes
tokenization and stop word removal, 37926 word types remained. We used the modified Apte
(“ModApte”) split to split the collection into 12902 used and 8676 unused documents. The 12902
used documents consist of 9603 training documents and 3299 test documents. From the 9603
training documents, we randomly select a 1000-document subset as training set for a soft margin
support vector machine with C = 1. We train the SVM for the binary classification tasks of
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distinguishing documents about a certain topic versus those not about that topic. We restrict our
attention to the topics that appear in the most documents (cf. Cai and Hofmann (2003); Huang
(2003); Eyheramendy et al. (2003)); in particular, we focused on the top five Reuters-21578 topics.

After training the SVM on the randomly selected documents using either K1 or K2, the accuracy
is tested on the 3299 test documents from the ModApte split. This is done 20 times, i.e., for 20
randomly chosen 1000-document training sets. The average accuracies and standard errors are
reported in Figure 1. After evaluating the performance of K1 and K2, the weights µ1 and µ2 are
constrained to be non-zero and optimized (using only the training data) according to (38). The test
set performance of the optimal combination is then evaluated and the average accuracy reported
in Figure 1. The optimal weights, µ∗

1 and µ∗
2, do not vary greatly over the different topics, with

averages of 1.37 for µ∗
1 and 0.63 for µ∗

2.
We see that in four cases out of five the optimal combination of kernels performs better than

either of the individual kernels. This suggests that these kernels indeed provide complementary
information for the classification decision, and that the SDP approach is able to find a combination
that exploits this complementarity.

6.2.2 Protein Function Prediction

Here we illustrate the SDP approach for fusing heterogeneous genomic data in order to predict
protein function in yeast; see Lanckriet et al. (2004) for more details. The task is to predict
functional classifications associated with yeast proteins. We use as a gold standard the functional
catalogue provided by the MIPS Comprehensive Yeast Genome Database (CYGD—mips.gsf.de/
proj/yeast). The top-level categories in the functional hierarchy produce 13 classes, which contain
3588 proteins; the remaining yeast proteins have uncertain function and are therefore not used in
evaluating the classifier. Because a given protein can belong to several functional classes, we cast
the prediction problem as 13 binary classification tasks, one for each functional class. Using this
setup, we follow the experimental paradigm of Deng et al. (2003).

The primary input to the classification algorithm is a collection of kernel matrices representing
different types of data:

1. Amino acid sequences: this kernel incorporates information about the domain structure of
each protein, by looking at the presence or absence in the protein of Pfam domains (pfam.
wustl.edu). The corresponding kernel is simply the inner product between binary vectors
describing the presence or absence of one Pfam domain. Afterwards, we also construct a
richer kernel by replacing the binary scoring with log E-values using the HMMER software
toolkit (hmmer.wustl.edu). Moreover, an additional kernel matrix is constructed by applying
the Smith-Waterman (SW) pairwise sequence comparison algorithm (Smith and Waterman,
1981) to the yeast protein sequences and applying the empirical kernel map (Tsuda, 1999).

2. Protein-protein interactions: this type of data can be represented as a graph, with proteins as
nodes and interactions as edges. Such interaction graph allows to establish similarities among
proteins through the construction of a corresponding diffusion kernel (Kondor and Lafferty,
2002).

3. Genetic interactions: in a similar way, these interactions give rise to a diffusion kernel.

4. Protein complex data: co-participation in a protein complex can be seen as a weak sort of
interaction, giving rise to a third diffusion kernel.
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Figure 1: Classification performance for the top five Reuters-21578 topics. The height of
each bar is proportional to the average test set accuracy for a 1-norm soft margin SVM
with C = 1. Black bars correspond to using only kernel matrix K1; grey bars correspond
to using only kernel matrix K2, and white bars correspond to the optimal combination
µ∗

1K1+µ∗
2K2. The kernel matrices K1 and K2 are derived from different types of data, i.e.,

from the “bag-of-words” representation of documents and the concept-based graphical
model representation (with 500 concepts) of documents respectively. For c we used
c = trace(K1) + trace(K2) = 4000. The standard errors across the 20 experiments are
approximately 0.1 or smaller; indeed, all of the depicted differences between the optimal
combination and the individual kernels are statistically significant except for EARN.
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5. Expression data: two genes with similar expression profiles are likely to have similar functions;
accordingly, Deng et al. (2003) convert the expression matrix to a square binary interaction
matrix in which a 1 indicates that the corresponding pair of expression profiles exhibits a
Pearson correlation greater than 0.8. This can be used to define a diffusion kernel. Also, a
richer Gaussian kernel is defined directly on the expression profiles.

In order to compare the SDP/SVM approach to the Markov random field (MRF) method of
Deng et al. (2003), Lanckriet et al. (2004) perform two variants of the experiment: one in which
the five kernels are restricted to contain precisely the same binary information as used by the MRF
method, and a second experiment in which the richer Pfam and expression kernels are used and the
SW kernel is added. They show that a combined SVM classifier trained with the SDP approach
performs better than an SVM trained on any single type of data. Moreover it outperforms the
MRF method designed for this data set. To illustrate the latter, Figure 2 presents the average
ROC scores on the test set when performing five-fold cross-validation three times.

The figure shows that, for each of the 13 classifications, the ROC score of the SDP/SVM
method is better than that of the MRF method. Overall, the mean ROC improves from 0.715
to 0.854. The improvement of the SDP/SVM method over the MRF method is consistent and
statistically significant across all 13 classes. An additional improvement, though not as large and
only statistically significant for nine of the 13 classes, is gained by using richer kernels and adding
the SW kernel.

7. Discussion

In this paper we have presented a new method for learning a kernel matrix from data. Our
approach makes use of semidefinite programming (SDP) ideas. It is motivated by the fact that
every symmetric, positive semidefinite matrix can be viewed as a kernel matrix (corresponding to
a certain embedding of a finite set of data), and the fact that SDP deals with the optimization of
convex cost functions over the convex cone of positive semidefinite matrices (or convex subsets of
this cone). Thus convex optimization and machine learning concerns merge to provide a powerful
methodology for learning the kernel matrix with SDP.

We have focused on the transductive setting, where the labeled data are used to learn an
embedding, which is then applied to the unlabeled part of the data. Based on a new generalization
bound for transduction, we have shown how to impose convex constraints that effectively control
the capacity of the search space of possible kernels and yield an efficient learning procedure that
can be implemented by SDP. Furthermore, this approach leads to a convex method to learn the
2-norm soft margin parameter in support vector machines, solving an important open problem.
Promising empirical results are reported on standard benchmark datasets; these results show that
the new approach provides a principled way to combine multiple kernels to yield a classifier that is
comparable with the best individual classifier, and can perform better than any individual kernel.
Performance is also comparable with a classifier in which the kernel hyperparameter is tuned with
cross-validation; our approach achieves the effect of this tuning without cross-validation.

We have also shown how optimizing a linear combination of kernel matrices provides a novel
method for fusing heterogeneous data sources. In this case, the empirical results show a signifi-
cant improvement of the classification performance for the optimal combination of kernels when
compared to individual kernels.

There are several challenges that need to be met in future research on SDP-based learning algo-
rithms. First, it is clearly of interest to explore other convex quality measures for a kernel matrix,
which may be appropriate for other learning algorithms. For example, in the setting of Gaussian
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Figure 2: Classification performance for the 13 functional protein classes. The height of
each bar is proportional to the ROC score. The standard error across the 13 experiments
is usually 0.01 or smaller, so most of the depicted differences are statistically signifi-
cant: between black and grey bars, all depicted differences are statistically significant,
while nine of the 13 differences between grey and white bars are statistically significant.
Black bars correspond to the MRF method of Deng et al.; grey bars correspond to the
SDP/SVM method using five kernels computed on binary data, and white bars corre-
spond to the SDP/SVM using the enriched Pfam kernel and replacing the expression
kernel with the SW kernel. See Lanckriet et al. (2004) for more details.
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processes, the relative entropy between the zero-mean Gaussian process prior P with covariance
kernel K and the corresponding Gaussian process approximation Q to the true intractable posterior
process depends on K as

D[P ||Q] =
1
2

log detK +
1
2
trace

(
yT Ky

)
+ d,

where the constant d is independent of K. One can verify that D[P ||Q] is convex with respect to
R = K−1 (see, e.g., Vandenberghe et al., 1998). Minimizing this measure with respect to R, and
thus K, is motivated from PAC-Bayesian generalization error bounds for Gaussian processes (see,
e.g., Seeger, 2002) and can be achieved by solving a so-called maximum-determinant problem (Van-
denberghe et al., 1998)—an even more general framework that contains semidefinite programming
as a special case.

Second, the investigation of other parameterizations of the kernel matrix is an important topic
for further study. While the linear combination of kernels that we have studied here is likely to be
useful in many practical problems—capturing a notion of combining Gram matrix “experts”—it
is also worth considering other parameterizations as well. Any such parameterizations have to
respect the constraint that the quality measure for the kernel matrix is convex with respect to the
parameters of the proposed parameterization. One class of examples arises via the positive definite
matrix completion problem (Vandenberghe et al., 1998). Here we are given a symmetric kernel
matrix K that has some entries which are fixed. The remaining entries—the parameters in this
case—are to be chosen such that the resulting matrix is positive definite, while simultaneously a
certain cost function is optimized, e.g., trace(SK) + log detK−1, where S is a given matrix. This
specific case reduces to solving a maximum-determinant problem which is convex in the unknown
entries of K, the parameters of the proposed parameterization.

A third important area for future research consists in finding faster implementations of semidef-
inite programming. As in the case of quadratic programming (Platt, 1999), it seems likely that
special purpose methods can be developed to exploit the exchangeable nature of the learning prob-
lem in classification and result in more efficient algorithms.

Finally, by providing a general approach for combining heterogeneous data sources in the setting
of kernel-based statistical learning algorithms, this line of research suggests an important role for
kernel matrices as general building blocks of statistical models. Much as in the case of finite-
dimensional sufficient statistics, kernel matrices generally involve a significant reduction of the
data and represent the only aspects of the data that are used by subsequent algorithms. Moreover,
given the panoply of methods that are available to accommodate not only the vectorial and matrix
data that are familiar in classical statistical analysis, but also more exotic data types such as strings,
trees and graphs, kernel matrices have an appealing universality. It is natural to envision libraries
of kernel matrices in fields such as bioinformatics, computational vision, and information retrieval,
in which multiple data sources abound. Such libraries would summarize the statistically-relevant
features of primary data, and encapsulate domain specific knowledge. Tools such as the semidefinite
programming methods that we have presented here can be used to bring these multiple data sources
together in novel ways to make predictions and decisions.
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Appendix A. Proof of Result (54)

For the case Ki = vivT
i , with vi orthonormal, the original learning problem (52) becomes

max
K

〈
Ktr,yyT

〉
F

(61)

subject to 〈K, K〉F ≤ 1,
K " 0,

K =
m∑

i=1

µivivT
i .

Expanding this further gives

〈
Ktr,yyT

〉
F

= trace(K(1 : ntr, 1 : ntr)yyT )

= trace((
m∑

i=1

µivi(1 : ntr)vi(1 : ntr)T )yyT )

=
m∑

i=1

µitrace(v̄iv̄T
i yyT )

=
m∑

i=1

µi(v̄T
i y)2, (62)

〈K, K〉F = trace(KT K)
= trace(KK)

= trace((
m∑

i=1

µivivT
i )(

m∑

j=1

µjvjvT
j ))

= trace(
m∑

i,j=1

µiµjvivT
i vjvT

j )

= trace(
m∑

i=1

µ2
i vivT

i )

=
m∑

i=1

µ2
i trace(vivT

i )

=
m∑

i=1

µ2
i trace(vT

i vi)

=
m∑

i=1

µ2
i (63)

with v̄i = vi(1 : ntr). We used the fact that trace(ABC) = trace(BCA) (if the products are well-
defined) and that the vectors vi, i = 1, . . . , n are orthonormal: vT

i vj = δij . Furthermore, because
the vi are orthogonal, the µi in K =

∑m
i=1 µivivT

i are the eigenvalues of K. This implies

K " 0 ⇔ µ ≥ 0 ⇔ µi ≥ 0, i = 1, . . . , m. (64)
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Using (62), (63) and (64) in (61), we obtain the following optimization problem:

max
µi

m∑

i=1

µi(v̄T
i y)2

subject to
m∑

i=1

µ2
i ≤ 1

µi ≥ 0, i = 1, . . . , m,

which yields the result (54).

Appendix B. Proof of Theorem 24

For a function g : X × Y → R, define

Ê1g(X,Y) =
1
n

n∑

i=1

g(xi, yi),

Ê2g(X,Y) =
1
n

n∑

i=1

g(xn+i, yn+i).

Define a margin cost function φ : R → R+ as

φ(a) =






1 if a ≤ 0,
1 − a 0 < a ≤ 1,
0 a > 1.

Notice that in the 1-norm soft margin cost function, the slack variable ξi is a convex upper bound
on φ(yif(xi)) for the kernel classifier f , that is,

max {1 − a, 0} ≥ φ(a) ≥ 1 [a ≤ 0] ,

where the last expression is the indicator function of a ≤ 0.
The proof of the first part is due to Koltchinskii and Panchenko Koltchinskii and Panchenko

(2002), and involves the following five steps:
Step 1. For any class F of real functions defined on X ,

sup
f∈F

er(f) − Ê1φ(Y f(X)) ≤ sup
f∈F

Ê2φ(Y f(X)) − Ê1φ(Y f(X)).

To see this, notice that er(f) is the average over the test set of the indicator function of Y f(X) ≤ 0,
and that φ(Y f(X)) bounds this function.

Step 2. For any class G of [0, 1]-valued functions,

Pr

(
sup
g∈G

Ê2g − Ê1g ≥ E

(
sup
g∈G

Ê2g − Ê1g

)
+ ε

)
≤ exp

(
−ε2n

4

)
,

where the expectation is over the random permutation. This follows from McDiarmid’s inequality.
To see this, we need to define the random permutation π using a set of 2n independent random
variables. To this end, choose π1, . . . ,π2n uniformly at random from the interval [0, 1]. These
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are almost surely distinct. For j = 1, . . . , 2n, define π(j) = |{i : πi ≤ πj}|, that is, π(j) is the
position of πj when the random variables are ordered by size. It is easy to see that, for any g,
Ê2g − Ê1g changes by no more than 2/n when one of the πi changes. McDiarmid’s bounded
difference inequality (McDiarmid, 1989) implies the result.

Step 3. For any class G of [0, 1]-valued functions,

E

(
sup
g∈G

Ê2g − Ê1g

)
≤ R̂2n(G) +

4√
n

,

where R̂2n(G) = E supg∈G
1
n

∑2n
i=1 σig(Xi, Yi), and the expectation is over the independent, uniform,

{±1}-valued random variables σ1, . . . ,σ2n. This result is essentially Lemma 3 of (Bartlett and
Mendelson, 2002); that lemma contained a similar bound for i.i.d. data, but the same argument
holds for fixed data, randomly permuted.

Step 4. If the class F of real-valued functions defined on X is closed under negations, R̂2n(φ ◦
F ) ≤ R̂2n(F ), where each f ∈ F defines a g ∈ φ ◦ F by g(x, y) = φ(yf(x)). This bound is the
contraction lemma of Ledoux and Talagrand (1991).

Step 5. For the class FK of kernel expansions, notice (as in the proof of Lemma 26 of Bartlett
and Mendelson (2002)) that

R̂2n(FK) =
1
n
E max

f∈FK

2n∑

i=1

σif(Xi)

=
1
n
Emax

K∈K
max

‖w‖≤1/γ
〈w,

2n∑

i=1

σiΦ(Xi)〉

=
1

nγ
Emax

K∈K

∥∥∥∥∥

2n∑

i=1

σiΦ(Xi)

∥∥∥∥∥

≤ 1
nγ

√
Emax

K∈K
σT Kσ

=
1

nγ

√
C(K),

where σ = (σ1, . . . ,σ2n) is the vector of Rademacher random variables.
Combining gives the first part of the theorem. For the second part, consider

C(Kc) = E max
K∈Kc

σT Kσ = Emax
µ

m∑

j=1

µjσ
T Kjσ,

where the max is over µ = (µ1, . . . , µm) for which the matrix K =
∑m

j=1 µjKj satisfies the condi-
tions K " 0 and trace(K) ≤ c. Now,

trace(K) =
m∑

j=1

µjtrace(Kj),

and each trace in the sum is positive, so the supremum must be achieved for trace(K) = c. So we
can write

C(Kc) = cE max
K∈Kc

m∑

j=1

σT K

trace(K)
σ.
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Notice that σT Kσ is no more than λ‖σ‖2 = nλ, where λ is the maximum eigenvalue of K. Using
λ ≤ trace(K) = c shows that C(Kc) ≤ cn.

Finally, for K+
c we have

C(K+
c ) = E max

K∈K+
c

σT Kσ

= Emax
µj

m∑

j=1

µjσ
T Kjσ

= Emax
j

c

trace(Kj)
σT Kjσ.

Since each term in the maximum is non-negative, we can replace it with a sum to show that

C(K+
c ) ≤ cEσT




∑

j

Kj

trace(Kj)



σ

= cm.

Alternatively, we can write σT Kjσ ≤ λj‖σ‖ = λjn, where λj is the maximum eigenvalue of Kj .
This shows that

C(K+
c ) ≤ cn max

j

λj

trace(Kj)
.
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