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Induction
Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all
natural numbers, such as these:

• ∀k ∈ N . 0+1+2+3+ · · ·+ k = k(k +1)/2.

• For everyk ∈ N, the sum of the firstk odd numbers is a perfect square.

Each of these propositions is of the form∀k ∈ N . P(k). For example, in the first proposition,P(k) is the
statement 0+1+ · · ·+ k = k(k +1)/2, P(0) says 0= 0· (0+1)/2, P(1) says 0+1 = 1· (1+1)/2, etc. The
principle of induction asserts that you can proveP(k) is true for allk ∈ N by proving two facts:

Base case: Prove thatP(0) is true.
Induction step: Prove thatP(k) =⇒ P(k +1) is true for allk ∈ N.

The implicationP(k) =⇒ P(k + 1) is in turn normally proven by assuming thatP(k) is true and showing
thatP(k +1) follows as a consequence. So, in practice, induction proofs follow thesethree steps:

Base case: Prove thatP(0) is true.
Inductive hypothesis: Assume thatP(k) is true, wherek is arbitrary.
Inductive step: Prove thatP(k +1) follows from the inductive hypothesis.

The principle of induction formally says that ifP(0) and∀n ∈ N . (P(n) =⇒ P(n + 1)) are both true, then
∀n ∈ N . P(n) is true. Intuitively, the base case says thatP(0) holds, while the inductive step says that
P(0) =⇒ P(1) andP(1) =⇒ P(2) andP(2) =⇒ P(3) and so on. Intuitively, it makes sense that this is
enough to prove thatP(n) is true for everyn: from P(0) andP(0) =⇒ P(1), we can deduceP(1); from
P(1) andP(1) =⇒ P(2), we can deduceP(2); and so on. The principle of induction says that this domino
effect eventually shows thatP(n) is true for everyn ∈ N. In fact, dominoes are a wonderful analogy: we
have a domino for each propositionP(k). The dominoes are lined up so that if thekth domino is knocked
over, then it in turn knocks over thek +1st . Knocking over thekth domino corresponds to provingP(k) is
true. So the induction step corresponds to the statement that thekth domino knocks over thek +1st domino,
for everyk, or in other words, that there are no gaps in the line of dominoes. Now, if weknock over the
first domino (the one numbered 0), and if there are no gaps in the line of dominoes, then this sets off a chain
reaction that knocks down all the dominoes.

Let’s see some examples.
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Theorem: ∀k ∈ N .
k

∑
i=0

i =
k(k +1)

2
.

Proof: (by induction onk)

Base case: P(0) states that
0

∑
i=0

i =
0(0+1)

2
. This clearly is true, since the left and right hand sides both

equal 0. Therefore,P(0) is true.

Inductive hypothesis: AssumeP(k) is true. That is, we assume
k

∑
i=0

i =
k(k +1)

2
.

Inductive step: We must show thatP(k + 1) follows from P(k). That is, we must show that
k+1

∑
i=0

i =

(k +1)(k +2)

2
. That can be done as follows:

k+1

∑
i=0

i = (
k

∑
i=0

i)+(k +1)

=
k(k +1)

2
+(k +1) (by the inductive hypothesis)

= (k +1)(
k
2

+1)

=
(k +1)(k +2)

2
.

Notice that we didn’t assume anything about the value ofk, other than thatP(k) is true. Therefore,∀k ∈
N . P(k) =⇒ P(k +1) must be true. Hence, the theorem follows from the principle of induction.2

Note the structure of the inductive step. You try to showP(k + 1) starting only from the assumption that
P(k) is true. The idea is thatP(k + 1) by itself is a difficult proposition to prove. Many difficult problems
in computer science are solved by breaking the problem into smaller, easier ones. This is precisely what we
did in the inductive step:P(k +1) is difficult to prove, but we were able to recursively define it in terms of
P(k).

We will now look at another proof by induction, but first we will introduce some notation and a definition
for divisibility. We say that integera dividesb (or b is divisible bya), written asa|b, if and only if for some
integerq, b = aq.

Theorem: n3−n is divisible by 3 for alln ∈ N.

Proof: (by induction overn)
Base case: P(0) asserts that 3|(03−0) or 3|0, which is clearly true (since 0= 3·0).
Inductive hypothesis: AssumeP(n) is true. That is, 3|(n3− n). In particular, there is some integerq such
thatn3−n = 3q.
Inductive step: We must show thatP(n+1) is true. In other words, we must prove that 3|((n+1)3−(n+1)).
We can calculate:

(n+1)3− (n+1) = n3 +3n2 +3n+1− (n+1)

= (n3−n)+3n2 +3n

= 3q+3n2 +3n (by the inductive hypothesis)

= 3(q+n2 +n).
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The latter expression is clearly divisible by 3, so(n+1)3− (n+1) must also be divisible by 3. The theorem
follows, by the principle of induction.2

The next example we will look at is an inequality between two functions ofn. Such inequalities are useful
in computer science when showing that one algorithm is more efficient than another. Notice that for this
example, we have chosen as our base casen = 2, which is natural because the claim we are aiming to prove
holds for all natural numbers greater than or equal to 2. If you think about the underlying induction principle,
it should be clear that this is perfectly valid, for the same reason that standard induction starting atn = 0 is
valid (think back again to the domino analogy, where now the first domino is domino number 2).1

Theorem: ∀n ∈ N . n > 1 =⇒ n! < nn.

Proof: (by induction overn)
Base case: P(2) asserts that 2!< 22, or 2< 4, which is clearly true.
Inductive hypothesis: AssumeP(n) is true (i.e.,n! < nn).
Inductive step: We must showP(n+1), which states that(n+1)! < (n+1)n+1. We can calculate:

(n+1)! = (n+1) ·n!

< (n+1) ·nn (by the inductive hypothesis)

< (n+1) · (n+1)n

= (n+1)n+1

Hence, by the induction principle,n! < nn for all n > 1. 2

In the middle of the last century, a colloquial expression in common use was “that is a horse of a different
color,” referring to something that is quite different from normal or commonexpectation. The famous
mathematician George Polya (who was also a great expositor of mathematics forthe lay public) gave the
following proof to show that there is no horse of a different color.

Theorem: All horses are the same color.

Proof: The proof will be by induction on the number of horses. LetP(n) denote the statement that for every
set ofn horses, alln horses in the set have the same color.
Base case: P(1) is certainly true, since with just one horse, all horses in the set have the same color.
Inductive hypothesis: AssumeP(n), which is the statement that for any set ofn horses, alln horses have the
same color.
Inductive step: Given a set ofn + 1 horses{h1,h2, . . . ,hn+1}, we can exclude the last horse in the set and
apply the inductive hypothesis just to the firstn horses{h1, . . . ,hn}, deducing that they all have the same
color. Similarly, we can conclude that the lastn horses{h2, . . . ,hn+1} all have the same color. But now the
“middle” horses{h2, . . . ,hn} (i.e., all but the first and the last) belong to both of these sets, so they have the
same color as horseh1 and horsehn+1. It follows, therefore, that alln+1 horses have the same color. Thus,
by the principle of induction, all horses have the same color.2

Clearly, it is not true that all horses are of the same color, so where did wego wrong in our induction
proof? It is tempting to blame the induction hypothesis. But even though the induction hypothesis is false
(for n ≥ 2), that is not the flaw in the reasoning! Before reading on, think about this and see if you can
understand why, and figure out the real flaw in the proof.

1Alternatively, we could insist on making the base casen = 0 (which holds vacuously here because 0> 1 is false, so therefore
0 > 1 =⇒ 0! < 00 is true). Then we would assert thatP(0) =⇒ P(1), sinceP(1) holds (vacuously again, since 1> 1 is false, so
1> 1 =⇒ 1! < 11 is true), and thatP(1) =⇒ P(2) sinceP(2) holds (as we show in the base case below). Then we would proceed
as in the inductive step of the proof below. But this is all rather tedious.
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What makes the flaw in this proof a little tricky to pinpoint is that the induction stepis valid for a “typical”
value ofn, say,n = 3. The flaw, however, is in the induction step whenn = 1. In this case, forn + 1 = 2
horses, there areno “middle” horses, and so the argument completely breaks down!

Some of you might still not feel completely convinced. Why is the above flaw more convincing than simply
saying that the induction hypothesis is false? Saying that the induction hypothesis is false is like saying that
the statement of the theorem is false, and so there is definitely a flaw in the proof. True, but our task was to
pinpoint exactly wherein the proof the flaw occurs. The point is that a valid induction proof involves only
showing the base case, sayP(0), and that∀n . P(n) =⇒ P(n+1). One way of showingP(n) =⇒ P(n+1)
is to assumeP(n) is true and then show thatP(n + 1) is true. If P(n) is false, thenP(n) =⇒ P(n + 1) is
vacuously true. So just saying that the induction hypothesisP(n) is false does not pinpoint the flaw in the
proof. In this case, the propositionP(n) =⇒ P(n +1) happens to be true for everyn, except for n = 1, in
which case the proposition is false. This makes the flaw in the proof quite difficult to spot.

Two Color Theorem: There is a famous theorem called the four color theorem. It states that any map can
be colored with four colors such that any two adjacent2 countries must have different colors. The four color
theorem is very difficult to prove, and several bogus proofs were claimed since the problem was first posed
in 1852. It was not until 1976 that the theorem was finally proved (with the aid of a computer) by Appel
and Haken. (For an interesting history of the problem, and a state-of-the-art proof, which is nonetheless still
very challenging, seehttp://www.math.gatech.edu/˜thomas/FC/fourcolor.htm l .) We
consider a simpler scenario, where we divide the plane into regions by drawing straight lines. We want to
know if we can color this map using no more than two colors (say, red and blue) such that no two regions
that share a boundary have the same color. Here is an example of a two-colored map:

It turns out that every such map can indeed be two-colored. We will prove this “two color theorem” by
induction onn, the number of lines.
Base case: P(0) is the proposition that a map withn = 0 lines can be can be colored using no more than two
colors. But this is easy, since we can just color the entire plane using one color. ThereforeP(0) is indeed
true.
Inductive hypothesis: AssumeP(n), that is, every map withn lines can be two-colored.
Inductive step: We want to proveP(n+1). We are given a map withn+1 lines and wish to show that it can
be two-colored. Let’s see what happens if we remove a line. With onlyn lines on the plane, we know we
can two-color the map (by the inductive hypothesis). Let us make the following observation: if we swap red
↔ blue, we still have a two-coloring. With this in mind, let us place back the line we removed, and leave
colors on one side of the line unchanged. On the other side of the line, swapred↔ blue. We claim that this
is a valid two-coloring for the map withn+1 lines.

2Two countries are considered adjacent if they share a border—not just a point.
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Why does this work? We can say with certainty that regions which do not border the line are properly two-
colored. But what about regions that do share a border with the line? Wemust be certain that any two such
regions have opposite coloring. But any two regions that border the line must have been the same region
when the line was removed, so the reversal of color on one side of the line guarantees an opposite coloring.

Strengthening the Inductive Hypothesis
Let us prove by induction the following proposition:

Theorem: For all n ≥ 1, the sum of the firstn odd numbers is a perfect square.

Attempted proof: By induction onn.
Base case: For n = 1, the first odd number is 1, which is a perfect square.
Inductive hypothesis: Assume that the sum of the firstn odd numbers is a perfect square, sayk2.
Inductive step: Then+1-th odd number is 2n+1, so the sum of the firstn+1 odd numbers isk2 +2n+1.
But now we are stuck. Why shouldk2 +2n+1 be a perfect square? This attempt at a proof is a failure.

Here is an idea: let us show something stronger!

Theorem: For all n ≥ 1, the sum of the firstn odd numbers isn2.

Proof: By induction onn.
Base case: For n = 1, the first odd number is 1, which is 12.
Inductive hypothesis: Assume that the sum of the firstn odd numbers isn2.
Inductive step: The(n+1)-th odd number is 2n+1, so the sum of the firstn+1 odd numbers isn2 +(2n+
1) = (n+1)2. Thus by the principle of induction the theorem holds.2

See if you can understand what happened here. We could not prove aproposition, so we proved a harder
proposition instead! Can you see why that can sometimes be easier when youare doing a proof by induction?
When you are trying to prove a stronger statement by induction, you have toshow something harder in the
induction step, but you also get to assume something stronger in the induction hypothesis. Sometimes the
stronger assumption helps you reach just that much further...

Here is another example:

Imagine that we are given L-shaped tiles (i.e., a 2×2 square tile with a missing 1×1 square), and we want
to know if we can tile a 2n ×2n courtyard that is missing a 1×1 square in the middle. Here is an example
of a successful tiling in the case thatn = 2:

It turns out that such a tiling always exists. Let us try to prove this fact byinduction onn.
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Base case: P(1) is the proposition that a 2×2 courtyard can be tiled with L-shaped tiles with a missing
1×1 square in the middle. But this is easy:

SoP(1) is indeed true.
Inductive hypothesis: AssumeP(n) is true, that is, we can tile a 2n ×2n courtyard that’s missing a 1×1
square in the middle.
Inductive step: We want to show that we can tile a 2n+1×2n+1 courtyard with a missing 1×1 square in the
middle. Let’s try to reduce this problem so we can apply our inductive hypothesis. A 2n+1×2n+1 courtyard
can be broken up into four smaller courtyards of size 2n ×2n, each with a missing 1×1 square as follows:

But the holes are not in the middle of each 2n × 2n courtyard, so the inductive hypothesis does not help.
Once again, we are stuck. This attempted proof is a failure.

How should we proceed? We should strengthen our inductive hypothesis!

What we are about to do is completely counter-intuitive. It’s like attempting to lift 100 pounds, failing, and
then saying “I couldn’t lift 100 pounds. Let me try to lift 200,” and then succeeding! Instead of proving that
we can tile a 2n ×2n courtyard with a hole in the middle, we will try to prove something stronger: that we
can tile the courtyard with a holeno matter where the hole is located. It is a trade-off: we have to prove
more, but we also get to assume a stronger hypothesis. The base case is the same, so we will just work on
the inductive hypothesis and step.

Inductive hypothesis: (second attempt) AssumeP(n) is true, so that we can tile a 2n ×2n courtyard with a
missing 1×1 square anywhere.
Inductive step: (second attempt) Suppose we are given a 2n+1×2n+1 that is missing a single 1×1 square
somewhere—say, in the upper-right corner. As before, we can break up the 2n+1×2n+1 courtyard as follows.

By placing the first tile in the middle as shown, we get four 2n × 2n courtyards, each with a 1× 1 hole.
Three of these courtyards have the hole in one corner, while the fourth has the hole in a position determined
by the hole in the 2n+1×2n+1 courtyard. The stronger inductive hypothesis now applies to each of these
four courtyards, so that each of them can be successfully tiled. Thus,we have proven that we can tile
a 2n+1 × 2n+1 courtyard with a hole anywhere! Hence, by the induction principle, we have proved the
(stronger) theorem.
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