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Spring 2008 David Wagner Note 4

Induetion

Induction is an extremely powerful tool in mathematics. It is a way of proviog@sitions that hold for all
natural numbers, such as these:

e VKEN.O+14+2+3++k=k(k+1)/2.

» For everyk € N, the sum of the firsk odd numbers is a perfect square.

Each of these propositions is of the folrtk € N . P(k). For example, in the first propositioR(k) is the
statement@1+---+k=k(k+1)/2,P(0) says0=0-(0+1)/2,P(1) saysO+1=1-(1+1)/2, etc. The
principle of induction asserts that you can prof#k) is true for allk € N by proving two facts:

Base case: Prove thaP(0) is true.
Induction step: Prove thaP(k) = P(k+1) is true for allk € N.

The implicationP(k) = P(k+1) is in turn normally proven by assuming tHagk) is true and showing
thatP(k+ 1) follows as a consequence. So, in practice, induction proofs follow these steps:

Base case: Prove thaP(0) is true.
Inductive hypothesis: Assume thaP(k) is true, wherek is arbitrary.
Inductive step: Prove that(k+ 1) follows from the inductive hypothesis.

The principle of induction formally says that#(0) andVn € N. (P(n) = P(n+ 1)) are both true, then
vne N . P(n) is true. Intuitively, the base case says tR&D) holds, while the inductive step says that
P(0) = P(1) andP(1) = P(2) andP(2) = P(3) and so on. Intuitively, it makes sense that this is
enough to prove tha®(n) is true for everyn: from P(0) andP(0) — P(1), we can deduc®(1); from
P(1) andP(1) = P(2), we can deducP(2); and so on. The principle of induction says that this domino
effect eventually shows th&t(n) is true for everyn € N. In fact, dominoes are a wonderful analogy: we
have a domino for each propositi&tk). The dominoes are lined up so that if ti€ domino is knocked
over, then it in turn knocks over thet 1. Knocking over thek™ domino corresponds to provir(k) is
true. So the induction step corresponds to the statement thidf' tthemino knocks over thie+ 1% domino,

for everyk, or in other words, that there are no gaps in the line of dominoes. Now, Kneek over the
first domino (the one numbered 0), and if there are no gaps in the line of demithen this sets off a chain
reaction that knocks down all the dominoes.

A000.

Let's see some examples.
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Theorem: Vke N. i =
2,

Proof: (by induction ork)
0(0+1)

0
Base case: P(0) states thatZ)i = . This clearly is true, since the left and right hand sides both
i=

equal 0. ThereforeR(0) is true.

. . . . K k(k+1)
Inductive hypothesis: AssumeP (k) is true. That is, we assumzjl ==
. k+1
Inductive step: We must show thaP(k + 1) follows from P(k). That is, we must show thazji =
i=
w. That can be done as follows:
k+1 k
i=()i)+(k+1)
%'~
= k(k; Y +(k+1) (by the inductive hypothesis)
k
= (k+ 1)(5 +1)
(k+1)(k+2)

Notice that we didn’t assume anything about the valug, afther than thaP(k) is true. Thereforeyk
N.P(k) = P(k+ 1) must be true. Hence, the theorem follows from the principle of induction.

Note the structure of the inductive step. You try to sh®{k+ 1) starting only from the assumption that
P(k) is true. The idea is th&(k+ 1) by itself is a difficult proposition to prove. Many difficult problems
in computer science are solved by breaking the problem into smaller, easierThis is precisely what we
did in the inductive stepP(k+ 1) is difficult to prove, but we were able to recursively define it in terms of
P(K).

We will now look at another proof by induction, but first we will introducersnotation and a definition
for divisibility. We say that integea dividesb (or b is divisible bya), written asa|b, if and only if for some
integerg, b = aq.

Theorem: n®—nis divisible by 3 for alln € N.

Proof: (by induction ovemn)

Base case: P(0) asserts that|80° — 0) or 3|0, which is clearly true (since @ 3-0).

Inductive hypothesis: AssumeP(n) is true. That is, n® —n). In particular, there is some integgisuch
thatn® —n=3q.

Inductive step: We must show tha®(n+ 1) is true. In other words, we must prove that(®+1)3 — (n+1)).
We can calculate:

(N+1)°—(n+1)=n*+3n®+3n+1—(n+1)
= (n®—n)+3n°+3n
=30+3n°+3n (by the inductive hypothesis)
=3(q+n?+n).
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The latter expression is clearly divisible by 3,(so+1)% — (n+ 1) must also be divisible by 3. The theorem
follows, by the principle of inductiond

The next example we will look at is an inequality between two functions Guch inequalities are useful

in computer science when showing that one algorithm is more efficient thathean Notice that for this
example, we have chosen as our base nas@, which is natural because the claim we are aiming to prove
holds for all natural numbers greater than or equal to 2. If you thinkie underlying induction principle,

it should be clear that this is perfectly valid, for the same reason that sthimdfuction starting ah = 0 is
valid (think back again to the domino analogy, where now the first domino is domimber 2)-

Theorem: YneN.n>1=—n! <n".

Proof: (by induction ovem)

Base case: P(2) asserts that 2k 22, or 2< 4, which is clearly true.

Inductive hypothesis: AssumeP(n) is true (i.e.,n! < n").

Inductive step: We must showP(n+ 1), which states thatn+1)! < (n+4 1)1, We can calculate:

(n+1)!'=(n+1)-n!
n+1)-n"
n+1)-(n+1)"

n+1 n+1

(by the inductive hypothesis)

ANV

(n+1)
(n+1)-
(n+1)-
(n+1)

Hence, by the induction principle! < n"foralln> 1. O

In the middle of the last century, a colloquial expression in common use wasisth horse of a different
color,” referring to something that is quite different from normal or comme@pectation. The famous
mathematician George Polya (who was also a great expositor of mathematike fay public) gave the
following proof to show that there is no horse of a different color.

Theorem: All horses are the same color.

Proof: The proof will be by induction on the number of horses. Bat) denote the statement that for every
set ofn horses, alh horses in the set have the same color.

Base case: P(1) is certainly true, since with just one horse, all horses in the set havertfeecsaor.

Inductive hypothesis: AssumeP(n), which is the statement that for any setndiorses, alh horses have the
same color.

Inductive step: Given a set oh+ 1 horses{hs,hy,...,hn11}, we can exclude the last horse in the set and
apply the inductive hypothesis just to the firshorses{hy,...,h,}, deducing that they all have the same
color. Similarly, we can conclude that the lastiorses{hy,...,hy.1} all have the same color. But now the
“middle” horses{hy,...,hn} (i.e., all but the first and the last) belong to both of these sets, so they eve th
same color as hordg and horsén, ;. It follows, therefore, that alh+ 1 horses have the same color. Thus,
by the principle of induction, all horses have the same calor.

Clearly, it is not true that all horses are of the same color, so where digowerong in our induction
proof? It is tempting to blame the induction hypothesis. But even though thetindihypothesis is false
(for n > 2), that is not the flaw in the reasoning! Before reading on, think abasitatid see if you can
understand why, and figure out the real flaw in the proof.

LAlternatively, we could insist on making the base case0 (which holds vacuously here becausg Q is false, so therefore
0>1 = 0! < 0%is true). Then we would assert tHat0) —> P(1), sinceP(1) holds (vacuously again, since=11 is false, so
1>1 = 1! < 1'istrue), and thaP(1) = P(2) sinceP(2) holds (as we show in the base case below). Then we would proceed
as in the inductive step of the proof below. But this is all rather tedious.
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What makes the flaw in this proof a little tricky to pinpoint is that the induction &eplid for a “typical”
value ofn, say,n = 3. The flaw, however, is in the induction step whesa: 1. In this case, fon+1=2
horses, there amo “middle” horses, and so the argument completely breaks down!

Some of you might still not feel completely convinced. Why is the above flaveroonvincing than simply
saying that the induction hypothesis is false? Saying that the induction legieih false is like saying that
the statement of the theorem is false, and so there is definitely a flaw in thfe proe, but our task was to
pinpoint exactly wherén the proof the flaw occurs. The point is that a valid induction proof involves only
showing the base case, 98¢0), and that’'n. P(n) = P(n+1). One way of showin®(n) — P(n+1)

is to assumé>(n) is true and then show th&n+ 1) is true. IfP(n) is false, therP(n) = P(n+1) is
vacuously true. So just saying that the induction hypothiegis is false does not pinpoint the flaw in the
proof. In this case, the propositidt{(n) — P(n+ 1) happens to be true for every except for n =1, in
which case the proposition is false. This makes the flaw in the proof quiteutlifiicspot.

Two Color Theorem: There is a famous theorem called the four color theorem. It states that gngama
be colored with four colors such that any two adjaéeatuntries must have different colors. The four color
theorem is very difficult to prove, and several bogus proofs weimeld since the problem was first posed
in 1852. It was not until 1976 that the theorem was finally proved (with ttiefa computer) by Appel
and Haken. (For an interesting history of the problem, and a state-@tipeeof, which is nonetheless still
very challenging, seattp://www.math.gatech.edu/"thomas/FC/fourcolor.htm ) We
consider a simpler scenario, where we divide the plane into regions tndyatraight lines. We want to
know if we can color this map using no more than two colors (say, red an{l &gl that no two regions
that share a boundary have the same color. Here is an example of altwedamap:

It turns out that every such map can indeed be two-colored. We willeptioig “two color theorem” by
induction onn, the number of lines.

Base case: P(0) is the proposition that a map with= 0 lines can be can be colored using no more than two
colors. But this is easy, since we can just color the entire plane usingatore ThereforeP(0) is indeed
true.

Inductive hypothesis: AssumeP(n), that is, every map with lines can be two-colored.

Inductive step: We want to prové’(n+ 1). We are given a map with+ 1 lines and wish to show that it can
be two-colored. Let’s see what happens if we remove a line. With ofilyes on the plane, we know we
can two-color the map (by the inductive hypothesis). Let us make the follpabservation: if we swap red
< blue, we still have a two-coloring. With this in mind, let us place back the line weved, and leave
colors on one side of the line unchanged. On the other side of the line redap blue. We claim that this
is a valid two-coloring for the map with+ 1 lines.

2Two countries are considered adjacent if they share a border—at jusnt.
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Why does this work? We can say with certainty that regions which do ndebdine line are properly two-

colored. But what about regions that do share a border with the lineMigebe certain that any two such
regions have opposite coloring. But any two regions that border the lirst Inawre been the same region
when the line was removed, so the reversal of color on one side of thelamarggees an opposite coloring.

Strengthening the Inductive Hypothesis

Let us prove by induction the following proposition:
Theorem: For alln > 1, the sum of the firat odd numbers is a perfect square.

Attempted proof: By induction onn.

Base case: Forn =1, the first odd number is 1, which is a perfect square.

Inductive hypothesis: Assume that the sum of the finsbdd numbers is a perfect square, &ay

Inductive step: Then+ 1-th odd number isr2+ 1, so the sum of the first+ 1 odd numbers ik2+2n+ 1.
But now we are stuck. Why should 4 2n+ 1 be a perfect square? This attempt at a proof is a failure.

Here is an idea: let us show something stronger!
Theorem: For alln > 1, the sum of the first odd numbers is?.

Proof: By induction onn.

Base case: Forn = 1, the first odd number is 1, which ig.1

Inductive hypothesis: Assume that the sum of the firsbdd numbers is?.

Inductive step: The (n+ 1)-th odd number is 2+ 1, so the sum of the first+ 1 odd numbers ig? + (2n+
1) = (n+1)2. Thus by the principle of induction the theorem holds.

See if you can understand what happened here. We could not pprepasition, so we proved a harder
proposition instead! Can you see why that can sometimes be easier whareyiming a proof by induction?

When you are trying to prove a stronger statement by induction, you hahet something harder in the
induction step, but you also get to assume something stronger in the inductiothgis. Sometimes the
stronger assumption helps you reach just that much further...

Here is another example:

Imagine that we are given L-shaped tiles (i.e.,;a2square tile with a missingx 1 square), and we want
to know if we can tile a 2 x 2" courtyard that is missing a4 1 square in the middle. Here is an example
of a successful tiling in the case that 2:

It turns out that such a tiling always exists. Let us try to prove this faghtyction onn.
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Base case: P(1) is the proposition that a 2 2 courtyard can be tiled with L-shaped tiles with a missing
1x 1 square in the middle. But this is easy:

SoP(1) is indeed true.

Inductive hypothesis: AssumeP(n) is true, that is, we can tile &2 2" courtyard that's missing at 1
square in the middle.

Inductive step: We want to show that we can tile 82 x 2" courtyard with a missing & 1 square in the
middle. Let's try to reduce this problem so we can apply our inductive hgsihA 2+ x 21 courtyard
can be broken up into four smaller courtyards of si2e 2", each with a missing & 1 square as follows:

I Il

2 2

—!

But the holes are not in the middle of each>x22" courtyard, so the inductive hypothesis does not help.
Once again, we are stuck. This attempted proof is a failure.

How should we proceed? We should strengthen our inductive hypdthesis

What we are about to do is completely counter-intuitive. It’'s like attempting toGt gounds, failing, and
then saying “I couldn't lift 200 pounds. Let me try to lift 200,” and therseeding! Instead of proving that
we can tile a 2 x 2" courtyard with a hole in the middle, we will try to prove something stronger: tleat w
can tile the courtyard with a holeo matter where the hole is located. It is a trade-off: we have to prove
more, but we also get to assume a stronger hypothesis. The base cassam#) so we will just work on
the inductive hypothesis and step.

Inductive hypothesis: (second attempt) Assuni¥n) is true, so that we can tile & % 2" courtyard with a
missing 1x 1 square anywhere.

Inductive step: (second attempt) Suppose we are giveri & % 2" that is missing a single & 1 square
somewhere—say, in the upper-right corner. As before, we cak byetne 21 x 21 courtyard as follows.

n T

D
" H
]

By placing the first tile in the middle as shown, we get folirx22" courtyards, each with a2 1 hole.
Three of these courtyards have the hole in one corner, while the foastthb hole in a position determined
by the hole in the 21 x 2" courtyard. The stronger inductive hypothesis now applies to each s the
four courtyards, so that each of them can be successfully tiled. Timidiave proven that we can tile
a 21 x 21 courtyard with a hole anywhere! Hence, by the induction principle, wes hmaved the
(stronger) theorem.
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