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Error Correcting Codes

Erasure EI‘I‘OI‘S

We will consider two situations in which we wish to transmit information on an urbigliahannel. The

first is exemplified by the internet, where the information (say a file) is brokeinto fixed-length packets,
and the unreliability is manifest in the fact that some of the packets are Iaegduensmission, as shown
below:
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Suppose that, in the absence of packet loss, it would mapackets to send the entire message—nbut in
practice up tk packets may be lost during transmission. We will show how to encode the initedage
consisting ofn packets into a redundant encoding consistingy éfk packets such that the recipient can
reconstruct the message from anseceived packets. We will assume that the packets are labelled and thus
the recipient knows exactly which packets were dropped during trarismiss

In our scheme, the contents of each packet is a number mogdwabereq is a prime. The properties of
polynomials ovelGF(q) (i.e., with coefficients and values reduced modg)@re perfectly suited to solve
this problem and are the backbone to this error-correcting schemeeTbisglet us denote the message to
be sent bymy, ..., m, and make the following crucial observations:

1) There is a unique polynomi&(x) of degreen— 1 such thaP(i) = m fori =1,...,n(i.e.,P(x) contains
all of the information about the message, and evalu&{iggives the contents of theth packet). Therefore
we can consider the message to be given by the polynd®(wal

2) The message to be sent is naw = P(1),...,m, = P(n). We can generate additional packets by eval-
uating P(x) at pointsn+ j (remember, our transmitted message must be redundant, i.e., it must contain
more packets than the original message to account for the lost packbtsy.tfie transmitted message is
c1=P(1),c2=P(2),...,chik = P(n+k). Since we are working modulp we must make sure that-k <q,

but this condition does not impose a serious constraint gjne¢ypically very large.

3) We can uniquely reconstruB{x) from its values at any distinct points, since it has degrae- 1. This
means thaP(x) can be reconstructed from anyof the transmitted packets. Evaluating this reconstructed
polynomialP(x) atx = 1,...,nyields the original messagmy, ..., M.

Example

Suppose Alice wants to send Bob a message 6f4 packets and she wants to guard agalnst2 lost
packets. Then assuming the packets can be coded up as integers betarese®, Alice can work over
GF (7) (since 7> n+ k= 6). Suppose the message that Alice wants to send to Bop-s3,mp =1,mg =5,
andmy = 0. The unique degree— 1 = 3 polynomial described by these 4 pointsis) = x3 + 4x? 4- 5.
(You may want to verify thaP(i) = m for 1 <i <4.)
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Sincek = 2, Alice must evaluat®(x) at 2 extra pointsP(5) = 6 andP(6) = 1. Now, Alice can transmit
the encoded message which consists-ek = 6 packets, where; = P(j) for 1 < j <6. Soc; =P(1) =3,

¢ =P(2)=1,¢c3=P(3)=5,c4=P(4) =0,c5 = P(5) = 6, andcg = P(6) = 1. Suppose packets 2 and 6
are dropped, in which case we have the following situation:

III@II

Encoded message
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From the values that Bob received (3, 5, 0, and 6), he uses Lagnatggpolation and computes the follow-
ing delta functions:

Av(X) = (x—3)(x—4)(x—5)

—24
As(X) (x—l)(x;r4)(x—5)
A(X) = (x—1) (x_—33) (x=5)
As(x) — (x—l)(x;3)(x—4)'

He then reconstructs the polynomi(x) = 3-Ay(X) +5- Ag(X) +0-A4(X) + 6-As(X) = X3+ 4x*> 4+ 5. Bob
then evaluatesy, = P(2) = 1, which is the packet that was lost from the original message.

In general, no matter which 2 packets were dropped, Bob could still eamstructed?(x) and thus the
original message. This works because of the remarkable propertietyabmials oveIGF (q).

Let us consider what would happen if Alice sent one fewer packet. litkefonly sentc; for 1 < j <
n+k— 1, then withk erasures, Bob would only receiegfor n— 1 distinct valueg. Thus, Bob would not
be able to reconstru@(x) (since there are exactly polynomials of degree at most— 1 that agree with
then— 1 packets which Bob received). This error-correcting scheme isftrereptimal—it can recover
the n characters of the transmitted message from rangceived characters, but recovery from any fewer
characters is impossible.

General EI‘I‘OI‘S

Let us now consider a much more challenging scenario. Now Alice wishesnwnanicate with Bob
over a noisy channel (say via a wireless network). Her message is., m,, where we will think of the
my’s as characters (either bytes or characters in the English alphabet)prdhlem now is that some of
the characters are corrupted during transmission due to channel 18msBob receives exactly as many
characters as Alice transmits. Howeenf them are corrupted, and Bob has no idea whicRecovering
from such general errors is much more challenging than erasurs ditough once again polynomials hold
the key.

Let us again think of each character as a number moglfido some primeg. As before, we can describe
the message by a polynomid(x) of degreen— 1 overGF(q), such thatP(1) = my, ..., P(n) = m,. As
before, to cope with the transmission errors Alice will transmit additionalatiars obtained by evaluating
P(x) at additional points. To guard agairksgeneral errors, Alice must transmik 2dditional characters.
(Compare: for erasure errors, we needed to sendjadditional packets; but for general errors, we'll need
2k additional packets.) Thus the encoded messagg .is., Cn, 2« Wherec; = P(j) for j=1,...,n+2k, and
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Bob receives at least+ k of these correctly. As before, we must put the mild constrairg that it be large
enough so thag > n+ 2k.

For example, if Alice wishes to semt= 4 characters to Bob over a wireless network which corrlaptsl

of the characters, she must redundantly send an encoded messsigéirapof 6 characters. Suppose she
wants to transmit the same message as above, anc tisatorrupted and changed ¢b= 2. This scenario
can be visualized in the following figure:
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From Bob’s viewpoint, the problem of reconstructing Alice’s message is#émee as reconstructing the
polynomial P(x) from the n+ 2k received charactefR(1),R(2),...,R(n+ 2k). In other words, Bob is
givenn+ 2k values modula, R(1),R(2),...,R(n+ 2k), with the promise that there is a polynomiglx) of
degreen— 1 overGF (q) such thaR(i) = P(i) for n+k distinct values of between 1 and+ 2k. Bob must
reconstrucP(x) from this data. In the above examptet k=5 andR(2) = P(2) = 1, R(3) = P(3) =5,
R(4) = P(4) =0,R(5) = P(5) = 6, andR(6) = P(6) = 1.

Does Bob have sufficient information to reconstrB¢k)? We first show that the answer is yes. We claim
that there is a unique polynomial of degree at mmostl that agrees witR(x) atn+ k points. We know that
P(x) is one such polynomial. Suppose tiRatx) is any polynomial of degre€ n— 1 that agrees witlR(x)
atn+k points. Then among theset k points there are at mokterrors, and therefore on at leaspoints

x; we haveP’(x) = P(x). But a polynomial of degre€ n— 1 is uniquely defined by its values apoints,
and bothP(x) andP’(x) have degree n— 1, so therefor®(x) = P'(x) (for all x). This proves the claim, so
givenR(x), P(x) is uniquely determined.

But how can Bob quickly find the polynomi&(x)? The issue at hand is the locations of kherrors. Let
e, ..., be thek locations at which errors occurred. Note tRég) # R(g) for 1 <i <k:

Fix) Rix)

4

—
el el e3

We could try to guess where theerrors lie, but this would take too long (it would take exponential time, in
fact). So, we will develop a better method to identify which characters ane&ous.

Consider the error-locator polynomiBi(x) = (X —e1)(X—€)---(X—&). This polynomial has degree
(sincex appeark times). Let us make a simple but crucial observation:

P>)E(i) = R()E(i) fori=1,...,n+2k
This is true at point$ at which no error occurred, siné¥i) = R(i). Also, it is trivially true at pointd at
which an error occurred, since thdféi) = 0.

This observation forms the basis of a very clever algorithm invented bielBanp and Welch. Looking
more closely at these equalities, we will show that theynar&k linear equations im-+ 2k unknowns, from
which the locations of the errors and coefficient®@f) can be easily deduced.
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Let Q(x) = P(X)E(X). Q(x) is a polynomial of degree at most+ k— 1, and is therefore described by k
coefficients. The error-locator polynomia(x) = (x—ey) - - - (Xx— &) has degre& and is described b+ 1
coefficients, but the leading coefficient (coefficienkbfis always 1. So we have:

Q) = anik X"+ Fax+ag
E(X) = Xk + bk,lxk’l + -+ bix+byg

Once we fix a valué for x, the received valu&(i) is fixed and known. In other words, we can now think
of R(i) as a constant. Als®(i) becomes a linear function of thre+ k coefficientsan k_1...ap, namely,
Q) = ikl a1+ +i%-ax+i-a1+a. (Sincei is a known constant, each of these powers of
is, too.) Similarly,E(x) becomes a linear function of thecoefficientsby_1 ...bg. Therefore the equation
Q(i) = R(i)E(i) is a linear equation in the+ 2k unknownsag k-1, ...,a0 andby_1,...,bp. We thus have

n+ 2k linear equations, one for each value oindn+ 2k unknowns. We can solve these equations and get
E(x) andQ(x). We can then compute the rat%i% to obtainP(x).

Example. Suppose we are working ov&F (7) and Alice wants to send Bob time= 3 characters “3,” “0,”
and “6” over a wireless link. Turning to the analogy of the English alphdbistjs equivalent to using only
the first 7 letters of the alphabet, where “a'0,...,“g” = 6. So Alice wants to send the message “dag”™ to
Bob. Alice interpolates to find the polynomial

P(x) = x> 4+x+1,

which is the unique polynomial of degree 2 such thgt) = 3, P(2) = 0, andP(3) = 6.

Suppose that at mokt= 1 character may be corrupted. Alice should transmitrthe2k = 5 characters
P(1) =3, P(2) =0, P(3) =6, P(4) = 0, andP(5) = 3 to Bob. In other words, Alice sends the encoded
message “dagad”. SuppoBél) is corrupted, so Bob receives 2 instead of 3 (i.e. Alice sends “dagad” b
Bob instead receives “cagad”). Summarizing, we have the following situatio

1 2 3 4 3
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Let E(x) = (x—e1) be the error-locator polynomial. Heeg is the location of the error. Remember, Bob
doesn’t know whag; is yet since he doesn’t know where the error occurred Q@ = R(X)E(x). Q(X) is

a polynomial of degree 3, but Bob doesn’t kn@{x) yet, so let’s just writeQ(x) = agx® + apx® + ayx -+ ap.
Similarly we’ll write E(x) = x+ bo. Bob knowsR(1) =2, R(2) =0, R(3) =6, R(4) =0, andR(5) = 3.

To decode the encoded message from Alice, Bob needs tadind , ag,bg. Bob should substitute = 1,
x=2,...,x=>5into the equatio®(x) = R(x)E(X) to get five linear equations in five unknowns oG (7):

aztaxtait+a+5p=2 (

az+4ay+2a;1+ap=0 (
6ag+2ax+3a1+a+bp=4 (mod 7)

ag+2a+4a;+ap=0 (
6ag+4a;+5a;+ap+4bp=1 (mod 7).

Bob solves this linear system and finds that 1, a, = 0, a; = 0, ap = 6, andbp = 6 (all modulo 7). In this
way Bob recovers the polynomia¥x) = x>+ 6 andE(x) = x-+ 6. Note that since we are working modulo
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7, we could alternatively have writteQ(x) = x3—1 andE(x) = x— 1. (This fits:e; = 1 is the index at
which the error first occurred, and we expected to Ha@g = x— e;.) He can then findP(x) by computing
the quotient

QX x*—1
(X)—m— x—1

=x2+x+1 (mod 7.

Now that Bob has the polynomi#l(x) = x> +x+ 1, he can recover the message that Alice sent him. For
instance, Bob can deduce frdafx) that the first character was corrupted (siege- 1), so now that he has
P(x), he just computeB(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

Finer Points

Two points need further discussion. How do we know thattheé?k equations are consistent? What if they
have no solution? This is simple. The equations must be consistenirce: P(x)E(x) together with the
error locator polynomiakE (x) gives a solution.

A more interesting question is this: how do we know thatrike2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addition to the réaicothat we are looking for?

Put more mathematically, how do we know that the solu@fx) andE’(x) that we reconstruct satisfy the
property thaE’(x) dividesQ/(x) and thatg % = 8% = P(x)? To see this notice tha(i)E'(i) = Q'(1)E(i)
fori=1,...,n+2k. This holds trivially wheneveE(i) or E'(i) is 0, and otherwise it follows from the
fact thatg(ii; = % = R(i). But the degree oQ(x)E'(x) and Q'(X)E(x) is n+ 2k — 1. Since these two
polynomiaﬁs are equal at+ 2k points, it follows that they are the same polynomial, and thus rearranging

Q) _ QX _
we get tha% = % = P(x).
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