
1

CS70 L23 Hashing (1)  Dan Garcia © UCB 

2003-10-22
Dan Garcia

(www.cs.berkeley.edu/~ddgarcia)

inst.eecs.berkeley.edu/~cs70/
1 Handout: notes

Computer Science 70
Discrete Mathematics and Probability Theory

Hashing
 Lecture 23

CS70 L23 Hashing (2)  Dan Garcia © UCB 

Big Idea: memoization
•  General principle: store rather than recompute.
•  Context is a tree-recursive algorithm with lots of

repeated computation, e.g. Fibonacci:
int Fib (int n) { 
 if (n==0 || n==1) { 
 return n; 
 } else if (we’ve computed n's value already) { 
 return that value; 
 } else { 
 int value = Fib(n-1) + Fib(n-2); 
 store (n, value); 
 return value; 
 } 
}

•  Pairs (n, value of Fib(n)) are stored in the table.

CS70 L23 Hashing (3)  Dan Garcia © UCB 

Hash Function
• If what we want to memoize isn’t a simple
number, how do we convert it to a number to
easily store it into a table?

• We need something that can help us map this
data into an integer, to serve as an index into
an array (used to store the table).

• This mapping function is called a hash function

http://en.wikipedia.org/wiki/Hash_function
CS70 L23 Hashing (4)  Dan Garcia © UCB 

Writing hash functions - TTT (1)
• Let's consider Tic-Tac-Toe:

– One player chooses X, the other chooses O
– They take turns placing their piece on the board
– Assume X goes first
– Once a piece is placed, it isn't moved
– The player who first gets 3-in-a-row wins
– If the board gets filled up and nobody wins, it's a tie

2

CS70 L23 Hashing (5)  Dan Garcia © UCB 

Writing hash functions - TTT (2)
• Writing a Tic-Tac-Toe hash function:

• One idea is to ignore the 2D nature of the
game and make it a 1D array of slots

h = 13,205

0 1 2
3 4 5

6 7 8 0 1 2 3 4 5 6 7 8

CS70 L23 Hashing (6)  Dan Garcia © UCB 

Writing hash functions - TTT (3)
• Think of each of the 9 slots as 1 of 3 values

– Blank, O and X
– Let's assign values 0, 1 and 2 to these

• How can we create a single number from this?
– Let's think about this as a ternary number:
– S8•38 + S7•37 + … + S1•31 + S0•30
– 2•38 + 1•34 + 2•30 = 13, 205

• This is known as a "polynomial hash code"

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
2 0 0 0 1 0 0 0 2

CS70 L23 Hashing (7)  Dan Garcia © UCB 

Writing hash functions - TTT (4)
• Analysis of ternary polynomial hashcode:

– What's the smallest #?
– What's the biggest #?
– Is this as optimal (I.e., tightly-packed) as possible?
– Any suggestions for making this more optimal?

0
39-1

No!

CS70 L23 Hashing (8)  Dan Garcia © UCB 

Writing hash functions - TTT (5)
• Optimizing the Tic-Tac-Toe hash function

– This involves understanding the rules of placement
» The players take turns & X goes first!

– Let's consider some small 1D boards (S = # of slots)
» S=1: 2 boards (- | X) We'll use "|" to separate groups
» S=2: 5 boards (-- | -X, X- | XO, OX)
» S=3: 13 boards (--- | --X, -X-, X-- | -OX, -XO, O-X, OX-,

X-O, XO- | OXX, XOX, XXO) = (1 + 3 + 6 + 3)
» S=4: __ boards (__ + __ + __ + __ + __)
» …pattern?

3

CS70 L23 Hashing (9)  Dan Garcia © UCB 

Remember your Combinatorics!
• Let's figure out numBoards(s), s = # slots
• For n=5, we had:

 # ways to rearrange 0 Xs, 0 Os in 4 slots +
 # ways to rearrange 1 Xs, 0 Os in 4 slots +
 # ways to rearrange 1 Xs, 1 Os in 4 slots +
 # ways to rearrange 2 Xs, 1 Os in 4 slots +
 # ways to rearrange 2 Xs, 2 Os in 4 slots

• Generalizing from this example (p=# pieces):

• But what is rearrange(x,o,s)?
– # of ways to rearrange x Xs, o Os in s slots?

€

numBoards(s) = rearrange(p, p,s) +
p= 0

s 2
∑ rearrange(p, p −1,s)

p=1

s 2
∑

CS70 L23 Hashing (10)  Dan Garcia © UCB 

Recall Pascal's Triangle ()=10
0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

5
2

This table describes
how to calculate
combinations. I.e.,
"N choose K".

That is, the number
of ways to rearrange
2 pieces in 5 slots is
"5 choose 2", which is
the expression at the
top. 10 ways.

N
K

=
N!

K! (N-K)! N

K

CS70 L23 Hashing (11)  Dan Garcia © UCB 

rearrange(x,o,s) = r(x,o,s)
• How many ways to rearrange
x Xs, o Os in s slots?

• Blur method
– First, blur eyes, how many ways to rearrange

ALL (x+o) pieces in s slots? [stop blurring now]
– For EACH, how many ways to rearrange Xs in pieces?
– Answer is product of these

• Overcount method
– Think of permuting all the elements; how many?
– How many were overcounted? Xs, Os, spaces
– Answer is quotient of these

0 1 2 3 4 5 6 7 8

s
x+o

x+o
x

s!

o! x! (s-x-o)!

s!
o! x! (s-x-o)!

s
x+o

x+o
x

s!
(s-x-o)!(x+o)!

(x+o)!
o! x!

= •

CS70 L23 Hashing (12)  Dan Garcia © UCB 

Now we know our Hash Table size
• Now we know numBoards(s)

– numBoards(4) ⇒ (1 + 4 + 12 + 12 + 6) = 35
– numBoards(9) ⇒ (1+9+72+252+756+1260+1680+1260+630+126) =

 6,046 < 19,683 = 39
• Plotting rearrange(x,o,4)

2 6
1 12 12
0 1 4

0 1 2

o

x

Note zig-zag pattern as a result
of the alternating moves of

each player! numBoards just sums 'em! s=4

4

CS70 L23 Hashing (13)  Dan Garcia © UCB 

But what about the hash function?
•  How do we write the combinatorially optimal hash()?

–  This take our board and generates a # between 0 and (numBoards - 1)
•  Two steps (sum the following numbers)

1.  Finding out how many numbers there were in the zigzag
up to our box (this is the BIAS, or OFFSET)

2.  Finding out our number REARRANGEMENT within our box
»  Exactly same idea as the ternary polynomial hash code:

•  X counts as 2, i.e., 2•3i, O counts as 1, I.e., 1•3i, – = 0

»  Here, we consider the leftmost slot & how much it's worth
•  X counts for all ways to rearrange if it were O & –
•  O counts for all ways to rearrange if it were –
•  – counts for 0
•  (Shortcut when a board has all the same piece, counts for 0)

CS70 L23 Hashing (14)  Dan Garcia © UCB 

Example TicTacToe hash function
•  Let's hash XO-X = X3O2-1X0

– Must be a # between 0 and (numBoards(4)- 1) = 34
•  Two steps: BIAS + REARRANGEMENT #

– BIAS: X=2,O=1,S=4; Count buckets up to us:1+4+12=17
– REARRANGEMENT #: [R(X,O,S)]

» X3 = r(2,1,3) + r(2,0,3) = 3 + 3
» O2 = r(1,1,2) = 2
» –1 = 0
» X0 = 0 (from shortcut)
» REARRANGEMENT # = 3 + 3 + 2 = 8

•  Thus, combinatorially optimal
hash(XO-X) = 17 + 8 = 25

2 6
1 12 12
0 1 4

0 1 2

o

x

s=4

CS70 L23 Hashing (15)  Dan Garcia © UCB 

Summary
• We showed how to calculate combinatorially
optimal hash functions for a game
– In real-world applications, we often find this useful
– If it's too expensive, we usu. settle for sub-optimal

• A good hash function spreads out values evenly
• Sometimes hard to write good hash function

– In 8 real applications, 2 had written poor hash funs
• Java has a great hash function for Strings

– Strings are commonly used as the keys (the things you
hash upon for a data structure)

