Due Thursday, March 6th

1. (10 pts.) Break the generator, become a poker champion

A pseudorandom number generator is a way of generating a large quantity of random-looking numbers, if all we have is a little bit of randomness (known as the seed). One simple scheme is the linear congruential generator, where we let x_{0} denote the seed and define

$$
x_{t+1}=\left(a x_{t}+b\right) \bmod m
$$

for some modulus m and some constants a, b. (Notice that $0 \leq x_{t}<m$ holds for every t.)
You've discovered that a popular web site uses a linear congruential generator to generate poker hands for its players. For instance, it uses x_{0} to pseudo-randomly pick the first card to go into your hand, x_{1} to pseudorandomly pick the second card to go into your hand, and so on. For extra security, the poker site has kept the parameters a and b secret, but you do know that the modulus is $m=2^{31}-1$ (which is prime).
Suppose that you can observe the values $x_{0}, x_{1}, x_{2}, x_{3}$, and x_{4} from the information available to you, and that the values x_{5}, \ldots, x_{9} will be used to pseudo-randomly pick the cards for the next person's hand. Describe how to efficiently predict the values x_{5}, \ldots, x_{9}, given the values known to you.
2. ($5 \mathbf{p t s}$.) Interpolation practice

Find a polynomial $h(x)=a x^{2}+b x+c$ of degree at most 2 such that $h(0) \equiv 3(\bmod 7), h(1) \equiv 6(\bmod 7)$, and $h(2) \equiv 6(\bmod 7)$.
Hint: You could write a system of linear equations in the unknowns a, b, c, or use Question 4 below.
3. (10 pts.) Rational interpolation

Find a non-zero polynomial $g(x)=a x^{2}+b x+c$ of degree at most 2 and a non-zero polynomial $h(x)=d x+e$ of degree at most 1 such that $g(0) \equiv 3 \cdot h(0)(\bmod 7), g(1) \equiv 3 \cdot h(1)(\bmod 7), g(2) \equiv 2 \cdot h(2)(\bmod 7)$, and $g(3) \equiv 4 \cdot h(3)(\bmod 7)$.
Hint: You might try setting up a system of linear equations and solving it.
Important note: The solution $a \equiv b \equiv c \equiv d \equiv e \equiv 0(\bmod 7)$ doesn't count. Find any other solution. (Revised 3/2/2008 to add this requirement.)

4. (25 pts.) Polynomial interpolation

In this problem, you will develop an algorithm for polynomial interpolation: given a prime p and n values $a_{0}, a_{1}, \ldots, a_{n}(\bmod p)($ where $n<p)$, you will show how to construct a polynomial $h(x)$ of degree at most n such that $h(i) \equiv a_{i}(\bmod p)$ for $i=0, \ldots, n$.
(a) Prove the following: If p is a prime and $y_{1}, \ldots, y_{n} \in \mathbb{N}$ are all different from 0 modulo p, then $y_{1} \times$ $\cdots \times y_{n}$ is also different from 0 modulo p.
(b) Prove the following: Given a prime p and two integers a, b, it is always possible to find a polynomial $f(x)$ of degree at most 1 such that $f(0) \equiv a(\bmod p)$ and $f(1) \equiv b(\bmod p)$.
(c) You are given a prime p and a positive number $n<p$. Show how to find a polynomial $f(x)$ of degree at most n satisfying $f(0) \equiv f(1) \equiv \cdots \equiv f(n-1) \equiv 0(\bmod p)$ and $f(n) \equiv 1(\bmod p)$. In other words, the polynomial f should be congruent to zero at the points $x=0, \ldots, n-1$; at $x=n$ the polynomial should be $1 \bmod p$.
Hint: Consider $F(x)=(x-0)(x-1)(x-2) \cdots(x-(n-1))$; what can you say about it?
(d) You are given p and n as before, but now you are also given an index j with $0 \leq j \leq n$. Show how to find a polynomial $g_{j}(x)$ of degree at most n satisfying

$$
g_{j}(i) \equiv\left\{\begin{array}{ll}
0 & \text { if } i \neq j \\
1 & \text { if } i=j
\end{array} \quad(\bmod p) \quad \text { for each } i=0,1, \ldots, n .\right.
$$

In other words, the polynomial g_{j} should be congruent to zero at the points $x=0, \ldots, n$, except that at $x=j$ it should be congruent to $1 \bmod p$.
(e) You are given a prime p, a number n with $0<n<p$, and a sequence of values $a_{0}, a_{1}, \ldots, a_{n}(\bmod p)$. Describe an efficient algorithm to find a polynomial $h(x)$ of degree at most n satisfying $h(0) \equiv a_{0}$ $(\bmod p), h(1) \equiv a_{1}(\bmod p), \ldots, h(n) \equiv a_{n}(\bmod p)$.
Hint: What can you say about the polynomial $3 g_{0}(x)+7 g_{1}(x)$, where $g_{0}(x), g_{1}(x)$ are as defined in part (d)? Does this give you any ideas?

