CS 276: Cryptography
Lecture Notes

Todd Kosloff

February 18, 2004
First Half

Last time, we talked about definitions of security for symmetric key cryptosystems. We can use these definitions to prove that various
modes of operation are secure. These kinds of proofs are very similar, so one example should be enough. We will prove that counter
mode is IND-CPA. Well, a simplified counter mode, anyway, where we assume messages are only one block long. First, we need the
definition of counter mode.

++S

3
o4—®4— — —

Figure 1: Counter Mode

intS=0;

CTRIf]-E(m): {0,1}'* — {0,1}1*
f:N —{0,1}'?8 where N is the space of integers that fit within 128 bits.

To encrypt: output (++5, f(S) & m)
CTR[f]-D(c) : {0,1}'% — {0,1}1%

To decrypt:
1. Parse c as (1,y)
2. Output f(t)®y

Note that while encryption is stateful, the decryption is not. To use counter mode, we have to plug in some block cypher, e.g.
CTR[AESk]. With the definition in hand, we can now prove that counder mode is IND-CPA. First, some intuition. CTR only uses f as a
subroutine. If we choose truly random encryption instead of AES, then counter mode becomes a one time pad.

Lemma: CTR[RRandom) is (e0,00,0)-LR-secure. That is, countermode on random functions is unconditionally secure.
Proof:
Adv A = Pr [ACTRIRIEody — 1] — [ACTRIRIEo$ — 1] in the LR scheme.
Consider the left world, A makes the query (mg,m;). Oracle returns (+ + S, R(S) @ my), which has the same distribution as
(++S,Uniform).
In the right world, A makes the query (mq,m;). Oracle returns (+ + S, R(S) & m,), which also is close to (+ +S,Uniform).
So the response from the oracle is the same distribution in both the left world and the right world, so Adv A =0.

Now we use that lemma to prove that counter mode is IND-CPA.
Claim: If F is a (¢, 4, €)-PRF running in time ¢/, then CTR[F] is (t —,q,2€)-LR-secure.
Proof:
Intuition: If we can attack F, we can attack CTR[F]. Suppose A is a LR-attack against CTR[F| with Adv A > 2¢. Note: we could

run A against CTR[R] with advantage 0. Define B which is an attack against f. BY must tell whether f is F, or rather, is f R. Use A to
do this, run A and “see if it succeeded”. But how? This is tricky! A picture might help.

CTR-Eofb

(mg, my) E(m,) X f(x)

A |=10r0 B |=1o0r0

Figure 2: A and B

Given A, given f, we must instantiate A by supplying it with an oracle. We might refer to f as g to avoid getting f confused with F.

“X is a single query to B’s oracle”

either O or 1

i A — (Smesls)
i ‘ ‘ Randomly set b to

B outputs 51578

Figure 3: The inner-workings of B

When b = 0, B« = A run in left world on CTR[Fk|, but BX = A run in left world on CTR[R]. When b = 1, Bf¥ = A run in right world
on CTR|[Fk], but BR = A run in right world on CTR[R]. Hmm... still tricky, Let’s simulate the whole LR game, rather than just counter
mode. Pick b to randomly be 0 or 1. A outputs &’. B outputs 1 if b= b, 0 if b # b’. Now we see where this is going!!! So B is slightly
more likely to pick 1 given FX Therefore, we are now equipped with good intuition. Time to formalize it.

Formal:
B%: 1. Randomly set b either to O or 1.
2. If ACTRIglod, — b, output 1, else O
Claim: AdvB > ¢
Proof:
Adv B =Pr[B* = 1] — Pr[BR =1].
Now plug in our knowledge of the internal structure of B.
Adv B = Pr[ACTRIFKIEofy — p| — Pr[ACTRIRIEof, — p] By the Lemma...
AdvB=(3+ Ad;/ A) -(+9H = Ad;’ A S &= Adv B > 2¢ While figuring out this proof might have looked messy, it is, in fact,
easy! You can almost do it in your head. No insight is required, just symbol pushing.
Note: the time bound we gave earlier is bogus. CTR[F] is, in fact, (r — gt — O(1),g,t€)... or something like that.
And that concludes our proof that counter mode is IND-CPA. Next we present some intuition for CBC, and we sketch a similar proof.
A reminder, what is CBC?

1 3
vV — ® ® ®
AES, AES, AES,
! ! |
C, C, C,

Figure 4: Cypher-Block-Chaining (CBC)

Note: To do this kind of proof, CBC must not use K except in order to use AESk as a subroutine. Basically, CBC is secure “If
inputs never repeat”. Well, CAN inputs ever repeat? Here we mean inputs as in the thing that we are xor-ing with the block. Well, given
random IV’s, that probability is 27128, at least considering the first block. Now what about later blocks down the chain?

It turns out that we are OK, because:

(1) “Input” is random
(2) AESk is a PRF
(3) (1) @ (2) gives something random, uniform distinct.

Thus, chances of repeat “input” are low. Thus, if we work out the details (which we will not do), we will discover that CBC is se-
cure. This concludes our discussion of symmetric key encryption.

