
Cryptographic protocols:

design and analysis

David Wagner
University of California, Berkeley

1



Notation

A, B, C, S: names of legitimate parties.
(Short for: Alice, Bob, client, server.)

M : name of a malicious attacker. (Short for: Mallet.)

2



Notation

1. A → B : x

The above means:

1. Protocol designer intended the message x to be sent by party A to party B.

2. This message was intended to be sent first in a series of several.

3



Caveats

1. A → B : x

Do note:

1. B only receives the message x, not who it came from.
(Thus, messages should include the sender’s name if the recipient needs to
know it.)

2. There is no guarantee that A, the network, or the adversary will behave as
intended.
(Thus, messages might be intercepted, modified, re-ordered, etc.)

4



Warmup

Establishing a secure channel with a challenge-response protocol:

1. A → B : A

2. B → A : NB

3. A → B : [NB]
K−1

A

4. A → B : {message}KB

5. A → B : {message′}KB

. . .

Can you spot the flaw?

5



Denning-Sacco #1

Key exchange between A, B, with the aid of an online certification server S.

1. A → S : A, B

2. S → A : certA, certB
3. A → B : certA, certB, {[kAB, TA]

K−1
A

}KB

Can you spot the flaw?

6



Breaking Denning-Sacco #1

Look closely:

3. A → B : certA, certB, {[kAB, TA]
K−1

A

}KB

The key kAB isn’t bound to the names of the endpoints A, B.

Therefore, B can extract the quantity [kAB, TA]
K−1

A

and use it to spoof A in a new

connection to C, like this:

3′. B → C : certA, certC, {[kAB, TA]
K−1

A

}KC

As a result, C mistakenly concludes he is speaking with A.

7



A Lesson

Moral: Be explicit. Bind all names, and all other relevant conte xt, to every
message.

Exercise: Why do so many protocols fail this way?

Credits: Abadi and Needham.

8



Early SSL

Key exchange with mutual authentication:

1. A → B : {kAB}KB

2. B → A : {NB}kAB

3. A → B : {certA, [NB]
K−1

A

}kAB

Can you spot the flaw?

9



Breaking early SSL

Look closely:

1. A → B : {kAB}KB

2. B → A : {NB}kAB

3. A → B : {certA, [NB]
K−1

A

}kAB

Alice will sign anything with her private key.

10



The attack on early SSL

B can open a connection to C and pretend to be A, as follows:
1’. B → C : {kBC}KC

2’. C → A : {NC}kBC

When C challenges B with nonce NC , Bob sends NB = NC back to A

and uses her as an oracle.
1. A → B : {kAB}KB

2. B → A : {NC}kAB

3. A → B : {certA, [NC]
K−1

A

}kAB

A will sign anything, so B extracts [NC]
K−1

A

and he’s in:

3’. B → C : {certA, [NC]
K−1

A

}kAB

11



Fixing early SSL

Fix: replace [NB]
K−1

A

with [A, B, NA, NB]
K−1

A

.

1. A → B : {kAB}KB

2. B → A : {NB}kAB

3. A → B : {certA, [A, B, NA, NB]
K−1

A

}kAB

Moral: Don’t let yourself be used as a signing oracle. Add your o wn
randomness—and bind names—before signing.

Credits: Abadi and Needham.

12



GSM challenge-response

A is cellphone handset, B is a base station.

1. B → A : NB

2. A → B : A, [NB]
K−1

AB

, {data}k

where k = f(KAB, NB) is the voice privacy key.

Can you spot the weakness?

13



X.509 standard #1

Sending a signed, encrypted message to B:

1. A → B : A, [TA, B, {message}KB
]
K−1

A

This has a subtle issue, depending upon how it is used.

14



Breaking X.509 standard #1

Look again:

1. A → B : A, [TA, B, {message}KB
]
K−1

A

There’s no reason to believe the sender was ever aware of the contents of the
message. Signatures imply approval but not authorship.

15



An Attack on X.509 #1

Example: Proving yourself by sending a password.

Attacker M intercepts Alice’s encrypted password:
1. A → B : A, [TA, B, {password}KB

]
K−1

A

Then M extracts {password}KB
, and sends

1′. M → B : M, [TM , B, {password}KB
]
K−1

M

Now M is in, without needing to know the password.

16



Another Attack on X.509 #1

Example: Secure auctions.

The same attack provides an easy way for M to send in a copy of A’s bid under his
own name, without needing to know what A’s bid was.

17



Lessons

An important difference between

• Authentication as endorsement (i.e., taking responsibility).

• Authentication as a way of claiming credit.

Encrypting before signing provides a secure way of assigning responsibility,
but an insecure way to establishing credit.

Moral: sign before encrypting.

Credits: Abadi and Needham.

18



TMN

A, B establish a shared key kB using the help of a fast server S:

1. A → S : {kA}KS

2. B → S : {kB}KS

3. S → A : kA ⊕ kB

A recovers kB as kA ⊕ (kA ⊕ kB).

What’s the flaw?

19



Breaking TMN

Let’s play spot the oracle!

The attack: Given {kB}KS
, M, M ′ can conspire to recover kB:

1′. M → S : {kB}KS

2′. M ′ → S : {kM ′}KS

3′. S → M : kB ⊕ kM ′

Now M, M ′ can recover kB from {kB}KS
.

This lets eavesdroppers recover session keys established by other parties.

Credits: Simmons.

20



Goss railway protocol

A and B establish an authenticated shared key kAB = rA ⊕ rB:

1. A → B : A, {rA}KB

2. B → A : B, {rB}KA

Do you see the subtle weakness?

21



Triangle attacks on Goss

If session keys sometimes leak, the system breaks.

M can recover rA from {rA}KB
by opening a session to B and replaying A’s

encrypted contribution to the key:

1. M → B : M, {rA}KB

2. B → M : B, {r′B}KM

Now if M can learn kBM somehow, he can compute rA = kBM ⊕ r′B.

Basically, if B lets session keys leak, M can use him as as a decryption oracle to
obtain rA from {rA}KB

.

Play the same games with A to recover rB from {rB}KA
;

you then learn kAB.

Credits: Burmester.

22



Principles for implementing protocols

Explicitness is powerful (and cheap).

If you see the mathematical notation

1. B → A : NB

2. A → B : {NB, kA,B}KA

a more robust way to implement it in practice is

1. B → A : “Msg 1 from B to A of GSM protocol v1.0 is a challenge NB.”
2. A → B : {“Msg 2 from A to B of GSM protocol v1.0 is a response to

the challenge NB; and A asserts that the session key kA,B is
fresh and good for communication between A and B on the
session where NB was seen.”}KA

(Can you see why each of the elements above are there?)

23



Principles for implementing protocols

Any value received as cleartext should be treated as untrustworthy: you may use it
as a hint for performance, but don’t depend on it for security.

Minimize state ; each message should be self-explanatory and (where possible)
include all relevant prior context.

24



Principles for implementing protocols

Don’t reuse keys : for instance, signing keys and decryption keys should not be
equated. Use a separate session key for each direction.

Hash everything . Each message should include the (signed?) hash of all previous
messages in the interaction. This makes cut-and-paste attacks harder.

Measure twice, cut once .

25


