CS 261 Computer Security
Crypto Protocols - Design & Analysis

Lecture by Prof. David Wagner
Scribe: Thomas Kho

November 20, 2007

1 Certificates vs. Public Keys

In public key crypto, you need to know principals’ public keys to make sure
that you’re not talking to an impostor. The goal of a public key infras-
tructure (PKI) is to ensure that the name-to-public key binding is secure.
For example, one way you might achieve this is if the telephone company
publishes the name-public key associations in the phone book. This implies
trust in the telephone company.

Certificates are of the form

[DavidW agner,0:DEFS...]ca

where OxDEFS8... is the public key of David Wagner and the message
(certificate) is signed by a certificate authority (CA).

1.1 Kerberos vs. PKI

We can contrast this to Kerberos: instead of a placing trust in a KDC, we
instead trust a certificate authority.

In Kerberos, revocation is simple—you delete an account and all access
will be revoked once any outstanding keys expire. Key revocation is not so
simple with certificates. In a PKI, revocation can be done by publishing a
certificate revocation list of all certificates that have been revoked. Another
way of revocation in a PKI is an online system like OSCP where one queries
a CA to see if a key has been revoked. Yet another alternative is to have
expiration dates on certificates.



One advantage of a PKI over Kerberos is that PKI allows multiple co-
existing certificate authorities and hierarchical chains of trust. For example,
one might have the arrangement:

CA
/ \
UCB Stanford
/\ / 0\
DAW

The above is a certificate chain in which the CA asserts UCB’s identity
and UCB asserts user DAW'’s identity.

An unstrutured form of the above is the Web of Trust approach where
peers sign each others’ keys to extend trust.

PKI allows for a public key to be signed by multiple CAs, and someone
who receives a certificate signed by multiple CAs can check if he trusts any
of the CAs that have signed the certificate.

2 Discussion of paper

Most of class was spent looking at proposed protocols and noting their flaws,
and the discussion follows the protocols examined in the paper. Most of this
content can be found in the slides accompanying the lecture.

2.1 Notation

1. A — B : X means that the protocol designer intended for the message
X to be sent by A to B, with no assurances to secrecy or reliability of the
communications channel.

2.2 Warmup

We’re given the following protocol:

A—-B:A

B — A:Np

A— B: [NB]KXI

A — B : {message} i,
A — B :{message'} k,

Tl W=



The flaw in this protocol is that there is no binding of the message sent
in (3) to messages (4) and (5). There’s no authentication in either messages
(4) or (5) that they came from A.

2.3 Denning-Sacco #1, key exchange

1. A—-S:AB

2. S — A:certy,certp

3. A— B :certy,certp,{[kap,Tal -1} Kp
A

The flaw in this protocol is that B can re-encrypt message (3) and send
it to C, and C will think that it was sent to C from A.

The moral is to be explicit and to bind names with messages. Signatures
serve to bind together parts of a message’s contents so that one cannot
change any field of the message.

2.4 SSL version 1, key exchange with mutual authentication

There was a flaw in version 1 of the SSL protocol:

1. A— B: {k?AB}KB
2. B—A: {NB}kAB
3. A— B :{certa, [NB]KZI}]CAB

A hint to finding the flaw in this protocol (SSL version 1 was never
submitted for standards) is that A will sign anything with her public key
<[NB]K;1 in message (3)).

The obvious flaw given the hint is that Alice becomes a signing oracle
and will sign arbitrary messages. This leads to the following attack: an
impostor B can connect to C and pretend to be A.

1'. B— C:{kpclk.
2. C— A:{Nctize

1. A— B:{kaB}ky
2. B— A:{Nc}tk,p
3. A— B :{certa, [NC]KXI}’CAB

3. B— C:{certy, [NC]Kgl}kAB



B initiates a connection with C, which authenticates via a signed nonce
N¢. B turns around and challenges A with this same nonce N¢ in a different
SSL session (where B is the server) and has A sign N¢. B can then extract
the signed N¢ from (3) and use it in his session with C (3’) to gain A’s
credentials.

2.5 ”How could I have found this?

To discover something like this SSL flaw, it might be instructure to go
through the goals of the protocol in your head. For example, the main goals
might be for A and B to know they’re talking with each other and not with
an impostor, and that the key remains a secret. With a set of listed goals,
it’s easier to see if any are violated.

The fix to the protocol is to introduce more information. The message
[NB]K; should be replaced with [A, B, N4, NB]K‘ZI.

The moral here is that you shouldn’t let yourself be used as a signing
oracle by naming principals and adding randomness to anything you sign.

2.6 GSM challenge-response

GSM is the communications protocol used by some cell networks. A handset
A and a base station B communicate with a long-lived symmetric key K 4p:

1. B— A: Np
2. A— B: A, [NB]KZE’ {data}y

where k = f(Kap, Np) is the voice privacy key.

One weakness in this protocol is that the base station never authenticates
itself to the handset. While a fake base station could not decode the data,
it could mount a denial of service to the handset.

2.7 X.509 Standard #1

The protocol is for sending a signed, encrypted message from A to B as
follows:

1. A— B: A /[Ty, B,{message} ] -1
A

The subtle issue in this protocol is that there is no indication that A
knew the contents of the message. For example, take a system where you
prove your identity by sending a password. Alice proves she has access to a
system by sending a password:



1. A— B: A [Ta,B, {Password}KB]Kgl

An attacker could extract {password} g, and sends:
. M — B: M,[Tn, B, {password} k] -1
M

Another example where this can introduce issues is in secure auctions,
where an eavesdropper can duplicate another bidder’s bid without knowing
the bid amount.

The takeaway from this example is the role that authentication can play
in systems:

1. Authentication as endorsement (i.e. taking responsibility)

2. Authentication as a way of claiming credit (i.e. stating authorship)

Signatures serve purpose (1) but not (2), and the moral is to sign before
encrypting.

2.8 An aside on timestamping services

Timestamping services serve to provide unforgeable signatures that bind a
document to a time. One proposal is to use hash chains, which have the
following form:

My Mo M3 My

l 1 1 | hash
H, Hy Hs H,

i ! ! !

0 — X1 — X2 — X3 — X4

In this system, the X;’s and H;’s are published. It’s not possible back-
date messages because the published values commit you to the contents of
each message.

2.9 TMN
A and B establish a shared key kp with the help of a fast server S.

1. A—>S:{/€A}KS
2. B— S :{kp}Kk,
3.S—>A: ksdkp



The assumptions in this protocol are that messages (1) and (2) are signed
by A and B, respectively, and that the server response (3) says that part of
the shared key is from B.

A recovers kp as kg @ (ka @ kp)

The flaw in this protocol is that it provides an oracle for an attacker.
Given {kp} K, nodes M and M’ can conspire to recover kp:

' M — S:{kp}kg
2. M — S {kM’}KS
3.5 —>M:kp®ky

M receives kg @ kpr, but can collude with M’ which generated kjp;s to
determine kp.

2.10 Goss railway protocol

In this protocol, A and B establish a shared key kap =14 ® rp:

1. A= B: A {ra}k,
2. B— A:B,{rp}k,

The goal for establishing session keys is that the key used for one session
cannot be used to learn anything about previous or future sessions.

This protocol is susceptible to a triangle attack in which attacker M can
recover 74 from {ra}x,:

1. M - B: M, {ra}k,
2. B— M : B {rs}k,,

If M learns kpps in the course of further interaction with B (e.g. the
key somehow leaks out or is found out through malicious means), M can
compute r4 = Kpp @ rlz. Doing the same with A, M can learn g and can
then determine the key kap.

Given that M has a mechanism to learn kgys, M can use both A and B
as a decryption oracle.

3 Summary
There were a number of principles to take away:

e You should write out your protocols in plain English to aide in evalu-
ating correctness.



e Your protocols should be very explicit and should including everything
(including versioning your protocol).

e Not discussed in the paper is the idea that each message should contain
a hash of all messages before the message, so that the context (session
history) of the message is very obvious and that it is also obvious if
there is a man-in-the-middle attack.

e Don’t reuse keys. This applies both across roles (signing, decrypting,
...) and time (session keys).

Lastly, protocol errors are very subtle. It is important to look everywhere
(take a system view) for potential security flaws. An example of this is that
signed email commonly signs just the contents of an e-mail message and
none of its headers.



