
CS 261 Scribe Notes

Sandboxing and SFI

Lecture 7 - 9/18/07

7.1 Sandboxing Examples and Reference Monitors

Here are 2 Examples where you might want to use sandboxing:

1) Web Browser with user created and installed plugins.

a. The plugins are completely untrusted, and you do not want to

the plugins to subvert the web browser.

b. You want to gain some protection against these plugins.

2) Application running in a system.

a. The application/code is downloaded and is not trusted.

b. You want to limit this downloaded code from subverting the

system in any way.

Code that is not completely trusted communicates with a reference monitor. The reference monitor then

communicates with the outside world.

Reference Monitor: If sandbox code wants to interact with anything, it must interact with the reference

monitor, which then may interact with the outside world in place of the sandboxed code.

Web Browser

Plugin

Virtual System

Downloaded

Code

The reference monitor is trying to enforce a security policy on the sandbox code. The policy may be

something such as no access to disk or no access to the network. There can be varying security policies

with a reference monitor, which must uphold this policy on the sandboxed application.

For example, a user process is the sandboxed code. The reference monitor is the system call that the OS

checks permission. The user process can only mess with its own memory except via the OS.

Firefox, for instance, may implement a reference monitor for plugins. The plugins may only be allowed to

manipulate certain visual areas of the browser, or access certain browser state, but not the saved

passwords in the browser.

7.2 Building a Sandbox

How to build an isolated Sandbox? Splitting allows us to modularize the security into two processes.

You can split this model into two Pieces:

a) Isolated sandbox. The code cannot interact with anything. It is completely isolated.

b) A reference monitor that enforces policy: (User level permission checking code).

SFI is a technique to build this sandbox.

Q: Other ways to build a sandbox?

• Run inside a VM. Run untrusted code in VM. Don’t let it access host machine.

o Just an optimization of buying a 2
nd

 machine and building a point to point network.

• Have a language (such as circuits) that doesn’t allow any way to express state such as

reading/writing a file.

� Notion of a Safe Language: Impossible to express prohibited actions like writing

a file.

� No side effects in the safe language and must be deterministic – depends only on

provided inputs.

• Hardware Isolation: Separate OS Process. Rely on OS’s memory protection for the sandbox.

• Interpreter: Interprets each instruction and checks if each instruction would violate the isolation

policy.

7.3 SFI

Advantages of SFI:

• Is within a process and no marshalling of code is needed. It can just pass a pointer, so it might

be faster. (this might be a dubious advantage)

• No context switching since it’s the same process.

• More flexible, and has fine grained isolation.

• Don’t have to modify the OS. It is very portable. Applications can provide security protection

by themselves.

• Smaller Trusted Base since we don’t need to rely on the OS.

There may not really be that great of a performance advantage with SFI since it takes a 20% performance

hit.

How to do performance comparison? cost of SFI is dependent on application

We need to look at cost per domain call and cost per memory access, as these are the 2 main costs.

Goals of SFI:

 Memory Safety: (self modifying code)

 Control-flow safety (where code can jump to). Need to ensure sandbox code can only jump to

locations within own code segment

 Type Safety:

Code = 0x10XXXXXX and Data = 0x20XXXXXX.

Code can only jump to within the 0x10 region, and can only jump on 16 byte chunks so that we can

ensure control flow safety.

For memory safety, SFI ensures that code can only write to the data region by restricting the writes to the

0x20 region (inspects the instruction on every store).

We have to know how control/memory safety relate to each other because we need to know where code

might jump to, in order to know where data might be written to and vice versa.

mov %eax, %(ebx) gets translated to:

and 0x020FFFFFF, %ebx

mov %eax, %(ebx)

This is to ensure that every move/store, the data stays within data region. Since there may be offsets to the

%ebx register, guard pages are used around the data region (that is unmapped) so that you cannot write

outside the data region. This way, only the register needs to be checked via the and instruction. We do not

have to check the offset in the mov instruction.

Check all jump instructions

a. Jump 0x10______ <- doesn’t need to change as long as target is there and okay and

aligned in the 16 byte chunk. We needed to prevent jumping to other artificially

introduced chunks because instructions are of variable length. If we do not jump to an

aligned chunk, we may be able to jump to a ‘hidden’ set of instructions if we do not

really jump to the beginning of an instruction. Before this idea, SFI could only be RISC

because of the variable length instructions. (NOPS are inserted in instruction regions to

make sure certain instructions are aligned on the proper chunks).

b. Indirect branch

Jump %ebx gets translated to:

and 0x10FFFFFF, %ebx

Jump %ebx

This ensures that you can only jump to the 0x10 region or the 0x00 region. You must un

map 0x00 region or security is compromised since data can also write to 0x00.

How would you extend SFI to use a reference monitor?

We can allow key jumps to predefined location at specified entry points in unrestricted code. We force

this to only work for direct jumps, because indirect jumps are messy. Indirect jumps are difficult because

there may be offsets for the register, so we can just disallow indirect jumps into the unrestricted code.

This moves the burden onto the code writer.

We can’t allow reference monitor to jump back to code in unaligned spot, so we must use check the return

address to jump back to the proper aligned location in the 0x10 code region. Also, the malicious sandbox

code can give us a bad return address, so we must use jump checks on the return address.

The reference monitor is on the same stack being used as the untrusted code, so in order to prevent data

from being overwritten by malicious code in the sandbox, the reference monitor must switch to using its

own private stack.

There is also no guarantee that malicious code uses the proper callback structure. The reference monitor

needs to save and restore their own data on the stack instead of relying on the code to adhere to the

callback structure. .

7.4 Analogy on Isolation

OS SFI
Kernel reference monitor

User process sandbox code

System call invoking of reference monitor

Comparison of security guarantees by SFI and the OS

• Confidentiality: SFI lets you read entire address space, as there is no sandbox on reads in SFI.

• Availability: SFI doesn’t prevent malicious code from using DOS attacks (infinite loops). In

order to fix this, we can have a reference monitor that starts a timer before starting malicious

code. When the timer exception occurs, jump back to reference monitor code to determine if the

code in the sandbox can still run.

 7.5 Techniques for binary transformation

1) Source/Assembly -> binary code (statically) (SFI)

2) Binary code-> binary code (runtime on the fly) Dynamic (RIO, VMWare, Plex86)

3) Binary code -> binary code (statically)

This is in order of difficulty to implement, and 3) is a real pain to do.

Number 2 is implemented by having an infrastructure that simulates x86 at high level, The

general process is, transform the original block of binary code, execute this new block of binary

code, at the end jumps back to the runtime transformation framework. This framework then

translates the next block of binary code and so forth.

The SFI process translates assembly code to binary code statically.

After the transformation, the verifier checks to make sure that the new assembly is secure.

This allows us to leave the transformation code, which may be very complicated, outside the

TCB. Only the small verifier lies in the TCB.

The notion of “transform and check” is popular in security.

It is good to look for opportunities where we can transform

code into an easier sub case that we can verify is safe and

secure.

General implementation of

transforming binary code->binary

code during runtime.

Easy

to

verify

transform

