
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 8
Lecturer: David Wagner February 20, 2003

Notes 8 for CS 170

1 Minimum Spanning Trees

A tree is an undirected graph that is connected and acyclic. It is easy to show (see Theorem
5.2 in CLR; B.2 of CLRS) that if graph G(V, E) that satisfies any two of the following
properties also satisfies the third, and is therefore a tree:

• G(V, E) is connected

• G(V, E) is acyclic

• |E| = |V | − 1

A spanning tree in a graph G(V, E) is a subset of edges T ⊆ E that are acyclic and
connect all the vertices in V . It follows from the above conditions that a spanning tree
must consist of exactly n − 1 edges. Now suppose that each edge has a weight associated
with it: w : E → Z. Say that the weight of a tree T is the sum of the weights of its edges;
w(T) =

∑
e∈T w(e). The minimum spanning tree in a weighted graph G(V, E) is one which

has the smallest weight among all spanning trees in G(V, E).
In general, the number of spanning trees in G(V, E) grows exponentially in the number

of vertices in G(V, E). Therefore it is infeasible to search through all possible spanning
trees to find the lightest one. Luckily it is not necessary to examine all possible spanning
trees; minimum spanning trees satisfy a very important property which makes it possible
to efficiently zoom in on the answer.

We shall construct the minimum spanning tree by successively selecting edges to include
in the tree. We will guarantee after the inclusion of each new edge that the selected edges,
X, form a subset of some minimum spanning tree, T . How can we guarantee this if we
don’t yet know any minimum spanning tree in the graph? The following property provides
this guarantee:

Lemma 1 (Cut Lemma)
Let X ⊆ T where T is a MST in G(V, E). Let S ⊂ V such that no edge in X crosses

between S and V −S; i.e., no edge in X has one endpoint in S and one endpoint in V −S.

Among edges crossing between S and V − S, let e be an edge of minimum weight. Then

X ∪ {e} ⊆ T ′ where T ′ is a MST in G(V, E).
Before proving the Cut Lemma, we need to make some observations about trees. Let

G = (V, E) be a tree, let v, w be vertices such that (v, w) 6∈ E, and consider the graph
obtained from G by adding the edge (v, w), that is, G′ = (V, E′) where E′ = E ∪ {(u, v)}.
Then

1. G′ has exactly one simple cycle

2. If we remove from G′ any of the edges on the unique cycle, we obtain a tree.

Notes number 8 2

To prove part (1), notice that, since G is connected, there is a path from v to w, and
this path, together with the edge (v, w) gives a cycle. Now, every simple cycle in G′ must
contain the edge (v, w), and then a simple path in G from v to w, but in a tree there is only
one simple path between two fixed vertices (if there were two simple paths with the same
endpoints, their union would contain a cycle).

To prove part (2), let v, v1, . . . , vk, w, v be the unique cycle in G′, and let us call v = v0

and w = vk+1. Suppose we remove from G′ the edge (vi, vi+1), for some i ∈ {0, . . . , k}, and
let us call G′′ the resulting graph. Then G′′ is acyclic, because we have broken the unique
cycle in G′, and it is connected, since G′ is connected, and any path in G′ that used the
edge (vi, vi+1) can be re-routed via the path from vi to vi+1 that still exists.

We can now prove the Cut Lemma.

Proof: [Of Lemma 1] If e ∈ T , then we can set T ′ = T and we are done.
Let us now consider the case e /∈ T . Adding e into T creates a unique cycle. We will

remove a single edge e′ from this unique cycle, thus getting T ′ = (T ∪{e})−{e′} which, by
the above analysis is again a tree.

We will now show that it is always possible to select an edge e′ in the cycle such that it
crosses between S and V − S. Now, since e is a minimum weight edge crossing between S
and V − S, w(e′) ≥ w(e). Therefore w(T ′) = w(T) + w(e) − w(e′) ≤ w(T). However since
T is a MST, it follows that T ′ is also a MST and w(e) = w(e′). Furthermore, since X has
no edge crossing between S and V − S, it follows that X ⊆ T ′ and thus X ∪ {e} ⊆ T ′.

How do we know that there is an edge e′ 6= e in the unique cycle created by adding e
into T , such that e′ crosses between S and V − S? This is easy to see, because as we trace
the cycle, e crosses between S and V − S, and we must cross back along some other edge
to return to the starting point. 2

In light of this, the basic outline of our minimum spanning tree algorithms is going to
be the following:

X := { } ... X contains the edges of the MST
Repeat until |X| = n − 1

Pick a set S ⊆ V such that no edge in X crosses between S and V − S
Let e be a lightest edge in G(V, E) that crosses between S and V − S
X := X ∪ {e}

We will now describe two implementations of the above general procedure.

2 Prim’s algorithm:

In the case of Prim’s algorithm, X consists of a single tree, and the set S is the set of
vertices of that tree. In order to find the lightest edge crossing between S and V − S,
Prim’s algorithm maintains a heap containing all those vertices in V −S which are adjacent
to some vertex in S. The key of a vertex v, according to which the heap is ordered, is the
weight of its lightest edge to a vertex in S. This is reminiscent of Dijkstra’s algorithm. As

Notes number 8 3

in Dijkstra’s algorithm, each vertex v will also have a parent pointer prev[v] which is the
other endpoint of the lightest edge from v to a vertex in S. Notice that the pseudocode for
Prim’s algorithm is identical to that for Dijkstra’s algorithm, except for the definition of
the key under which the heap is ordered:

algorithm Prim(weighted graph G=(V, E))

initialize empty priority queue H
for all v ∈ V do

key[v] = ∞; prev[v] =nil

pick an arbitrary vertex s

H={s}; key[s] =0; mark(s)

while H is not empty do

v := deletemin(H)

mark(v)

for each edge (v,w) in E out of v do

if w unmarked and key[w] > weight[v,w] then

key[w] := weight[v,w]; prev[w] = v; insert(w,H)

As in Dijkstra’s algorithm, insert(w,H) really means to insert only if w 6∈ H, and to
update w’s priority key in H otherwise.

The complexity analysis of Prim’s algorithm is identical to Dijkstra: each vertex and
each edge is processed once, so the cost is |V |·Cost(deletemin) + |E|·Cost(insert).

The vertices that are removed from the heap form the set S in the cut property stated
above. The set X of edges chosen to be included in the MST are given by the parent
pointers prev of the vertices in the set S. Since the smallest key in the heap at any time
gives the lightest edge crossing between S and V − S, Prim’s algorithm follows the generic
outline for a MST algorithm presented above, and therefore its correctness follows from the
cut property.

3 Kruskal’s algorithm

Kruskal’s algorithm starts with the edges sorted in increasing order by weight. Initially
X = { }, and each vertex in the graph regarded as a trivial tree (with no edges). Each edge
in the sorted list is examined in order, and if its endpoints are in the same tree, then the
edge is discarded; otherwise it is included in X and this causes the two trees containing the
endpoints of this edge to merge into a single tree. Thus, X consists of a forest of trees, and
edges are added until it consists of exactly one tree, a MST. At each step S consists of the
endpoints of vertices of one tree in X, the tree which contains one endpoint of the chosen
edge.

To implement Kruskal’s algorithm, given a forest of trees, we must decide given two
vertices whether they belong to the same tree. For the purposes of this test, each tree in
the forest can be represented by a set consisting of the vertices in that tree. We also need
to be able to update our data structure to reflect the merging of two trees into a single tree.
Thus our data structure will maintain a collection of disjoint sets (disjoint since each vertex
is in exactly one tree), and support the following two operations:

Notes number 8 4

• find(x): Given an element x, which set does it belong to?

• union(x,y): replace the set containing x and the set containing y by their union.

The data structure is constructed with the operation makeset(x), that adds to the data
structure a set that contains the only element x.

We will discuss the implementation of find and union later. The pseudocode for
Kruskal’s algorithm follows:

algorithm Kruskal(weighted graph G(V, E))
X = { }
sort E by weight

for u ∈ V
makeset(u)

for (u, v) ∈ E in increasing order by weight

if find(u) 6= find(v) do

X = X ∪ {(u, v)}
union(u,v)

return(X)

end

The correctness of Kruskal’s algorithm follows from the following argument: Kruskal’s
algorithm adds an edge e into X only if it connects two trees; let S be the set of vertices
in one of these two trees. Then e must be the first edge in the sorted edge list that has
one endpoint in S and the other endpoint in V − S, and is therefore the lightest edge that
crosses between S and V −S. Thus the cut property of MST implies the correctness of the
algorithm.

The running time of the algorithm is dominated by the set operations union and find

and by the time to sort the edge weights. There are n − 1 union operations (one corre-
sponding to each edge in the spanning tree), and 2m find operations (2 for each edge).
Thus the total time of Kruskal’s algorithm is O(m × FIND + n × UNION + m log m).
This will be seen to be O(m log n).

4 Exchange Property

Actually spanning trees satisfy an even stronger property than the cut property—the ex-
change property. The exchange property is quite remarkable since it implies that we can
“walk” from any spanning tree T to a minimum spanning tree T̂ by a sequence of exchange
moves—each such move consists of throwing an edge out of the current tree that is not in
T̂ , and adding a new edge into the current tree that is in T̂ . Moreover, each successive tree
in the “walk” is guaranteed to weigh no more than its predecessor.

Lemma 2 (Exchange Lemma)
Let T and T ′ be spanning trees in G(V, E). Given any e′ ∈ T ′ − T , there exists an edge

e ∈ T − T ′ such that (T − {e}) ∪ {e′} is also a spanning tree.

Notes number 8 5

Proof: [Sketch] The proof is quite similar to that of the Cut Lemma. Adding e′ into T
results in a unique cycle. There must be some edge in this cycle that is not in T ′ (since
otherwise T ′ must have a cycle). Call this edge e. Then deleting e restores a spanning tree,
since connectivity is not affected, and the number of edges is restored to n − 1. 2

To see how one may use this exchange property to “walk” from any spanning tree to a
MST: let T be any spanning tree and let T̂ be a MST in G(V, E). Let e′ be the lightest
edge that is not in both trees. Perform an exchange using this edge. Since the exchange
was done with the lightest such edge, the new tree must be at least as light as the old one.
Since T̂ is already a MST, it follows that the exchange must have been performed upon T
and results in a lighter spanning tree which has more edges in common with T̂ (if there are
several edges of the same weight, then the new tree might not be lighter, but it still has
more edges in common with T̂).

