
UC Berkeley—CS 170 Problem Set 9
Lecturer: David Wagner Due on April 17 at 3:30 p.m.

Problem Set 9 for CS 170

Formatting

Please use the following format for the top of the solution you turn in, with one line per
item below (in the order shown below):

<your username on cory.eecs>
<your full name>
CS170, Spring 2003

Homework #9

Section <your section number>
Partners: <your list of partners>

(Remember to write your section number, not the name of your TA or the time of your
section.) This will make it easier for us to sort and process your homeworks. Thank you!

Note

When asked for an algorithm you must give (1) a brief informal description of the algorithm,
(2) a precise description using pseudo-code, (3) an informal argument for termination and
correctness of the algorithm, and (4) an analysis of the running time of the algorithm. Be
clear about what the input to the algorithm is, how you measure the size of the input, and
what constitutes a “step” in your running-time analysis.

Problem 0. [Any questions?] (5 points)

What’s the one thing you’d most like to see explained better in lecture or discussion sections?
A one-line answer would be appreciated.

(Sometimes we botch the description of some concept, leaving people confused. Some-
times we omit things people would like to hear about. Sometimes the book is very confusing
on some point. Here’s your chance to tell us what those things were.)

Problem 1. [Card Game] (30 points)

Consider the following card game. The dealer lays out n cards face up and side-by-side
in a line, so that both the player and the dealer know the face value of each card. The
player and the dealer then take turns taking a card from either end (but only the ends, not
anywhere in the middle) of the line of remaining cards, with the player going first. After
n of these turns, all of the cards have been taken, and the player wins if the cards in her
hand have a larger sum than the cards in the dealer’s hand. The dealer wins if his sum is
greater than or equal to the player’s sum, and he always makes the best possible move he
can.

Alice has found a soon-to-be-bankrupt casino that allows players to bet on this game
after the cards have been dealt.



Problem set 9 due on April 17 at 3:30 p.m. 2

(a) Design an algorithm for Alice to use in determining when to bet on this game. It is
given as input n and an array C where C[i] contains the value of card i. It should
output “Yes” if Alice can definitely win (assuming she makes the right moves) or “No”
if it is possible for the dealer to win – Alice doesn’t take chances.

(b) How would you modify your algorithm to output an optimal move for each possible
intermediate situation? For example:

Cards 1..52 remain, take card 1

Cards 2..52 remain, take card 2

...

Cards 5..43 remain, take card 43

...

Cards 20..52 remain, take card 20

...

Cards 33..33 remain, take card 33

...

Problem 2. [Randomized 2-SAT] (35 points)

2-SAT (for 2-Satisfiability) is a (relatively easy) special case of the NP-complete problem
SAT.

In satisfiability problems, you are given a boolean formula φ and you are asked to
determine whether or not it has a satisfying assignment (some True/False setting of the
variables in φ that makes the whole formula true) and return a satisfying assignment if it
exists.

In 2-SAT, it is required that φ is in 2-conjunctive normal form (2-CNF). This means
that the input looks something like:

(x4 ∨ x2) ∧ (x3 ∨ x2) ∧ (x1 ∨ x2) ∧ . . . ∧ (x501 ∨ x24)

That is, φ is a conjunction (and) of clauses, where each clause has two literals. A literal

is an instance of a variable or its negation, a disjunction (or) of two literals makes a clause,
and a conjunction of these clauses makes a 2-CNF formula. For example, in

φ = (x1 ∨ x2) ∧ (x2 ∨ x3),

x1, x2, and x3 are the variables, (x1 ∨ x2) is a clause, and x1 and x2 are literals in that
clause.

A satisfying assignmentA for a formula φ is a mappingA : {x1, x2, x3} → {True,False}
that makes the formula true. For example, if A is an assignment such that A(x1) = False

and A(x3) = True, it is a satisfying assignment for φ (notice x2’s value does not matter).
Finally, the size of a formula φ is the number of clauses. Note that a formula φ of size

n has at most 2n variables.
Consider the following algorithm:



Problem set 9 due on April 17 at 3:30 p.m. 3

MC-2-SAT(φ):
1: for each variable xi in φ do:
2: A[i]← False

3: do k times:
4: if φ is satisfied:
5: return Satisfiable by A
6: randomly pick an unsatisfied clause (li ∨ lj) from φ
7: randomly pick v from {i, j}

8: A[v]← A[v]
9: return Unsatisfiable

The value of k in line 3 will be determined in part (c) below.

(a) Can MC-2-SAT ever output Unsatisfiable when run on a formula that is in fact sat-
isfiable?

(b) Can MC-2-SAT ever output Satisfiable when run on a formula that is in fact unsatis-
fiable?

(c) Show that there is a choice of k (as a function of n) so that k = O(n2) and that is
sufficient to find a satisfying assignment (if one exists) in lines 3–8 with probability at
least 1− 1

2100 .

A useful fact: Suppose we have random variables Xi (i ≥ 0) that take values in the
range {0, . . . , n}. Suppose they’re defined such that Xi+1 = 1 if Xi = 0, Xi+1 = n if
Xi = n, and otherwise: Xi+1 = Xi+1 with probability pi ≥ 1/2, Xi−1 with probability
1 − pi (i.e., ≤ 1/2)1. Let T = min{k | Xk = n}. Note that T is a random variable.
Then it turns out that the expected value of T is at most (n − 1)2. (You do not need
to prove this.)

Hint: Let B be a satisfying assignment. Define Xi in terms of the difference between
A and B at each iteration of the main loop.

Hint: Given only that E[T ] ≤ (n−1)2, how big should k′ be so that Pr[T > k′] ≤ 1/2?
If those first k′ steps are taken but still Xk′ < n, what is the probability that X2k′ < n
(i.e., what is Pr[T > 2k′ | T > k′])?

(d) Taking into account your choice of k in part (c), what is the running time of MC-2-SAT(φ)
as a function of n, the size of φ?

1Strictly speaking, this random ±1 change must happen independently of the values of X0, . . . , Xi. How-

ever, you don’t need to worry about independence for this problem.



Problem set 9 due on April 17 at 3:30 p.m. 4

Problem 3. [Deterministic 2-SAT] (30 points)

Refer to the definition of 2-SAT in Problem 2. Note that Problem 2 gives a randomized
algorithm to solve 2-SAT.

For this problem, give a deterministic algorithm to solve 2-SAT. (Deterministic means
that you cannot use any randomness in your algorithm.) Use the method for solving Horn
formula that was given in class as a subroutine. You do not need to give a proof of correctness
for your algorithm (but your algorithm had better work correctly, of course).

Hint (modified 4/11): For each variable xi in the 2-CNF formula φ, introduce corresponding
Horn variables xi and Xi to represent xi and xi. Rewrite each clause in the 2-CNF formula
as an implication to get a Horn formula ψ (in terms of the xi and Xi variables – remember,
no complements in Horn formulas). If φ has a satisfying assignment that sets xi = True,
what should never be implied when xi is asserted true (i.e., when xi is added by itself to
the Horn formula ψ and a minimal truth assignment is deduced)? In other words, when
xi = True in some satisfying assignment for φ, what shouldn’t be true of the least satisfying
assignment for ψ ∧ xi? And, what about xi = False?

Bonus Problem. [Optimal Traffic Enforcement] (0 points)

There is a Θ(n)-time algorithm for the task stated in the second half of Problem 3 on the
midterm. Find it.


