usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Turtle Guard: Helping Android Users Apply
Contextual Privacy Preferences

Lynn Tsai, University of California, Berkeley; Primal Wijesekera, University of British
Columbia; Joel Reardon, Irwin Reyes, Serge Egelman, and David Wagner, University of
California, Berkeley; Nathan Good and Jung-Wei Chen, Good Research

https://www.usenix.org/conference/soups2017/technical-sessions/presentation/tsai

This paper is included in the Proceedings of the

Thirteenth Symposium on Usable Privacy and Security (SOUPS 2017).
July 12-14, 2017 - Santa Clara, CA, USA
ISBN 978-1-931971-39-3

Open access to the Proceedings of the
Thirteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

TurtleGuard: Helping Android Users Apply Contextual
Privacy Preferences

Lynn Tsai', Primal Wijesekera?, Joel Reardon!, Irwin Reyes?, Jung-Wei Chen*,
Nathan Good*, Serge Egelman®#, and David Wagner*

'University of California, Berkeley, Berkeley, CA
{lynntsai,jreardon}@berkeley.edu, daw@cs.berkeley.edu

*University of British Columbia, Vancouver, BC
primal@ece.ubc.ca

3International Computer Science Institute, Berkeley, CA

{ioreyes,egelman}@icsi.berkeley.edu

“Good Research, Inc., El Cerrito, CA
{jennifer,nathan}@goodresearch.com

ABSTRACT

Current mobile platforms provide privacy management in-
terfaces to regulate how applications access sensitive data.
Prior research has shown how these interfaces are insufficient
from a usability standpoint: they do not account for context.
In allowing for more contextual decisions, machine-learning
techniques have shown great promise for designing systems
that automatically make privacy decisions on behalf of the
user. However, if such decisions are made automatically,
then feedback mechanisms are needed to empower users to
both audit those decisions and correct any errors.

In this paper, we describe our user-centered approach to-
wards designing a fully functional privacy feedback interface
for the Android platform. We performed two large-scale user
studies to research the usability of our design. Our second,
580-person validation study showed that users of our new
interface were significantly more likely to both understand
and control the selected set of circumstances under which
applications could access sensitive data when compared to
the default Android privacy settings interface.

1. INTRODUCTION

Smartphones store a great deal of personal information, such
as the user’s contacts, location, and call history. Mobile op-
erating systems use permission systems to control access to
this data and prevent potentially malicious third-party ap-
plications (“apps”) from obtaining sensitive user data. Part
of the purpose of these permission systems is to inform and
empower users to make appropriate decisions about which
apps have access to which pieces of personal information.

The popular open-source Android mobile platform has used
two general approaches to give users control over permis-
sions. Initially, permissions were presented as an install-

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Symposium on Usable Privacy and Security (SOUPS) 2017, July 12-14,
2017, Santa Clara, California.

time ultimatum, or ask-on-install (AOI): at installation, an
application would disclose the full list of sensitive resources
it wished to access. Users could either grant access to all re-
quested permissions or abort the installation entirely. Prior
research has shown that most users do not pay attention to
or do not these prompts when shown at install-time [12].

Recently, an ask-on-first-use (AOFU) permission system re-
placed install-time disclosures on Android. Under AOFU,
the user is prompted when an application requests a sensi-
tive permission for the first time. The user’s response to this
permission request carries forward to all future requests by
that application for that permission. The AOFU approach,
however, fails to consider that the user’s preferences may
change in different contexts. It only learns the user’s prefer-
ences once under a certain set of contextual circumstances:
the first time an application tries to access a particular data
type. This system does not account for the fact that subse-
quent requests may occur under different contextual circum-
stances and therefore may be deemed less appropriate. For
instance, a user might feel comfortable with an application
requesting location data to deliver desirable location-based
functionality. The same user, however, might find it unac-
ceptable for the same application to access location for the
purposes of behavioral advertising, possibly when the appli-
cation is not even being used.

The contextual integrity framework can explain why AOFU
is insufficient: it fails to protect user privacy because it
does not account for the context surrounding data flows [25].
That is, privacy violations occur when a data flow (e.g., an
app’s access to a sensitive resource) defies user expectations.
In recent work [38, 39], we showed that mobile users do make
contextual privacy decisions: decisions to allow or deny ac-
cess are based on what they were doing on their mobile de-
vices at the time that data was requested.

In theory, asking the user to make a decision for every re-
quest is optimal, as the user will be able to account for the
surrounding context and can then make decisions on a case-
by-case basis. In practice, however, this results in unusable
privacy controls, as the frequency of these requests could
overwhelm the user [38]. Consequently, automating these
decisions with machine learning yields a balance between

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 145

accurately implementing users’ privacy preferences and not
overburdening them with too many decisions [39]. Such au-
tomation requires the platform to have feedback mechanisms
so that automated decisions can be reviewed and errors can
be corrected, thereby yielding fewer future errors.

To this end, we designed a novel permission manager, Turtle-
Guard, which helps users to vary their privacy preferences
based on a few selected contextual circumstances. It also
provides information about the apps that they use, by pro-
viding a feedback loop for them to audit and modify how
automated decisions are made. TurtleGuard allows users to
(i) vary their decisions based on the visibility of the request-
ing application — our previous work showed that the visibil-
ity of the requesting application is a critical factor used by
users when making mobile app privacy decisions [38], and
(ii) have an improved understanding of how third-party ap-
plications access resources in the real world and under vary-
ing contextual circumstances.

We conducted an initial 400-person experiment to evaluate
our preliminary design. Based on our analysis of this data,
we then iterated on our design, conducting a 580-person vali-
dation study to demonstrate our design’s effectiveness. Both
experiments had four tasks: three tasks that involved using
the system to locate information about current application
permissions, and one task that involved modifying settings.
We observed that participants who used TurtleGuard were
significantly more likely to vary their privacy preferences
based on surrounding circumstances than the control group.
We believe that these results are a critical contribution to-
wards empowering mobile users to make privacy decisions on
mobile phone platforms. Our contributions are as follows:

e We present the first contextually-aware permission man-
ager for third-party applications in Android.

e We show that when using our new interface (compared
to the existing Android interface) participants were
significantly more likely to both understand when ap-
plications had foreground versus background access to
sensitive data and how to correctly control it.

e We show that our proposed interface has a minimal
learning curve. Participants, who had never used Turtle-
Guard before, were as successful at accomplishing in-
formation retrieval tasks as those who used the exist-
ing Android interface.

2. RELATED WORK

The Android OS has thus far used two different permission
models: ask-on-install (AOI) permissions, and ask-on-first-
use (AOFU) permissions. Versions of Android before ver-
sion 6.0 (Marshmallow) implemented ask-on-install permis-
sions. Under this model, applications request that the user
grant all permissions to the application at install time. The
user must consent to all requested permissions in order to
complete installation. Otherwise, if the user wishes to deny
any permission, the only option available is to abort the in-
stallation entirely. Research has shown that few users read
install time permissions, and fewer still correctly understand
their meaning [12, 18].

Versions of Android from 6.0 (Marshmallow) onward use
the AOFU permission model instead. Under AOFU, appli-
cations prompt users for sensitive permissions at runtime.

These prompts protect access to a set of 24 “dangerous
permissions,” including geolocation data, contact lists, and
SMS. Prompts appear when the application attempts to re-
quest protected resources for the first time. This has the
advantage of giving users contextual clues about why an ap-
plication requires a protected resource: users can consider
what they are doing when the prompt appears to help de-
termine whether to approve the request. Although AOFU
offers an improvement over the install-time model in this
regard, first-use prompts insufficiently capture a user’s pri-
vacy preferences [39]. That is, the AOFU model does not
consider scenarios where an application requests access to
data under varying contexts.

Research on permission models has found that users are of-
ten unaware how apps access protected resources and how
access may be regulated [12, 8, 11, 36, 34]. Shih et al. showed
that users are more likely to disclose privacy information
when the purpose is unclear [35]. Prior work has specifically
analyzed location data: Benisch et al. show that a vast num-
ber of factors (time, day, location) contribute to disclosure
preferences [5]; Reilly et al. show that users want minimal
interaction with their technology [31]. Additionally, Patil
et al. takes into consideration context: they suggest mak-
ing feedback actionable and allowing for selective control re-
garding location data [29]. They also show that users have
difficulty articulating location access controls, and suggest
an interface that includes contextual factors as a potential
solution [28]. Almuhimedi et al. studied AppOps, a per-
mission manager introduced in Android 4.3 but removed in
Version 4.4.2 [1]. AppOps allowed users to review and mod-
ify application permissions once installed, as well as set de-
fault permissions that newly installed applications must fol-
low. They examined privacy nudges that were designed to
increase user awareness of privacy risks and facilitate the use
of AppOps. They concluded that Android users benefit from
the use of a permission manager, and that privacy nudges
are an effective method of increasing user awareness [1].

Although AppOps was removed from Android, Android 6.0
(Marshmallow) reintroduced permission management. It—
and subsequent versions as of this writing—include an up-
dated interface that allows the user to view all of the per-
missions that a particular app has been granted, as well as
all of the apps that have been granted a particular permis-
sion (Figure 1). Unfortunately, these controls are buried
deep within the Settings app, and it is therefore unlikely
that users are aware of them. For instance, viewing a par-
ticular app’s permissions requires navigating four levels of
sub-panels, whereas viewing all the apps that have requested
a particular permission requires navigating five levels. By
comparison, TurtleGuard is one click from the main Settings
panel and explicitly presents the relationships between ap-
plications, permissions, and controls.

XPrivacy [6], DonkeyGuard [7], Permission Master [23], and
LineageOS’s' Privacy Guard [24] are examples of other third-
party permission management software. These utilities re-
quire additional privileges and techniques to install because
Android provides no official mechanisms for third-party pro-
grams to modify the permission system. For instance, Pri-
vacy Guard is built into the LineageOS custom ROM [24];

LineageOS is a recent fork of CyanogenMod after the lat-
ter’s discontinuation.

146 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

& A v N 254

App permissions < Contacts permissions

Calendar Calendar o
m Calendar [) G Chrome
E Contacts o g Cloud Print
9 Location e Contacts o
‘. Phone E Docs
L Drive
‘) Fit
@ Gboard o
M mail)

Figure 1: After navigating four and five levels of sub-panels
within the Android Settings app, respectively, users can
limit a specific app’s access to specific permissions (left) or
limit the apps that can access a particular permission (right).

others use the Xposed Framework [32], which requires an
unlocked bootloader and a custom recovery partition. Such
restrictions are necessary to prevent malicious software from
interfering with the existing permission system.

Third-party permission managers offer users a variety of fea-
tures to fine-tune access to sensitive resources on their de-
vices. XPrivacy has the option to pass fake data to applica-
tions that have been denied access to protected resources [2].
Hornyack et al.’s AppFence similarly allows users to deny
permissions to applications by providing fake data [16]. Pro-
viding fake data is more desirable than simply failing to pro-
vide any data at all, as the latter may cause functionality
loss or application failures.

These managers follow an Identity Based Access Control
model (IBAC), where individual permissions can be set for
each app. Although this model allows users to specify fine-
grained permission preferences, this may be ineffective in
practice for two reasons. First, users may be overwhelmed
by the number of settings available to them, some of which
are only tangentially relevant to privacy. This security de-
sign failure is known as the wall of checkbozes [14]. XPrivacy
and Permission Master show controls for resources whose di-
rect effects on user privacy are unclear, such as keeping a
device awake. TurtleGuard improves usability by showing
only controls for resources deemed “dangerous” in the An-
droid platform [15] and others that previous research has
shown are conducive to using run-time prompts [10]. Sec-
ond, none of the existing permission managers display the
context in which protected resources were accessed. XPri-
vacy, Donkey Guard, and LineageOS’s Privacy Guard pro-
vide timestamps for resource accesses, but the user does not
receive important information about the app’s state, such as
whether it was actively being used when it requested access

to sensitive data. Permission Master offers no historical in-
formation at all. TurtleGuard partially addresses this prob-
lem by listing recently allowed and denied permission access
requests, along with the state and visibility of the request-
ing application at the time the permission was requested.

Apple’s i0S platform offers visibility-sensitive location pri-
vacy settings: “Never” and “Always” (the two settings anal-
ogous to Android’s permission on/off toggles), and a “While
using the app” option, which only permits an application to
access location data while the application is active on the
screen. TurtleGuard uses the same options, but our design is
novel in both the extent of these settings and in who controls
them. Apple’s iOS allows developers to control which of the
three options are available to users to select [3]. Application
developers have faced criticism for removing the “While us-
ing the app” option, forcing users to choose between reduced
functionality and granting the application unrestricted ac-
cess to sensitive location data [26]. Our design, by contrast,
gives users all three of these options for all sensitive permis-
sions (Table 5, Appendix). Furthermore, developers cannot
restrict user choice with these settings, as TurtleGuard is
implemented in the operating system.

Wijesekera et al. show that although AOFU improves on
install-time permissions, AOFU is insufficient because it does
not account for the context of the requests [39]. They exam-
ined this by instrumenting the Android platform to log all
instances of apps accessing sensitive resources. In addition
to their instrumentation, the platform randomly prompted
users about the appropriateness of various permission re-
quests as those requests occurred. Participant responses to
these prompts were treated as the dependent variable for a
training set. Their study showed that 95% of participants
would have chosen to block at least one access request had
the system notified them. On average, participants would
have preferred to block 60% of permission requests. Indeed,
other work suggests that contextual cues are key in detect-
ing privacy violations [25, 4].

A natural extension of AOFU is “ask on every use”: rather
than extrapolating the user’s first-time preference to all fu-
ture accesses to a given resource, each access instead requires
user input. Such a model would conceivably allow users to
accurately specify their contextual preferences because they
know exactly which app attempted to gain access to what re-
source under which circumstance. This approach, however,
is unusable in practice. Research has shown that applica-
tions request access to permission-protected resources with
great frequency: on an average smartphone, roughly once
every 15 seconds [38]. Such a high frequency not only risks
habituation, but would render the device inoperable.

Recent research on permission models has turned towards
using machine learning (ML) [39, 20, 21, 19]. One advan-
tage is ML’s ability to incorporate nuanced contextual data
to predict user preferences; the approach has shown signif-
icantly lower error rates over the status quo, i.e., AOFU.
Wijesekera et al. [39] also showed that ML reduces user in-
volvement, thereby minimizing habituation. They empha-
size, however, the importance of having a user interface that
functions as a feedback-loop to the classifier, since no prac-
tical classifier will ever be 100% accurate. Users can use the
interface to audit the decisions made by the classifier and
correct any decisions that do not match their preferences.

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 147

Such a mechanism not only ensures that the classifier im-
proves its accuracy over time, it also keeps users aware of de-
cisions that were made on their behalves and informs them
of how third-party apps are accessing sensitive resources un-
der various circumstances.

TurtleGuard provides two core components necessary for us-
ability under such contextual privacy models: we provide
users with key contextual information when regulating ac-
cess to sensitive resources, and we provide a method for users
to audit and correct the decisions that have been automati-
cally made by the system.

3. DESIGN OBJECTIVES

TurtleGuard’s primary function is to inform users about the
decisions that have been automatically made on their be-
half, while allowing them to easily correct errors (thereby
improving the accuracy of future decisions). These errors
can be either false positives—an app is denied a permission
that it actually needs to function—or false negatives—an
app is granted access to data against the user’s preferences.

Thompson et al. showed how attribution mechanisms can
help users better understand smartphone application resource
accesses [37]. They found that users expect this information
to be found in the device’s Settings app. In our initial ex-
periment, we evaluated TurtleGuard as a standalone app,
though for this reason we ultimately moved it within the
Android Settings panel prior to our validation experiment.

3.1 Incorporating Context

In prior work, researchers observed that only 22% of partic-
ipants understood that applications continue to run when
not visible and that they have the same access to sensitive
user data that they do when actively being used [37]. This
means that the majority of users incorrectly believe that
applications either stop running when in the background or
lose the ability to access sensitive data altogether. Wijesek-
era et al. corroborated this observation in a field study of
users’ privacy expectations: users are more likely to deem
permission requests from background applications as being
inappropriate or unexpected, and indicate a desire to regu-
late applications’ access to sensitive data based on whether
or not those applications are in use [38].

In the default permission manager, users cannot vary their
decisions based on the visibility of the requesting applica-
tion, or any other contextual factors. Our overarching goal
is to empower users to make contextual decisions (i.e., based
on what they were doing on the device) and to apply these
decisions to future use cases, so that fewer decisions need to
be explicitly made overall. As a first step towards allowing
users to make contextual decisions, TurtleGuard makes de-
cisions about whether or not to allow or deny access based
on whether the requesting application is actively being used.
While this is but one contextual factor amongst many, it is
likely one of the most important factors [38].

Moving one step beyond the all-or-nothing approach of al-
lowing or denying an application’s access to a particular data
type, our new design gives the user a third option: allow-
ing applications to access protected data only when in use
(Table 1 and Figure 2). When the when in use option is se-
lected, the platform only allows an application to access a
resource if the application is running in such a way that it

option meaning

always The permission is always granted to the re-
questing application, regardless of whether
the application is running in the fore-
ground or background.

The permission is granted to the request-
ing application only when there are cues
that the application is running, and denied
when the application is running invisibly in
the background.

when in use

never The permission is never granted to the re-
questing application.
Table 1: The three possible permission settings under

TurtleGuard. The when in use option accounts for the visi-
bility of the requesting app, which is a strong contextual cue.

is conspicuous to the user of the device. We consider the
following behaviors conspicuous: (i) the application is run-
ning in the foreground (i.e., the user is actively using it), (ii)
the application has a notification on the screen, (iii) the ap-
plication is in the background but is producing audio while
the device is unmuted. If these conditions do not hold, then
access to the resource is denied.

3.2 Auditing Automatic Decisions

Although Android currently provides an interface to list the
applications that recently accessed location data, similar in-
formation is unavailable for other protected resources. The
existing Android interface also does not differentiate be-
tween actions that applications take when in use and when
not in use. TurtleGuard’s main design objective is therefore
to communicate the types of sensitive data that have been
accessed by applications and under what circumstances.

Our initial design of TurtleGuard can be seen in Figure 2.
The first tab (ACTIVITY) shows all of the recently allowed or
denied permission requests, including when those requests
occurred and whether the application was in use at the
time. TurtleGuard presents this information as a running
timeline—a log sorted chronologically. A second tab lists all
of the apps installed on the phone in alphabetical order, al-
lowing the user to examine what decisions have been made
for all permissions requested by a particular app. The user
can expand a log entry to change future behavior, if the plat-
form’s automated decision to allow or deny a permission did
not align with the user’s preferences. When the user uses
this interface to change a setting, the classifier is retrained
based on the updated information.

3.3 Permission Families

Android uses over 100 permissions and a given resource can
have more than one related permission. Felt et al. found that
not all the permission types warrant a runtime prompt—it
depends on the nature of the resource and the severity of
the threat [9]. Consequently, TurtleGuard only manages a
subset of permissions (Table 5, Appendix) based on those
deemed sensitive by prior work and by the latest Android
version. In the first prototype of TurtleGuard, we had listed
the original names of the permissions, ungrouped. One of
the changes we made as we iterated on our design after
our pilot experiment was to implement permission “fami-

148 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

ot s 1220

Permission Manager Permission Manager

ACTIVITY APPS ACTIVITY APPS
Browser App Store
@ Denied Location v g o v
Sun Jan 01 05:08:52 PST 2017
— Contacts
B Allowed Read Call Log v Location
= SunJan 01 05:08:48 PST 2017
Browser
@ Allowed Location v Read Contacts
Sun Jan 01 05:06:11 PST 2017
VW
{}i Allowed Location v Write Contacts
¥ Sun Jan 01 05:03:02 PST 2017
Location Read Call Log
Read Contacts @ Browser v
Write Contacts E Contacts v
Read Call Log o Music Player v

-~ 90% @} 12:20

ZvW: Location

Always ®
When in use O
Never O

Figure 2: The pilot design of TurtleGuard listed recent app
activity (top left), a list of installed apps and their associated
permissions (top right). Permissions can be always granted,
granted only when in use, or never granted (bottom).

lies.” For example, READ_CONTACTS and WRITE_CONTACTS
are grouped into a single CONTACTS permission family. This
means that within TurtleGuard, users only see the human-
readable resource type and not the underlying permissions
the family manages. Any changes that a user makes about
granting a resource therefore affects all permissions in the
same family. For example, there is no longer a distinction
between coarse and fine location data; both are either al-
lowed or denied by a location settings change made using
the TurtleGuard interface.

4. METHODOLOGY

We conducted two online experiments to evaluate the effec-
tiveness of TurtleGuard at providing users with information
and control over app permissions, as compared to Android’s
default permission manager (as of versions 6.0). We designed

the first experiment to examine our initial prototype, as de-
scribed in the previous section. Based on the analysis of our
first experiment, we made changes to our design, and then
validated those changes through a second experiment. In
both experiments, we asked participants to perform four dif-
ferent tasks using an interactive Android simulation. These
tasks involved either retrieving information about an appli-
cation’s prior access to sensitive resources or preventing ac-
cess in the future (i.e., modifying settings). Our study was
approved by our IRB (#2013-02-4992).

In both experiments, we randomly assigned participants to
either the control or experimental conditions. We presented
control participants with an interactive HT'ML5 simulation
of the default permission manager, which is accessible from
within the Settings app. We presented experimental partic-
ipants with an interactive HTML5 simulation of our novel
permission manager, TurtleGuard. During our pilot exper-
iment, TurtleGuard was accessible through an icon on the
home screen labeled “Privacy Manager,” though we added
it as a sub-panel to the Settings app prior to the validation
experiment (Figure 6 in the Appendix). The questions and
tasks for participants were identical for the two conditions
and both experiments.

4.1 Tasks

We presented participants with four tasks to complete using
the interactive Android simulations: three tasks to retrieve
information about permission settings, and one task to mod-
ify permission settings. Some of these tasks required partic-
ipants to find information about a specific app’s abilities.
In order to avoid biases from participants’ prior experiences
and knowledge of specific real-world apps, these questions
instead focused on a fictitious app, ZvW. While we random-
ized the order of the tasks, we ensured that Task 3 always
came before Task 4 (i.e., we never asked them to prevent
background location data collection prior to asking them
whether background location data was even possible). After
each task, we asked participants to rate the difficulty of the
task using a 5-point Likert scale (“very easy” to “very dif-
ficult”). Finally, upon completing all tasks, we asked them
several demographic questions and then compensated them
$2. We now describe the four tasks in detail.

Task 1: What were the two most recent applications
that accessed this device’s location?

In this task, we asked participants to use the Android sim-
ulation and identify the two applications that most-recently
accessed location data. Participants used two open-ended
fields to answer this question. In the control condition, this
task was correctly accomplished by navigating to the “loca-
tion” screen from within the Settings application (Figure 3).
This screen presents information about applications that re-
cently requested location data.

In the experimental condition, this task was accomplished by
simply studying the “activity” screen, which was displayed
immediately upon opening TurtleGuard (Figure 2). Given
that this task was already supported by the default permis-
sion manager, we wanted to verify that TurtleGuard per-
formed at least as well.

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 149

Task 2: Currently, which of the following data types
can be accessed by the ZvW application?

In the control condition, this was accomplished by perform-
ing the four steps to access the screen in Figure 4 (right):
selecting the “Apps” panel within the Settings app (Figure 3,
left), selecting the ZvW application, and then selecting the
“Permissions.” This screen depicted a list of permissions
available to the application based on what the application
declares as its required permissions; the user is able to fine-
tune this by selectively disabling certain permissions using
the sliders on this screen. We wanted participants to iden-
tify the permissions that were enabled, rather than all of
those that could be enabled in the future.

In the experimental condition, participants could accomplish
this task by selecting the “Apps” tab from within Turtle-
Guard and then expanding the ZvW application to view its
requested permissions (Figure 2, top right). In both condi-
tions, the correct answer to the question was that “location”
is the only data type that can be accessed by the ZvW ap-
plication. Again, given that this task was already supported
by the default permission manager, we wanted to verify that
TurtleGuard performed at least as well.

Task 3: Is the ZvW application able to access location
data when it is not being actively used?

We designed this task to determine whether TurtleGuard
was effective at communicating to participants in the ez-
perimental condition the difference between foreground and
background data access. Similarly, we wanted to examine
whether participants in the control condition understood
that once granted a permission, an application may access
data while not in use. Based on the settings of the simula-
tions, the correct answer across both conditions was “yes.”

Participants in the control group must navigate to Settings,
then the “Apps” panel, and view the list of permissions cor-
responding to the ZvW application, similar to Task 2. Lo-
cation is turned on, and so participants must be able to
understand that this means that the permission is granted
even when it is not actively being used. Participants in the
experimental condition can use TurtleGuard’s “Apps” tab
to view the requested permissions for the ZvW application.
This shows that the location permission is listed as “always”
(Figure 2, top right) and that “when in use” is an unselected
option (Figure 2, bottom).

Task 4: Using the simulation, prevent ZvW from being
able to access your location when you aren’t actively
using ZvW (i.e., it can still access location data when
it is being used). Please describe the steps you took to
accomplish this below, or explain whether you believe
this is even possible.

As a follow-up to the third task, the fourth task involved
participants explaining the steps that they went through in
order to limit background location access, or to explain that
it is not possible.

Those in the ezperimental condition could locate and change
this permission setting either through the activity timeline
or by locating ZvW from the “Apps” tab (Figure 2). We
marked answers correct that specifically mentioned changing
the setting to “when in use.”

Those in the control condition could not prevent this access.
We marked responses correct if they indicated that this task
was impossible to complete. Two coders independently re-
viewed the responses to this task (Cohen’s x = 0.903). The
objective of this task was to see TurtleGuard’s success at
allowing participants to vary settings based on application
use (a strong contextual cue) and to examine whether par-
ticipants knew that this was not possible when using the
default permission manager.

4.2 Ul Instrumentation

We built an interactive HTML5 simulation of the UI designs
described in the previous section using proto.io. We instru-
mented the simulations to log all interactions (e.g., panels
visited, buttons clicked, etc.). This data allowed us to ana-
lyze how participants navigated the Ul to perform each task.

4.3 Qualitative Data

In addition to analyzing the participants’ responses to the
four tasks, their perceived difficulty of each of the tasks, and
their demographic information, we also collected responses
to two open-ended questions:

Thinking about the tasks that you performed in this sur-
vey, have you ever wanted to find similar information
about the apps running on your smartphone?

We coded participants’ responses as a binary value. Re-
sponses indicating sentiments such as “yes” and “I always
wanted that” were coded as true. Clear negative answers and
weak affirmative answers such as “sometimes” and “maybe”
were coded as false. The purpose of this question is to see
how prevalent seeking information is in the real world.

Thinking about the simulation that you just used, what
could be done to make it easier to find information
about how apps access sensitive information?

We coded participants’ responses in multiple ways. First,
as binary values indicating contentment with the presented
design. Responses that affirmed that the user would change
nothing about the presented design were coded as true. Any
complaints or suggestions were coded as false, as well as re-
sponses with uncertainty, confusion, or ambivalence (e.g., “I
don’t know”). We further coded responses that had specific
suggestions, using tags for the different themes.

Each response was coded by two experienced coders working
independently, who then compared responses and recorded
their coding conflicts. The coders discussed and reconciled
the differences using their mutually agreed upon stricter in-
terpretation given the nature of the tasks. This produced
the final coding of the data, which is used in our analysis.

S. PILOT EXPERIMENT

Using the methodology outlined in the previous section, we
recruited 400 participants from Amazon’s Mechanical Turk
for a pilot experiment. We discarded 8 incomplete sets of
responses, leaving us with 392 participants. Our sample was
biased towards male respondents (65% of 392), however, a
chi-square test indicated no significant differences between
genders with regard to successfully completing each task.
Disclosed ages ranged from 19 to 69, with an average age
of 33. In the remainder of this section, we describe our
results for each task, and then describe changes we made to

150 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

—anll 90% @) 18:56 -uall 90% @} 18:56

Settings & Location
on -9
Location
Mode
J Security
Recent location requests
) Accounts Browser
Google ZVW

y Languages & input

= App Store
7, Backup & reset PN
@O « ~ Dater
% Gamerz
&, Apps
| [
—\‘ ' Maps
.— Storage

Figure 3: In Task 1, participants in the control condition
could identify the most recent applications that requested
location data from within the Settings application. This was
also a valid method for Task 1 in the experimental condition
for the validation study.

TurtleGuard’s interface as a result of this initial experiment.
We note that in our simulation, Settings can only be reached
by tapping on the icon from the home screen. In all of
our tasks, we also asked participants to evaluate perceived
difficulty using a 5-point Likert scale.

5.1 Task 1: Recent Location Access

In the control condition, 84% of participants (167 out of 198)
correctly completed this task, whereas only 68% (132 out of
194) completed it correctly in the experimental condition.
This difference was statistically significant (x* = 14.391,
p < 0.0005), though with a small-to-medium effect size
(¢ = 0.192). In both cases, answers were marked correct
if they mentioned both the Browser and ZvW applications
(Table 2). Of the 49 participants in the ezperimental group
who tried but failed, 13 never opened TurtleGuard, and over
73% (36 of 49) entered “Browser” and “Contacts”, which were
the first two applications listed in the activity tab of the Per-
mission Manager. The activity tab showed recent resource
accesses in a chronological order—“Browser” had been de-
nied a location request and “Contact” had successfully ac-
cessed call logs.

Participants did not seem to understand that the activity log
presented entries related to all sensitive data types, not just
location data. This confusion might also stem from their fa-
miliarity with the location access panel in stock Android, in
which location access requests are presented in chronologi-
cal order. We hypothesize that this confusion is addressable
by redesigning the activity log to better distinguish between
data types and allowed-versus-denied permission requests.
One possible way of implementing this is to create separate
tabs for allowed and denied requests, as well as to group
similar data types together (rather than presenting all per-
mission request activity in chronological order).

Condition Correct Incorrect
Task 1
control 167 (84%) 31 (15%)
experimental 132 (68%) 62 (32%)
Task 2
control 140 (70%) 58 (29%)
experimental 116 (59%) 78 (40%)
Task 3
control 86 (43%) 112 (56%)
experimental 153 (78%) 41 (21%)
Task 4
control 47 (23%) 151 (76%)
experimental 144 (75%) 49 (25%)

Table 2: Participants in each condition who performed each
task correctly during the pilot experiment.

-l 90% @3} 18:56

€ App permissions

€ App Info

W O 2W

DISABLE FORCE STOP Calendar
Storage Camera
Data usage Contacts
Permissions Location

Microphone
Notifications

Photos
Open by default

SMS
Battery

Memory

Figure 4: In Task 2, participants in the control condition
could identify the permissions granted to the ZvW applica-
tion by selecting the “Apps” panel from within the Settings
application, and then selecting the application, followed by
the “Permissions” panel.

5.2 Task 2: Finding Granted Permissions

In the second task, we asked participants to list all of the
data types that the ZvW application currently had access
to. We observed that 140 participants in the control con-
dition (70.7% of 198) and 116 participants in the ezperi-
mental condition (59.8% of 194) performed this task cor-
rectly. After correcting for multiple testing, this difference
was not statistically significant (x> = 5.151, p < 0.023).
However, despite the lack of statistical significance, we were
surprised that not more people in the experimental condi-
tion answered correctly. Upon investigating further, we no-
ticed several confounding factors that might have made this
task more difficult for people in this condition. First, while
the control condition displays the currently-allowed permis-
sions as grayed-out text on the “App Info” page (Figure 4),
the experimental condition lists all requested permissions—

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 151

which is a superset of the allowed permissions (top-right of
Figure 2). Second, we noticed that due to an experimental
design error, the permissions requested by the ZvW app in
the experimental condition included several that were not in-
cluded in the options presented to participants (e.g., “Write
Contacts” and “Read Call Log”). This may have made this
task confusing for these participants.

5.3 Task 3: Finding Background Activity

In the third task, we asked participants whether the ZvW
application had the ability to access location data while not
actively being used. We observed that 86 participants in
the control condition (43% of 198) correctly answered this
question, as compared to 153 participants in the experimen-
tal condition (78% of 194). This difference was statistically
significant (x* = 51.695, p < 0.0005) with a medium effect
size (¢ = 0.363). Thus, the new dashboard interface suc-
cessfully differentiated between foreground and background
permission usage.

5.4 Task 4: Limiting Background Activity

We observed that only 47 participants in the control con-
dition (23% of 198) correctly stated that this task was im-
possible. In the ezperimental condition, 144 (74% of 193)2
clearly articulated the steps that they would go through us-
ing the privacy dashboard to change location access from
“always” to “when in use.” This difference was statistically
significant (x? = 101.234, p < 0.0005) with a large effect
size (¢ = 0.509).

5.5 Design Changes

Based on the results of our first two tasks, in which partici-
pants in the control condition were more likely to correctly
locate information about recent app activities and the per-
missions that apps had requested, we made several design
changes to the TurtleGuard interface. First, we split the ac-
tivity timeline into two separate tabs: recently allowed per-
mission requests, and recently denied permission requests.
Second, rather than showing all activity in chronological
order, the activity timeline is now categorized by resource
type, with the events for each resource type sorted chrono-
logically. These changes can be seen in the top of Figure 5.

In addition to these changes, we also modified the apps tab
to show grayed-out allowed permissions for each app, similar
to the App Info panel in the default permission manager.
Due to the error we noted in the experimental condition in
Task 2, we made sure that all app permissions were the same
in both conditions.

Finally, we moved TurtleGuard to be within the Settings
app, so that it appears as a panel labeled “Permissions Man-
ager” (Figure 6, Appendix). For consistency, when partici-
pants in the ezperimental condition select the “Permissions”
sub-panel from within the “App Info” panel (Figure 4, left),
they are now redirected to TurtleGuard’s “Apps” panel, pre-
opened to the app in question (Figure 5, bottom right).

6. VALIDATION EXPERIMENT

Following our pilot experiment and subsequent design changes,

we performed a validation experiment. In the remainder of
this section, we discuss our results (Table 3).

20One person could not load the iframe containing the sim-
ulation during this task.

_anll 90% @) 21:38

_anll 90% @} 22:32

(— Permissions Manager

(— Permissions Manager

ALLOWED DENIED APPS ALLOWED DENIED APPS

a Camera >

@- Location v a Camera v

Browser App Store
> W tdenied app not in use >
Sun Feb =% SunFeb 05 05:02:49 AM
ZvW Gamerz
=) > % Last denied: app not in use >
W Sun Feb 05 04:53:19 AM
Browser
> Last denied: app in use >
Sun Feb 05 04:33:00 AM
ZvW
> E}l Last denied: app in use >
" Sun Feb 05 04:32:50 AM
> Location >

?> ,\ Microphone >
[..]

QM hY

_anll 90% @) 17:03 —anlll 90% @@} 23:51

(— Permissions Manager

& Permissions Manager

ALLOWED DENIED APPS ALLOWED DENIED APPS
! App Store S Maps >
@ Browser > Music Player 3
E Contacts b ZYW v
Dater
’ > [;';!] Calendar
§ Downloads > B camera
an Contacts
% Gamerz >
G} Location
Maps
° > /‘ Microphone
J‘ Music Player > B Photos
£ 2w N B sus

Figure 5: TurtleGuard separates recently allowed (top left)
and denied (top right) permissions. The “Apps” tab lists the
allowed permissions of all apps (bottom left). Expanding an
app allows the user to make changes (bottom right).

6.1 Participants

Because of several known biases in Mechanical Turk’s de-
mographics [27, 33, 22], we decided to compare a sample of
298 Mechanical Turk participants to a sample of 300 Pro-
lific Academic participants. Peer et al. recently performed
several studies on various crowdsourcing platforms and con-
cluded that the latter yields more diverse participants [30].
We limited both groups to participants based in the U.S.,
over 18, owning an Android phone, and having a 95% ap-
proval rating on their respective platform. After removing
18 incomplete responses, we were left with a combined sam-
ple of 580 participants. We analyzed the results from the
two groups, and discovered that the high-level findings (i.e.,

152 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Condition Correct Incorrect
Task 1
control 237 (82.6%) 50 (17.4%)
experimental 241 (82.5%) 52 (17.5%)
Task 2
control 232 (77.1%) 55 (22.9%)
experimental 226 (80.8%) 67 (19.2%)
Task 3
control 108 (37.6%) 179 (62.4%)
experimental 230 (78.5%) 63 (21.5%)
Task 4
control 79 (27.5%) 208 (72.5%)

experimental 224 (76.5%) 69 (23.5%)

Table 3: Participants in each condition who performed each
task correctly during the validation experiment.

task performance) did not observably differ. For the remain-
der of our study, we therefore discuss the combined results.
Our sample was biased towards male respondents (63% of
580), however, a chi-square test indicated no significant dif-
ferences between genders with regard to successfully com-
pleting each task. Disclosed ages ranged from 19 to 74, with
an average age of 33. Participants performed the same tasks
as those in the pilot experiment and took on average 9 min-
utes and 17 seconds to complete the experiment.

6.2 Task 1: Recent Location Access

Recall that in this task, we asked participants to identify the
two most recent applications that accessed location data.
For the experimental condition, in addition to using the
same method as the control (navigating to the “Location”
sub-panel of the Settings app), participants could navigate
to the “Allowed” tab within TurtleGuard, and then examine
the “Location” permission to see the two most recent accesses
(top left of Figure 5). In the control condition, 237 partici-
pants (82.6% of 287) correctly completed this task, whereas
241 (82.5% of 293) completed it correctly in the experimen-
tal condition. A chi-square test revealed that this difference
was not statistically significant (x* = 0.011, p < 0.918).

We observed that most of the participants in both condi-
tions used the default method of accomplishing this task
(i-e., accessing the Location sub-panel): 80.1% of those who
answered correctly in the experimental condition and 92.8%
of those in the control condition. Fifteen participants in
the control condition answered correctly despite not access-
ing the panel—likely by random guessing, and two who an-
swered correctly by exhaustively searching the “App Info”
panels of installed apps, to see which had been granted the
location permission; 48 participants in the experimental con-
dition used TurtleGuard to yield the correct answer.

A total of 102 participants incorrectly answered the question
in Task 1. Of the incorrect responses, five participants failed
to properly navigate the simulation and wrote that it was
broken or the buttons did not work; 9 participants did not
respond or wrote that they did not know. Of the other 88
participants, 38 (43%) listed “App Store” as one of their
selections, making it the most common error.

More specifically, 18 participants listed their answers as both
“App Store” and “Browser.” We believe that this is because
both the stock Android Apps Manager and TurtleGuard’s
“Apps” tab (Figure 5, bottom) sort the entries alphabeti-
cally, and by looking at the permissions available to both of
these apps, participants would see that both have location
access. Nevertheless, they are not the most recent apps to
access location data.

Overall, these results suggest that the changes we made af-
ter our pilot experiment resulted in marked improvements.
We further investigated this by examining participants’ per-
ceived ease-of-use, as measured using the 5-point Likert scale
(“very easy (1)” to “very difficult (5)”). In the experimen-
tal condition, 84 participants accessed TurtleGuard to com-
plete this task (regardless of whether or not they answered
correctly). We compared these 84 responses with the 463
responses from participants who only used the default Set-
tings panel (i.e., 195 in the exzperimental group and 268
in the control group). The median responses from both
groups was “easy” (2), however there was a statistically sig-
nificant difference between the groups (Wilcoxon Rank-Sum
test: Z = —3.9605, p < 0.0005), with a small effect size
(r = 0.17)—participants who used TurtleGuard found it
more difficult compared to the default Settings panel. This
difference appears to be due to those who performed the task
incorrectly: the median response for TurtleGuard users who
answered incorrectly was “difficult (4),” whereas it was “neu-
tral (3)” for other participants. This may actually be a good
thing: participants who confidently answered incorrectly are
at greater risk due to over confidence, whereas those who had
difficulty may be more likely to seek out more information.

6.3 Task 2: Finding Granted Permissions

In this task, participants had to locate the app’s allowed
permissions to discover that “location” was the only allowed
permission in both the experimental and control conditions.
This could be accomplished by viewing TurtleGuard’s Apps
tab (bottom of Figure 5) for those in the ezperimental con-
dition, or by viewing an app’s App Info panel from within
the Settings app (Figure 4), which was available to those in
either condition.

In total, 458 participants correctly performed this task (79%
of 580). Table 3 displays the breakdown of the results by
condition. A chi-square test did not yield statistically sig-
nificant results between the two conditions in terms of task
completion (x* = 0.984, p < 0.321).

Of the 226 experimental condition participants who per-
formed the task correctly, 127 (56.2%) did so by using Turtle-
Guard. In total, 145 experimental condition participants ac-
cessed TurtleGuard, and reported a median task difficulty
of “easy (2).” This did not significantly differ from the 375
other participants in both conditions who only examined the
default Settings panels to perform the task and also reported
a median difficulty of “easy” (Z = 1.808, p < 0.238); 60 par-
ticipants never opened Settings (10 of whom answered the
question correctly, likely due to random guessing).

6.4 Task 3: Finding Background Activity

To perform this task, participants in the control group had
to navigate to Settings, then the “Apps” panel, and view the
list of permissions corresponding to the ZvW application

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 153

(Figure 4). However, performing this sequence of steps still
did not guarantee they would answer the question correctly:
they needed to observe that location data was allowed, as
well as understand that this meant that location data could
be accessed by the app even when it is not actively being
used. Participants in the experimental condition answered
this question through TurtleGuard, which shows that the lo-
cation permission was listed as “Always” (Figure 5), thereby
eliminating the ambiguity.

We observed that 230 experimental condition participants
answered this question correctly (78.5% of 293), as com-
pared to only 108 control participants (37.6% of 287). A
chi-square test showed that this difference was significant
(x = 97.914, p < 0.0005) with a medium-to-large effect size
(¢ = 0.414). This observation corroborates Thompson et
al.’s findings [37] that users are largely unaware that apps
can access sensitive data when not in use. TurtleGuard,
however, was more effective at communicating this informa-
tion to participants. Among the participants in the experi-
mental condition, 24.57% took the extra step to click on the
location entry (bottom right of Figure 5) to see the other op-
tions available (Figure 2): always, when in use, and never.

We found that 129 participants used TurtleGuard to per-
form this task, which suggests that 101 (34.5% of experimen-
tal condition participants) still got it correct either based on
prior knowledge—a proportion consistent with Thompson et
al.’s findings [37]—or after having used TurtleGuard in pre-
ceding tasks. There were 383 participants who completed
the task by examining existing areas of the Settings app,
whereas 68 participants never bothered to open Settings to
complete this task. The median ease of use for those who
used TurtleGuard was “easy (2)”, while the median ease of
use for those who used the default permission manager was
“neutral (3)”. This difference was statistically significant
(Z = —2.885, p < 0.004) with a small effect size (r = 0.13).
Participants in the control condition also took significantly
longer to complete the task: 49.63 seconds versus 26.65 sec-
onds. A Wilcoxon Rank-Sum test found this difference to be
statistically significant (Z = —5.239, p < 0.0005, r = 0.22).

6.5 Task 4: Limiting Background Activity

Task 4 asked participants to describe the steps to prevent an
application from accessing location data while the applica-
tion was not in use, or to state that it is not possible to pre-
vent it. It is only possible to prevent it using TurtleGuard.

In the experimental condition, 224 (76.5% of 293) explic-
itly stated how they would use TurtleGuard to change the
permission to “when in use”,®> whereas only 79 (27.5% of
287) control group participants correctly stated that this
task was impossible using the default permission manager.
This difference was statistically significant (x*> = 137.14,
p < 0.0005) with a large effect size (¢ = 0.49).

A majority of the participants (72.5%) in the control group
incorrectly believed that they could vary their decisions based
on the wvisibility of the application. The most common re-
sponses involved disabling location data altogether, prevent-
ing the app from running, or restricting “background data”:

3We used a very conservative rubric: 11 participants who
described using TurtleGuard, but did not explicitly use the
phrase “when in use,” were coded as being incorrect.

Settings > Apps > ZvW > Toggle Location Off
e Disable or Force Stop the Application

e Settings > Location > ZvW > Permissions > Toggle
Location Off

e Settings > Apps > ZvW > Data Usage > Restrict
Background Data

e Settings > Location > Toggle Location Off

A considerable portion (14%) chose to “restrict background
data,” which does something else entirely: it prevents data
surcharges while roaming on foreign networks. This is an-
other example of a disconnect between users’ mental models
and the true meaning of these configuration options. That
said, a small number of participants in the control condition
correctly stated that they would need to disable the app’s
location permission, and then re-enable it every time they
wanted to use that app, a tedious process that is prone to
forgetfulness—we treated this response as correct. Another
substantial portion among the default permission manager
condition (46%) wanted to block the location globally (from
the default location panel) or block the location access from
ZvW app entirely. While this is an overly restrictive option
compared to when in use, this is the closest option provided
in Android—we treated this as an incorrect response.

As expected, participants in the control condition rated the
difficulty of this task as “neutral (3)”, whereas the median
Likert score from those in the experimental condition was
“easy (2)”. This difference was statistically significant with
a large effect size (p < 0.0005, ¢ = 0.49). The partici-
pants in the control condition who successfully completed
the task (e.g., by acknowledging it was impossible) strug-
gled immensely with it, evaluating it as “difficult (4)”.

7. USER PERCEPTIONS

After completing the four tasks, participants answered two
open-ended questions about whether they have looked for
this type of permission information in the past, and whether
they have any suggestions to offer us about the design of the
interface they had just used. Two researchers independently
coded each question and then resolved conflicts. We provide
Cohen’s inter-rater reliability statistic (k) for each coding.

7.1 Prior Experiences

Our first question asked: Thinking about the tasks that you
performed in this survey, have you ever wanted to find simi-
lar information about the apps running on your smartphone?

Our goal was to determine whether participants had pre-
viously thought about resource access or configuring pri-
vacy preferences, and whether having these features would
be beneficial. On average, 63.1% of participants stated that
they had thought about this (Cohen’s x = 0.792), and the
experimental condition they were in proved to be insignif-
icant. We did, however, observe a positive correlation be-
tween performance on the four tasks (i.e., number of tasks
performed correctly) and reporting having previously thought
about these issues (p < 0.007511, r = 0.155).

Among the people who chose to be more detailed in their
responses, several themes emerged. A large portion men-
tioned that the reason they had tried these tasks before is
that they wanted to be able to exert more control over their
installed apps:

154 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Changes No Changes
control 245 (85.4%) 42 (14.6%)
experimental 187 (63.8%) 106 (36.3%)

Table 4: Whether participants believed changes were needed
to the interfaces they used during the validation study.

e “I was somewhat familiar with these menus already be-
fore starting this task. I like to have control over my
app permissions including location and data manage-
ment.”

e “Yes, I've often wanted a little more control over what
my apps get to access”

A minority of participants expressed their frustrations on
how the current default user interfaces in Android were con-
fusing and did not let them set privacy preferences the way
they wanted:

e “Yes but usually can’t find anything on there either like
these. So I gave up trying.”

e “Yes. I want to know what they collect, although it gets
tedious to try to figure it all out. Sometimes I’d rather
Just ignore it.”

These comments highlight the fact that many users want to
have control over resource usage by applications, and that
many feel helpless to do so, given the options offered by
current privacy management interfaces. These observations
further strengthen the need for a more usable interface that
will help people to feel more empowered.

7.2 Suggestions

In our second exit survey question, we asked: Thinking about
the simulation that you just used, what could be done to make
it easier to find information about how apps access sensitive
information?

This question had two purposes: (i) to gather specific design
recommendations from participants who used TurtleGuard;
(ii) to get general suggestions from participants who used
the default permission manager.

In total, 66.03% participants (383 of 580) suggested at least
some change or improvement (Cohen’s x = 0.896). Table 4
shows the breakdown of how many participants in each con-
dition prefer a change in the dashboard within their condi-
tion. A chi-square test shows a statistically significant as-
sociation between a participant’s condition and whether the
participant wants changes in the dashboard (p < 0.00005, ¢ =
0.237). This suggests the participants in the experimental
condition are more satisfied with the controls provided by
the new design than those in the control condition. Our
work aims to fill the need users have regarding control over
permissions and their personal privacy.

The most common suggestion (32.24% of all suggestions)
was to reduce the number of layers to the actual permis-
sion interface (Cohen’s k¥ = 0.603). Participants complained
about number of different interfaces they had to traverse
before reaching the actual permission interface. Many par-
ticipants suggested that they would prefer to reach a per-

mission control interface directly through the application—
either as part of the application or by pressing the app icon.
TurtleGuard addresses this concern by providing a path to
permission management that involves fewer clicks and cen-
tralizes all permission management functionality.

e “Streamline the interface to require less touches to find
the information about permissions and make it explicit
as to what type of data would be collected if allowed.”

e “Perhaps have an easier way to access the app’s set-
tings, such as holding onto an app’s icon will bring up
its specific settings.”

o “Make each app itself have the option to find that infor-
mation instead of going to the general phone settings.”

e “There should be one centralized location, or maybe an
app for that. Just to toggle with these very important
settings.”

Seven participants thought having a log of recent resource
usage by applications would be useful. Some went further,
mentioning that the log should also provide contextual cues,
such as the visibility of the application at the time it makes
the request. This finding provides evidence in support of Liu
et al. [20], that recent statistics help users make better de-
cisions. TurtleGuard provides this functionality by showing
all the recent resource requests along with (i) the decision
that platform took on behalf of the users, (ii) the time that
the decision was made, and (iii) the visibility of the request-
ing application.

o “It would be useful to have a dashboard which shows
which apps are accessing what and when. Being able
to see a log of the actual data that was accessed would
also be useful.”

e “A log could be provided as an option in the settings
that shows all times an app accessed sensitive infor-
mation.”

A few participants (14.6%) also suggested that there should
be a tutorial, wizard style guide, or a FAQ to explain how
to manage permissions (Cohen’s k = 0.651). Some wanted
the applications to explain why they need access to certain
resources. Some even suggested runtime prompts for every
sensitive request access. One participant suggested that app
developers hold a YouTube Q&A session on resource usage
after each release:

e “As the app is being introduced to the users, they should
make a youtube q€fa to answer any simple questions
like this.”

Prior work has already shown that having runtime prompts
on every sensitive request is not feasible [38]—we believe
that a log of recent resource accesses with surrounding con-
text is the closest practical solution.

8. DISCUSSION

Our primary goal is to empower users to make privacy de-
cisions better aligned with their preferences and to keep
them informed about how third-party applications exercise
granted permissions, and under what circumstances. We

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 155

performed iterative user-centered design on a new permis-
sion management interface, TurtleGuard, which offers users
significant improvements in their ability to control permis-
sions when compared to the default permission manager.

8.1 Auditing Automated Decision Making
Recent research uses machine-learning techniques to auto-
matically predict users’ permission preferences [39, 20, 19,
21]. While machine-learning (ML) techniques have been
shown to be better at predicting users’ preferences [39], they
are still prone to errors.

If systems are going to use ML in the future, there must be
mechanisms for users to audit the decisions made on their
behalves. We believe that the design we present in our study
is a critical first step towards achieving that goal. Partici-
pants using TurtleGuard were better able to understand and
control when apps have access to sensitive data than partic-
ipants using the default permission manager. A substantial
proportion of participants mentioned the desire to have a
log that they could use to see how each application accesses
sensitive resources—functionality that is missing in the de-
fault permission manager, but is provided by TurtleGuard.

8.2 Correcting Mental Models

In Task 4, we asked participants to disable access to loca-
tion data when the example app, ZvW, was not actively be-
ing used, or to explain that this was not possible. We found
that 72.5% of the participants in the control condition in-
correctly believed that this was possible. Analyzing the dif-
ferent paths that participants in the control condition took
while using the Android simulation, it was evident that the
majority of participants did not understand the limits of
the permission interface’s provided functionality. This mis-
match between users’ mental models and actual functional-
ity may lead to users incorrectly believing that they have
denied access to certain requests for sensitive data.

8.3 Privacy Nudges

Previous work investigated ways to nudge users to config-
ure their privacy settings and make them aware of how ap-
plications access their data [20, 13, 17]. While helping mo-
tivate users to use TurtleGuard (and other privacy man-
agement interfaces) is important, it is out of scope for this
work. Nevertheless, our survey results showed that 63.1% of
participants—independent of condition—previously searched
for permission information on their smartphones. This shows
that users are keen to understand how applications use their

sensitive resources, and interfaces similar to the one we present

in this study fill a critical need.

8.4 Limitations

In our proposed interface, TurtleGuard, we allow users to
vary their decisions based on the visibility of the request-
ing application. We believe this is a significant first step to-
wards enabling users to make contextual privacy decisions.
The full extent of the impact of the surrounding context,
however, goes beyond the mere visibility of the requesting
application. More work is needed to understand different
contextual factors and their respective impact on users’ pri-
vacy decisions. We hope the results of this study will pave
the path for future work on implementing fully contextually
aware permission managers.

Additionally, we acknowledge the limitations in our screen-
ing process: participants who selected Android as their mo-
bile device may have varying levels of usage and knowledge
regarding the platform. Prior experience may have rendered
the default permission manager as being easier to use for
some participants in the control condition. This suggests
that for new Android users, the usability improvements of
TurtleGuard may be even greater than what we observed.

We also acknowledge that irregularities in the simulation
may have had an impact towards participants’ comprehen-
sion and completion rates. These confounding factors intro-
duced by the U, however, would have impacted both con-
ditions equally, because the control condition was simulated
using the same infrastructure and development environment.
Finally, for users in the control condition, Task 4 may have
been deceptively tricky due to its impossibility. Neverthe-
less, the incorrect answers underscore a very real problem:
Android users are not aware that they are unable to deny
resources to applications that they are not using.

8.5 Conclusion

Android’s existing permission models, ask-on-install (AOI)
and ask-on-first-use (AOFU), are insufficient at fulfilling users’
privacy desires and needs. Neither of the existing models
account for contextual factors in their decisions to allow or
deny access to sensitive data. Users want to protect their
sensitive information, but have a hard time understanding
when access to data is and is not being allowed. TurtleGuard
adds both ease of use and functionality, including the abil-
ity to consider application visibility when specifying privacy
preferences, which has been shown to be a strong contex-
tual cue. In our study of TurtleGuard, we had participants
perform permission-related tasks and compared their perfor-
mance TurtleGuard with a control group using the default
permission manager. Based on our results, we iterated on
TurtleGuard’s design, and then performed a validation ex-
periment to confirm the validity of our changes. Our results
show that users are significantly better at performing per-
mission management tasks with TurtleGuard than the de-
fault permission manager.

Acknowledgements

This research was supported by the United States Depart-
ment of Homeland Security’s Science and Technology Di-
rectorate under contract FA8750-16-C-0140, the Center for
Long-Term Cybersecurity (CLTC) at UC Berkeley, the Na-
tional Science Foundation under grants CNS-1318680 and
CNS-1514457, Intel through the ISTC for Secure Comput-
ing, and the AFOSR under MURI award FA9550-12-1-0040.
The content of this document does not necessarily reflect
the position or the policy of the U.S. Government and no
official endorsement should be inferred.

9. REFERENCES

[1] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid,
A. Acquisti, J. Gluck, L. F. Cranor, and Y. Agarwal.
Your location has been shared 5,398 times!: A field
study on mobile app privacy nudging. In Proc. of the
33rd Annual ACM Conference on Human Factors in
Computing Systems, pages 787-796. ACM, 2015.

[2] P. Andriotis and T. Tryfonas. Impact of user data
privacy management controls on mobile device

156 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

[12]

[17]

investigations. In IFIP International Conference on
Digital Forensics, pages 89—105. Springer, 2016.
Apple. About privacy and location services for ios 8 and
later. https://support.apple.com/en-us/HT203033.
Accessed: March 4, 2017.

A. Barth, A. Datta, J. C. Mitchell, and

H. Nissenbaum. Privacy and contextual integrity:
Framework and applications. In Proc. of the 2006
IEEE Symposium on Security and Privacy, SP ’06,
Washington, DC, USA, 2006. IEEE Computer Society.
M. Benisch, P. G. Kelley, N. Sadeh, and L. F. Cranor.
Capturing location-privacy preferences: Quantifying
accuracy and user-burden tradeoffs. Personal
Ubiquitous Comput., 15(7):679-694, Oct. 2011.

M. Bokhorst. Xprivacy.
https://github.com/M66B/XPrivacy, 2015.
CollegeDev. Donkeyguard. https://play.google.
com/store/apps/details?id=eu.donkeyguard, 2014.
S. Egelman, A. P. Felt, and D. Wagner. Choice
architecture and smartphone privacy: There’s a price
for that. In The 2012 Workshop on the Economics of
Information Security (WEILS), 2012.

A. P. Felt, E. Chin, S. Hanna, D. Song, and

D. Wagner. Android permissions demystified. In Proc.
of the ACM Conf. on Comp. and Comm. Sec., CCS
11, pages 627638, New York, NY, USA, 2011. ACM.
A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and
D. Wagner. How to ask for permission. In Proc. of the
7th USENIX conference on Hot Topics in Security,
Berkeley, CA, USA, 2012. USENIX Association.

A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99
problems, but vibration ain’t one: a survey of
smartphone users’ concerns. In Proc. of the 2nd ACM
workshop on Security and Privacy in Smartphones and
Mobile devices, SPSM 12, pages 33-44, New York,
NY, USA, 2012. ACM.

A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android permissions: user attention,
comprehension, and behavior. In Proc. of the Fighth
Symposium on Usable Privacy and Security, SOUPS
12, New York, NY, USA, 2012. ACM.

H. Fu, Y. Yang, N. Shingte, J. Lindqvist, and

M. Gruteser. A field study of run-time location access
disclosures on android smartphones. Proc. USEC, 14,
2014.

N. Good. The Deadly Sins of Security User Interfaces.
In M. Jakobsson, editor, The Death of the Internet,
chapter 7.5, pages 398-415. John Wiley & Sons, 2012.
Google. Normal and dangerous permissions.
https://developer.android.com/guide/topics/
permissions/requesting.html#normal-dangerous.
P. Hornyack, S. Han, J. Jung, S. Schechter, and

D. Wetherall. These aren’t the droids you're looking
for: retrofitting android to protect data from
imperious applications. In Proc. of the ACM Conf. on
Comp. and Comm. Sec., CCS ’11, pages 639-652, New
York, NY, USA, 2011. ACM.

L. Jedrzejczyk, B. A. Price, A. K. Bandara, and

B. Nuseibeh. On the impact of real-time feedback on
users’ behaviour in mobile location-sharing
applications. In Proceedings of the Sixth Symposium
on Usable Privacy and Security, page 14. ACM, 2010.

(18]

(19]

20]

(21]

(22]

23]

(24]

25]

[26]

27]

(28]

29]

(30]

(31]

32]

P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,

N. Sadeh, and D. Wetherall. A conundrum of
permissions: Installing applications on an android
smartphone. In Proc. of the 16th Intl. Conf. on
Financial Cryptography and Data Sec., FC’12, pages
68-79, Berlin, Heidelberg, 2012. Springer-Verlag.

H. Lee and A. Kobsa. Privacy Preference Modeling
and Prediction in a Simulated Campuswide IoT
Environment. In IEEE International Conference on
Pervasive Computing and Communications, 2017.

B. Liu, M. S. Andersen, F. Schaub, H. Almuhimed;,
S. A. Zhang, N. Sadeh, Y. Agarwal, and A. Acquisti.
Follow my recommendations: A personalized assistant
for mobile app permissions. In Twelfth Symposium on
Usable Privacy and Security (SOUPS 2016), 2016.

B. Liu, J. Lin, and N. Sadeh. Reconciling mobile app
privacy and usability on smartphones: Could user
privacy profiles help? In Proceedings of the 23rd
International Conference on World Wide Web, WWW
"14, pages 201-212, New York, NY, USA, 2014. ACM.
W. Mason and S. Suri. Conducting behavioral
research on amazon’s mechanical turk. Behavior
Research Methods, 44(1):1-23, 2012.

D. Mate. Permission master.
https://play.google.com/store/apps/details?id=
com.droidmate.permaster, 2014.

M. McLaughlin. What is lineageos. https:
//www.lifewire.com/what-is-cyanogenmod-121679,
2017.

H. Nissenbaum. Privacy as contextual integrity.
Washington Law Review, 79:119, February 2004.

K. Opsahl. Uber should restore user control to location
privacy. https://www.eff.org/deeplinks/2016/12/
uber-should-restore-user-control-location-privacy,
12 2016.

G. Paolacci and J. Chandler. Inside the turk. Current
Directions in Psychological Science, 23(3):184-188,
2014.

S. Patil, Y. Le Gall, A. J. Lee, and A. Kapadia. My
privacy policy: Exploring end-user specification of
free-form location access rules. In Proceedings of the
16th International Conference on Financial
Cryptography and Data Security, FC'12, pages 86-97,
Berlin, Heidelberg, 2012. Springer-Verlag.

S. Patil, R. Schlegel, A. Kapadia, and A. J. Lee.
Reflection or action?: How feedback and control affect
location sharing decisions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, CHI 14, pages 101-110, New York, NY,
USA, 2014. ACM.

E. Peer, L. Brandimarte, S. Samat, and A. Acquisti.
Beyond the turk: Alternative platforms for
crowdsourcing behavioral research. Journal of
Ezxperimental Social Psychology, 70:153-163, May 2016.
D. Reilly, D. Dearman, V. Ha, I. Smith, and

K. Inkpen. “need to know”: Examining information
need in location discourse. In Proceedings of the 4th
International Conference on Pervasive Computing,
PERVASIVE’06, pages 33-49, Berlin, Heidelberg,
2006. Springer-Verlag.

X. M. Repository. http://repo.xposed.info/,
http://repo.xposed.info/.

USENIX Association

Thirteenth Symposium on Usable Privacy and Security

157

[33]

[37]

[38]

J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and

B. Tomlinson. Who are the crowdworkers?: Shifting
demographics in mechanical turk. In CHI ’10
Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’10, pages 2863-2872, New York,
NY, USA, 2010. ACM.

J. L. B. L. N. Sadeh and J. I. Hong. Modeling users’
mobile app privacy preferences: Restoring usability in
a sea of permission settings. In Symposium on Usable
Privacy and Security (SOUPS), 2014.

F. Shih, I. Liccardi, and D. Weitzner. Privacy tipping
points in smartphones privacy preferences. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages
807-816, New York, NY, USA, 2015. ACM.

I. Shklovski, S. D. Mainwaring, H. H. Skdladéttir, and
H. Borgthorsson. Leakiness and creepiness in app
space: Perceptions of privacy and mobile app use. In
Proc. of the 32nd Ann. ACM Conf. on Human Factors
in Computing Systems, CHI 14, pages 23472356,
New York, NY, USA, 2014. ACM.

C. Thompson, M. Johnson, S. Egelman, D. Wagner,
and J. King. When it’s better to ask forgiveness than
get permission: Designing usable audit mechanisms for
mobile permissions. In Proc. of the 2013 Symposium
on Usable Privacy and Security (SOUPS), 2013.

P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman,

D. Wagner, and K. Beznosov. Android permissions
remystified: A field study on contextual integrity. In
Proceedings of the 24th USENIX Conference on
Security Symposium, SEC’15, pages 499-514, Berkeley,
CA, USA, 2015. USENIX Association.

P. Wijesekera, A. Baokar, L.. Tsai, J. Reardon,

S. Egelman, D. Wagner, and K. Beznosov. The
feasibility of dynamically granted permissions:
Aligning mobile privacy with user preferences. arXiv
preprint 1703.02090, 2017.

APPENDIX

Permission

Explanation

CALL_PHONE
PROCESS_OUTGOING_CALLS
READ_PHONE
READ_CALL_LOG
ADD_VOICEMAIL
WRITE_CALL_LOG

Make and process calls as well
as read information about call
status, network information and
previously made phone calls

CAMERA

Access camera devices

GET_ACCOUNTS

Access to list of accounts

READ_CALENDAR
WRITE_CALENDAR

Read and write events to the
user’s calendar

READ_CONTACTS
WRITE_CONTACTS

Read and write to user’s con-
tacts

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

Read and write files to the user’s
external storage

RECORD_AUDIO

Record audio

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
ACCESS_WIFI_STATE

Read location information in
various ways including network
SSID-based location

READ_SMS
SEND_SMS
RECEIVE_SMS

Read SMS messages from the de-
vice (including drafts) as well as
send and receive new ones SMS

Table 5: Sensitive permissions managed by TurtleGuard.
Permissions grouped by a single explanation form the fam-
ilies used in our system to reduce the number of managed
permission as discussed in Section 3.

158 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Condition Correct Incorrect All
Task 1
control 2 3 2
experimental 2 4 2
Task 2
control 2 3 3
experimental 2 3 2
Task 3
control 2 4 3
experimental 2 3 2
Task 4
control 4 2 3
experimental 2 2 2

Table 6: Median ease-of-use Likert scores for all tasks, condi-
tions, and correctness in the validation experiment. Higher
scores indicate more difficulty.

90% @3} 20:37

il 90% @3} 16:07
Settings Q 3

Personal

1/05/17
THURSDAY 9

1:12PM
6 Security

e Accounts
8 Google

Languages & input
English (United States)

o Backup & reset
Back up enabled

Location
ON/Device only

Application Permissions

! » / % Permissions Manager
App Store Dater
o\ Device

Priva
ZW Gamer Managar Music Player |‘i| Apps

—uall 90% @) 16:07

5:22PM
FRIDAY
1/6/2017

! y.

App Store Dater

S 4

Settings Music Player

Figure 6: In the pilot experiment, TurtleGuard was launched
via the icon labeled “Privacy Manager” (top left), but then
added as a sub-panel to the Settings app, labeled “Permis-
sions Manager,” for the validation experiment (top right). In
the control condition in the pilot experiment and both con-
ditions in the validation experiment, the Settings app was
accessible from the home screen (bottom).

USENIX Association

Thirteenth Symposium on Usable Privacy and Security 159

Task 1: Ease of use Task 2: Ease of use

g g
) l .) . .
Ve G e e veyoma Ve G e e veyoma
Task 3: Ease of use Task 4: Ease of use
g g
) I .) . .

Veryeasy Easy Neural Difficut Very difficult Veryeasy Easy Neural Difficut Very difficult

Figure 7: Ease of use histograms for each task (validation
experiment)

Task 1: Ease of use in control condition

Veryeasy Easy Meutral ~ Difficult Very difficut

Task 1: Ease of use if answered correctly in control condition

Veryeasy Easy Meutral Dificult Very difficult

Task 1: Ease of use if answered correctly in custom condition

140
|

120
L

Meutral

Veryeasy Easy Difficult Very diffult

Task 1: Ease of use in custom condition

Veryeasy Easy Neutral Difficult Very difficuit

Task 1: Ease of use if answered incorrectly in control condition

Veryeasy Easy Neural Difficult Very difficuit

Task 1: Ease of use if answered incorrectly in custom condition

8 -

Veryeasy Easy Neural Difficult Very difficult

Figure 8: Ease of use histogram for Task 1 (validation ex-
periment)

160 Thirteenth Symposium on Usable Privacy and Security

USENIX Association

Task 2: Ease of use in control condition Task 2: Ease of use in custom condition Task 3: Ease of use in control condition Task 3: Ease of use in custom condition

g g9 g9 g9
8 8 8iq 8iq

1(:0

1(:0

1(:0

100
L

i
S
i
60
‘

a0
a0
a0

2
20
20

8 4 8 8 8 1
<]]]]
N .I ' ll | '

Very easy Easy Neutral Difficult Very diffieult Very easy Easy Neutral Difficut Very difficult Very easy Easy Neutral Difficult Very difficult Very easy Easy Neutral Difficult Very difficult
Task 2: Ease of use if answered correctly in control condition Task 2: Ease of use if answered incorrectly in control condition Task 3: Ease of use if answered correctly in control condition Task 3: Ease of use if answered incorrectly in control condition
2~ 9 24 -
8 + 8 8 8
8 1 8 8 8
g+ £ g g
24 2 1 2 1 2
N . N N . N
Very easy Easy Neutral Difficult Very dificult Very easy Easy Neutral Difficult ~ Very difficult Very easy Easy Neutral Difficult ~ Very difficult Very easy Easy Neutral Difficult Veery difficult
Task 2: Ease of use if answered correctly in custom condition Task 2: Ease of use if answered incorrectly in custom condition Task 3: Ease of use if answered correctly in custom condition Task 3: Ease of use if answered incorrectly in custom condition
g 8- 8- 8-
& - & - & & -
E 2 2 2
8 ER 1 8
N . N N . N
Very easy Neutral Difficult ~ Very difficult Very easy Easy Neutral Difficult ~ Very difficult Very easy Easy Neutral Difficult Very difficult Very easy Easy Neutral Difficult Very difficult
Figure 9: Ease of use histogram for Task 2 (validation ex- Figure 10: Ease of use histogram for Task 3 (validation ex-
periment) periment)

USENIX Association Thirteenth Symposium on Usable Privacy and Security 161

Task 4: Ease of use in control condition Task 4: Ease of use in custom condition

120
L

s

s

3

<

N . I I I I .
Very easy Easy Neutral Difficult Very diffieult Very easy Easy Neutral Difficut Very difficult

Task 4: Ease of use if answered correctly in control condition Task 4: Ease of use if answered incorrectly in control condition

£ e

8 1 84

g g |

8 1 8

2 - 2

2 - £

N . . N . -

o — I o -
Very easy Easy Neutral Difficult Very dificult Very easy Easy Neutral Difficult ~ Very difficult

Task 4: Ease of use if answered correctly in custom condition Task 4: Ease of use if answered incorrectly in custom condition

84 8

g 5

E 2

2 - 2

N . N -

o — o - N e
Very easy Easy Neutral Difficult ~ Very difficult Very easy Easy Neutral Difficult ~ Very difficult

Figure 11: Ease of use histogram for Task 4 (validation ex-
periment)

162 Thirteenth Symposium on Usable Privacy and Security USENIX Association

