Intrusion Detectionvia Static Analysis

David Wagner
U.C. Berkeley
daw@cs.berkeley.edu

Abstract

Oneof the primary challengesin intrusion detectionis
modellingtypical applicationbehavioy sothat we canrec-
ognizeattads by their atypical efectswithoutraising too
manyfalse alarms. We showhow static analysismay be
usedto automaticallyderivea modelof applicationbehav-
ior. Theresultis a host-basedntrusion detectionsystem
with three advantaes: a high degree of automation,pro-
tectionagainsta broad classof attadks basedon corrupted
code and the elimination of false alarms. We report on
our experiencewith a prototypemplementatiorf thistec-
nique

1. Intr oduction

Computersecurityhasundegonea majorrenaissanca
thelastfive years.Beginningwith Sunsintroductionof the
Javalanguageandits supportof mobile codein 1995, pro-
gramminglanguagesave beena major focus of security
research.Many papershave beenpublishedapplyingpro-
gramminglanguageheoryto protectionproblemg25, 24],
especiallyinformation flow [17]. Security however, is a
mary-facetedopic,andprotectionandinformationflow ad-
dresonly asubsebf theproblemgacedn building andde-
ploying securesystems.As attaclersanddefendersarein
anarmsrace,deplgying a systemwith strictly staticbut in-
completesecuritymeasuress doomedto failure: this gives
theattacler thelastmove, andthereforevictory.

Formal methodsalone,areinsuficient for building and
deplgying securesystemsintrusiondetectionsystemdave
beendevelopedto provide an online auditing capabilityto
alertthe defendethatsomethingappeardo bewrong. Un-
fortunately mostintrusion detectionsystemssuffer from
major problemsas describedin Section2. We take a
new approacho the problemthateliminatesmary of these
drawbacks.

Our approachconstrainghe systemcall traceof a pro-

Drew Dean

Xemox PARC
ddean@parc.xerox.com

gram’s executionto be consistentvith theprograms source
code. We assumethat the programwas written with be-
nignintent. Thisapproactdealswith attackgsuchasbuffer

overflows) that causea programto behae in a mannerin-

consistentith its authorsintent. Thesearethe mostpreva-

lent securityproblems.Of course,somesecurityproblems
aredirectly attributableto faulty applicationlogic, suchas
programsthat fail to checkauthenticatiorinformation be-
fore proceedingandonelimitation of our intrusiondetec-
tion systemis that it doesnot detectattacksthat exploit

logic errors. Applicationlogic bugs,however, aredwarfed
in practiceby buffer overflov problemsandothervulnera-
bilities that allow for executionof arbitrary machinecode
of the attacler’s choice[8, 35], andit is the latter type of

vulnerability on which we focus.

Therestof this paperis organizedasfollows: Section2
discusseselatedwork, Section3 discussesur framework,
Section4 discusseshe modelswe use,Section5 discusses
our implementation,Section6 evaluatesour results,Sec-
tion 7 discusse$uturework, andSection8 concludes.

2 RelatedWork

Early work on intrusion detectionwas due to Ander
son[1] andDenning[9]. Sincethen,it hasbecomea very
active field. Most intrusion detectionsystems(IDS) are
basedon one of two methodologies:eitherthey generate
amodelof a programs or systems behaior from observ-
ing its behaior onknown inputs(e.g.,[14]), or they require
thegeneratiorof arule base(e.g.,[3]). In bothcasesthese
systemghenmonitorexecutionof the deployed programor
systemandraiseanalarmif theexecutiondivergesfrom the
model. The currentmodel-basedpproachesll shareone
commonproblem:atruly robustintrusiondetectionsystem
mustsolve aspeciakcaseof themachindearningproblem,a
classicAl problem.Thatis, to preventfalsealarmsthelDS
mustbe ableto infer, from statisticaldata,whetherthe cur-
rentexecutionof the systemis valid or not. Thefalsealarm
rateof presensystemss amajorproblemin practice[2].

Ko et al., and othershave proposeda very naturalso-
lution to this problem: every programshouldcomewith a
specificatiorof its intendedbehaior [21, 19, 22, 29]. This,
of course hasbeenthe dreamof the formal methodscom-
munity for 25 years,andis asyet unrealized We believe it
is likely to remainunrealizedfor sometime to come. Al-
thoughKo et al.’s specificationlanguages simpleandad-
mits relatively compactspecificationswe believe that the
needfor manuallywritten specificationswill dramatically
limit the impactof this work!. We philosophicallyagree
with the direction of Ko et al.’s work, but we proposeto
side-stepts main dravback by automaticallyderiving the
specificatiorfrom the program.

3. The framework

We would lik e to detectthe casewherean applicationis
penetrate@ndthenexploitedto harmotherpartsof the sys-
tem. To this end,we definea specificationof expectedap-
plicationbehaior, andthenwe monitortheactualbehaior
to seeif it ever deviatesfrom the specificationWe describe
first how we monitorapplicationbehaior, andnext we pro-
posetechniquedor automatedpecificatiorconstruction.

To reducethe potentiallyhugevolumeof tracedata,we
consideronly the security-releantbehaior of the applica-
tion of interest. Themonitoringstrateyy shouldthenensure
thata compromisedpplicationcannotcompromisesystem
integrity? while still evadingdetection. In general,it will
always be possiblefor attaclersto evadedetectionin our
systemif they do not causeary harm, but if they wantto
causeharm, they will needto interactwith the operating
systemin away whichrisksdetection.

In mary case®f practicalinterest,we may safelymale
thefollowing corvenientassumptior15]:

Assumption. A compomised application cannot cause
mud harmunlesst interactswith theunderlyingoperating
systemandthoseinteractionsmaybereadilymonitoed.

If—as is typically the casé—the only way to interact
with the operatingsystemis via systemcalls, it sufices
to monitor just the applications systemcall trace. Since
monitoring systemcall tracesis usually straightforvard in

IHowever, onepromisingdirectionto remedytheselimitations canbe
foundin Ko’s recentwork on blendingmanualrule baseswvith automated
specificationgeneration[20]. Note that othershave usedruntime tech-
niquesto identify programinvariants[12]; however, becaus¢heidentified
invariantsconcerndataflav, ratherthansequencingf systemcalls, they
do notseemto bewell-suitedto intrusiondetection.

2We do not considerdenialof serviceattacksn this work.

3We do not claim thatthe assumptioris alwaystrue. Someoperating
systemsare startingto include partial exceptionsto this rule (e.g., user
level networking). However, few security-criticalapplicationsusethese
exceptionafeaturessowe cansimplyforbid theiruse:therareapplication
whichuseghesdeaturesnayintroducefalsealarmsput atleastmalicious
codewill notbeableto exploit the specialfeaturesn anattack.

practice the bulk of the challengewill beto derive a spec-
ification of the applications expectedinteractionwith the
operatingsystem.

We derive our specificationof expectedapplicationbe-
havior from the applicationsourcecode,alongwith afixed
model of the operatingsystem. We modelthe application
asatransitionsystemwith some(possiblyverylarge)setof
statesalongwith someadmissibldransitions If we everde-
tectasystemcall tracethatis incompatiblewith this transi-
tion systemwe may concludethatthe mostlikely explana-
tion is thatwe areunderattack:for instancethe adwersary
may have introducedmaliciouscodeof her own choosing
and causedt to be executed,e.g., via a buffer overrunor
formatstringattack.Thereforeto detectintrusions,our ba-
sic approacthis to look for systemcall tracesthatcould not
have beengeneratedby theunderlyingtransitionsystem.

Onesubtletyis thattheadwersarymayadaptto our meth-
ods. Indeed,we later introducea new type of attack,the
mimicryattad, which appliesto all intrusiondetectiorsys-
temsandin somecasesnayallow theadwersaryto fool the
intrusion detectionsystemby camouflagingthe malicious
codeso that it behaes much like the applicationwould.
We do nothave acompletedefenseagainstmimicry attacks,
but we make someprogresgowardsquantifyingresistance
againstthistypeof attaclertactic. SeeSection6 for details.

Our intrusion detectionsystemdoesnot detectall at-
tacks,but it doesallow usto detectone of the mostcom-
mon effectsof a penetration:executionof corruptedcode.
We obsere that, in practice,oncean attacler hascompro-
misedthetargetapplication,shewill oftendownloadsome
‘exploit code’ of her choosinginto the applicationanduse
it to executevariousoperationswith the applications privi-
leges.Sincethis exploit codeis notoriginally presentn the
applicationsourcecode,if it is ever executedwe expectto
seebehaior thatis incompatiblewith the sourcecodeand
thusto detectthe attack.

One problemis that transitionsystemsderived directly
from the sourceare usuallytoo comple to be useful. We
could naively starta secondslave’ copy of the application
runningon the sameinputsin aninterpreterthat simulates
all interactionswith the outsideworld, checkingat every
stepwhethemwe obtainthesamesystencall tracefrom both
the masterand the slave. This naive replication stratey
could probablybe madeto work, but it hastwo important
disadwantageskFirst, replicationmaybe hardto implement,
becausdt is likely to bevery difficult in practiceto remove
every last shredof non-determinisnfrom the application
(e.g.,randomnumbergeneratorsprocessscheduling tim-
ing channelsinteractionwith theoutsideenvironment,etc.)
[23]. Secondandmoreimportantly the slave is exposedo
thesamerisksasthe master:ary setof inputsthatticklesa
securityflaw in the masteiis likely to triggerthe sameflaw
in the slave aswell andtherebyescapealetection.

We tackle theseproblemsby simplifying the transition
systemgreatly abstractingaway unnecessargompleity.
Sincewe careonly aboutthe sequencef systemcallsis-
sued,we pruneaway all otheraspectof the model, even
to the point of disrggardingthe contentsof local variables,
datastructuresandall otherdataflow. We thensimulate
the simplified transitionsystemin an interpreterwith cor
respondinglyminimal operationabemanticsThis abstrac-
tion processhasthe potentialto fix the problemsof naive
replication: it can be very fast, becauseanostof the code
has beenprunedaway; we can afford to deal with non-
determinism,since the transition systemhas beendrasti-
cally simplified (for instance,non-deterministidinite au-
tomataarenot muchmoreexpensve to simulatethandeter
ministic finite automata);and the minimal operationalse-
manticsmay remove mary of the pitfalls of C (e.qg.,buffer
overrunattackswill notaffectamodelthatignoresthe con-
tentsof all buffers).

To summarizeour approach: We first pre-computea
model of expected application behaior, built statically
from programsourcecode;then, we monitor the program
andcheckits systemcall tracefor complianceo themodel
at runtime. The primary challengeis in automatingmodel
generationywhich we discussext.

4. Models

In this section we proposea sequencef modelsthatwe
useto specifyexpectedapplicationbehaior: first, atrivial
modelto illustratethe mainidea;then,thecallgraphmodel;
third, arefinementtheabstracstackmodel;andfinally, the
low-overheaddigraphmodel.

Eachmodelis intendedto satisfya commonsoundness
property: falsealarmsshouldnever occur To achieve this
goal, we must make a numberof mild assumptiongbout
our operatingervironment. We consideronly portableC
codethathasno implementation-definetiehaior: for ex-
ample we assumehattherearenointentionalarraybounds
violations, NULL-pointer dereferencespr other memory
errors; we assumethereis no function pointer arithmetic
or type-castingoetweenfunction pointersand other point-
ers;andwe assumehereis no application-defineduntime
codegeneration.Theseassumptionsirenot critical: viola-
tions may introducefalsealarmsbut will never causeusto
missattackswe otherwisewould have detected.Nonethe-
less,in our experiencethe security-criticalapplicationsin
widespreadisedo conformto theseassumptions.

Fromaformallanguageviewpoint, all of our modelsin-
volve recognizinga sentencen a regular or contet-free
language. However, this viewpoint is much lessintuitive
than dealing directly with automataand will not be dis-
cussedfurther For easeof discussion,we will refer to
terminating programsand finite or pushdevn automata,

as appropriate. All of our resultsdirectly extendto non-
terminatingprograms.

4.1.A trivial model

We illustrate theseideas by describinga minimalist
example of an intrusion detectionsystemfollowing this
framavork. Let S be the setof systemcalls that the ap-
plication canever make. The setof allowable systemcall
traces—i.e.pur modelof expectedbehaior—will thenbe
exactly theregularlanguageS*. If, atruntime,we ever ob-
sene the applicationissuingsomesystemcall notin .S, we
preventthe systemcall from executing kill theapplication,
andsoundthe alarm.

Thismodelis easyto derive with automatedourceanal-
ysistools. Becausen practicesystemcalls may be easily
recognizedn sourcecode,thesetS maybeinferredeasily
by simply walking the parsetree and pattern-matchingor
systemcall invocations.

Suchan approachs simple, easyto implement,sound,
andefficient, but it will fail to detectmary attacks.No at-
tack that operatesusingjust systemcalls from S will ever
be detectedandin practicewe canexpectthisfailuremode
to becommonif S is toolarge. Anotherproblemis thatthe
approachis too coarse-grainedsincemary commonsys-
tem calls are too dangerougo allow without ary restric-
tions. For example,if the open() systemcall is included
in S, attaclerswill befreeto modify ary file whatsoger at
ary time without fear of detection.Furthermorethis nave
approactscalespoorly to large applicationswhich are ex-
actly the onesat greatestisk for intrusions,becausdarge
applicationsyield large setsS. Consequentlya more pre-
cisemodelis needed.

4.2.The callgraph model

The foremostproblemwith the naive model described
above is that we have thrown away all information about
the ordering of the possiblesystemcalls. In this sectionwe
shav how to retainsomeorderinginformation.

Onecleanway to represeninformationon the ordering
of possiblesystemcallsis to expressour modelasaregular
languageover ¥, the setof systemcalls. For easeof model
generationjt is cornvenientto usean equialentrepresen-
tation of the modelasa non-deterministidinite automaton
(NDFA). We describenext how to usea NDFA to charac-
terizethe expectedsystemcall traces.

Building the model Deriving themodelis asimpleappli-
cationof control-flov analysis. We first build the control-
flow graphG = (V, E) associateavith the programsource
code. We assumehateachnodeof the control-flov graph
executesat mostonesystemcall andthatwe canrecognize

f(int x) {

open
x ? getuid() : geteuid(); @ S
X++;
} e
V /
gO { close(.
fd = open("foo", O_RDONLY); ~
£(0); close(fd); f(1); ~

exit(0);

) exit() Q -

Figure 1. An example C program (left), and its associated callgraph model (right).

Transitions to

Wrong are omitted to avoid cluttering the diagram. Dashed lines indicate interpr ocedural edges,

whic h are represented as e-transitions in the NDFA.

wheresystemcalls occutr Thenwe note that the control-
flow graphcannaturally be viewed as a specificationof a
NDFA with statespac& U{Wrong}, transitionsnducedby
E, andalphabe®.. Eachedgev — w € E of thecontrol-
flow graphinducesa transitionv = w of the automatonif

thereis a systemcall « atnodewv, or the e-transitionv = w

otherwise;e-transitionsrepresentransferof controlwhere
no systemcall is executed. Every proper state(i.e., each
statev #£ Wrong) is considere@nacceptingstate.Thespe-
cial stateWrong is non-acceptingind containsa self-loop
Wrong - Wrong on every a € X; whenanodewv con-
tains no outgoingtransitionson somesymbola € ¥, we
addan implicit transitionv % Wrong. The resultingau-
tomatonis non-deterministidecausén generale cannot
staticallypredict,for example,which branchof anif-then-

else expressionwill betakenatruntime. SeeFigurel for

anexample.

We use this automatonas our model of expectedbe-
havior, so that an obsered traceis acceptedonly if it is
acceptedby the NDFA. We call this the callgraph model.
Notethatthis modelthrows away alot of informationabout
the executionof the application: in particular we ignore
all of its internal state other than the program counter
Nonethelesst preseresasoundnesproperty:

Claim. Theearenofalsealarmswhenusingthecallgraph
model.

The claim follows from the obsenration that, by con-
struction, every possible path of execution through the
control-flov graphcorrespondso an acceptingoathof the
NDFA, andthuseverydynamically-possiblexecutiontrace
will beacceptedy the NDFA.

Monitoring algorithm Whenmonitoringtheapplication,
we simulatethe operatiorof theNDFA ontheobseredsys-

tem call trace,resolvingnon-determinisnby exploring all
possiblepathsin breadth-firstorder This requiresO(|V|)
operationsper obsened systemcall. Note that more ef-
ficient techniquesxist—for instance,the NDFA may be
convertedto a DFA, eitheraheadof time or on thefly, and
cachingmay be usedto speedup the simulation [18]—
but we have not explored ary of thesealternatves. See
Section5 for more implementationdetails, and Section6
for measurementsf ourimplementatiors performancend
detectionpower.

Function calls Oneissuenot mentionedsofaris how to

dealwith function calls. After we generatea control-flov

graphfor eachprocedurewe connectthemtogether: we

split eachcall sitev into two nodesv, v andaddextraedges
v — Entry(f) andExit(f) — o’ for eachfunction f that
could be calledfrom v. Seethe dashededgesin Figurel

for an example. Here Entry(f) and Exit(f) denotethe

uniqueentry and exit nodesfor f, asmight be expected.
This so-calledmonomorphidor contet-insensitve) analy-
sis producesa single large graphthat may be analyzedas
above.

Impr ecision in the model One limitation of the call-
graph modelis that it includesimpossiblepaths, due to
the monomorphidreatmenbf functioncalls. In particular
considertwo call sitesv, w thatboth call the samefunction
f; thenthe expandedcontrol-flov graphwill containpaths
of theform v — Entry(f) — --- — Exit(f) — w’. See
Figurel for anillustratedexample.Suchanimpossiblepath
cannotoccurin ary real execution,becausdunction calls
will alwaysreturnto the site wherethey were calledfrom.
Unfortunately a NDFA is unableto expressthis constraint,
sowe endup with impossiblepathsthroughthe automaton.
Impossiblepathsin the callgraphmodelarea problemin

while (true)
casepop() of

£(int x) { Entry(f) ::= getuid() Exit(f) Entry(f) = push(Exit(f)); push(getuid())
x 7 getuid() : geteuid(); | geteuid() Exit(f) Entry(f) = push(Exit(f)); push(geteuid())
XH+; Exit(f) == e Exit(f) = no-op
) Entry(g) :— open() v Entry(g) = push(v); push(open())
g0 { v = Entry(f) v v = push(v’); push(Entry(f))
£d = open("foo", O_RDONLY); v' u= close() w v’ = push(w); push(close())
£(0); close(fd); f£(1); w = Entry(f) w’ w = push(w’); push(Entry(f))
exit (0); w' n= exit() Exit(g) w’ = push(Exit(g)); push(exit())
} Exit(g) == e Exit(g) = no-op
a €Y = readandconsume: from theinput

otherwise=- entertheerrorstate Wrong

Figure 2. The example C program again (left), with its associated conte xt-free grammar (middle) and

the resulting abstract stack model (right).

practice. This imprecisioncausesour NDFA to be larger
than necessaryand attacksthat follow theseimpossible
pathswill remainundetected. As a consequenceintru-
sion detectionsystemsbasedon the callgraphmodel may
in somecasese morepermissive thanwe would like.

4.3.The abstract stack model

We next introducethe abstiact stadk model, which al-
lows us to characterizenore preciselythe setof possible
systemcall tracesby eliminating impossiblepaths. The
ideais to modelnot only the programcounterbut alsothe
stateof the call stack. We extendour modelsothatthe set
of possiblesystemcall tracesis allowedto form a context-
freelanguagelt is thennaturalto representhis abstraction
of theprogramasanon-deterministipushdevn automaton
(NDPDA), or equialently, a context-freegrammar

Building the NDPDA Thepushdevn automatorwe con-
structwill provide anintuitive modelof programbehaior.
The stateof the automatorwill be anabstracsummaryof
the stateof the application. In particular the automators
stackwill form anabstractersionof theprogramcall stack:
eachsymbolon the automators stackwill correspondo a
singlestackframein the applications call stack,whereev-
erythingbut thereturnaddresshasbeenabstractedway.
The constructionis asfollows. We assumehatwe are
givenaglobalcontrol-flov graphG = (V, E) thatincludes
interprocedurakall edges. We generatea NDPDA with
stackalphabetl’ Uy, inputalphabet:, andtransitionggiven
asfollows. Supposdirst thatthereis anodev € V onthe
top of thestack.If v is afunctioncall sitereferencingapro-
ceduref, we pop v off the stack,pushthe corresponding
returnsitev’, andfinally pushEntry(f) onto the stack.If

v is afunctionexit node,we popw. If v is anon-callnode,
we pop v, pushs if v issuesthe systemcall s € 3 (other
wise, we do not pusharnything for nodesthat do not make
systemcalls), non-deterministicallyselectsomesuccessor
w of v with v — w € FE, andfinally pushw. Ontheother
hand,if s € X is atthetop of thestack,we attemptto match
s againstthecurrentinputsymbols’; if s = s/, weconsume
the currentinput symbolandpop s off the stack;otherwise,
we enterthe stateWrong andrejectthe input string. As in
the callgraphmodel, all properstatesare acceptingstates.
SeeFigure2 for anexample.

This constructionof the NDPDA ensureghat every se-
guenceof operationgo the programcall stackduringanor-
mal applicationexecutionwill beamongthesetof pathsex-
ploredduringthe simulationof NDPDA. Sincethe NDPDA
is non-deterministicotherpathsmay alsobe explored, but
we canbe surethatthe correctonewill notbe omitted. At
the sametime, theincreasedrecisionof the abstracistack
model makesit lesslikely that real attackswill go unde-
tected.

The context-freemodel In ourimplementationthe ND-
PDA is constructedlirectly. However, astheconstructions
ratherdetailed,it maybe easierto considerbuilding an(al-
most,asexplainedbelon) equivalentcontet-freegrammar
for the program,with non-terminalsgaken from V', termi-
nalsin X (the setof systemcalls), andrulesgiven asfol-
lows®. If v is afunctioncall sitewith correspondingeturn
sitev’, we addtherulev ::= Entry(f) v’ for eachfunction
f thatcouldbecalledfrom v. For eachnon-callnodev and
eachsuccessow of v, we addtherulev ::= a w if thereis
asystemcall a € ¥ atv, ortherulev ::= w otherwise.Fi-

4Therearesomecomplicationswith set jmp () andothernon-standard
formsof controlflow; seeSection5.1 for extensiongo handlethem.

nally, for eachfunction f in the programwe addthee-rule
Exit(f) ::= e. Thisgrammauis quite natural[27, 28, 6, 7].

The simplificationreferredto above is thatthe NDPDA,
by constructionalsoacceptsll prefixesof sentencegen-
eratedby the grammarabove. The actualgrammarwould
be morecomplicatedf it took thisinto account.

The NDPDA describedearlier may be obtainedby ap-
plying the trivial top-davn constructionto the context-
free grammarobtainedabore (similar to LL(0) parsing,
except that we keepthe conflicts and thus obtain a non-
deterministicautomaton). This top-dovn constructionis
convenientbecauséts operationcorrespondsloselyto ex-
ecutionin proceduralanguagesuchasC. SeeFigure2 for
anexample.

Monitoring algorithm To detectattacks we mustmoni-
tor the systemcalls issuedby the applicationand simulate
the operationof the NDPDA on thoseinputs. It turnsout
thatefficient simulationof the NDPDA is a significantthe-
oreticaland engineeringchallenge especiallyas we scale
upto intrusiondetectionon very large applications.

The most naive approachis to exhaustvely search
throughall possiblenon-deterministicchoicesof the ND-
PDA. In otherwords, at eachtime step,we maintaina list
of all possiblestackconfigurationsof the NDPDA; when
a new systemcall is obsered, for eachpreviously possi-
ble configuratiorwe computethe setof new configurations
theNDPDA mighttransitionto, andupdatethelist of possi-
ble stackconfigurationsHowever, in practicethisapproach
is untenablefor any but the simplestapplication,because
thesdists grow exponentiallylargein thelengthof thesys-
temcall trace(in fact, eveninfinitely large, in the presence
of left-recursion).

Lessnaively, we might hopethat standardparsingal-
gorithmsmight be applicablehere. Of course,we cannot
usestandargarsergsuchasyacc) becaus@ur NDPDA is
non-deterministic It is easyto seethat, for every context-
freegrammart’, thereis someprogramwhich generate§’,
andin practice,real applicationsproducegrammarswith
considerabl@mon-determinisnandcomplity. So,weneed
anefficientalgorithmfor online parsingof generalkcontext-
freelanguages.

It is alsoimportantto have a top-davn parsingroutine.
As describedn Section5, dealingwith someof the special
featuresof the Unix runtimeervironmentrequiresusto oc-
casionallystepoutsideof the context-free framevork and
performoperationglirectly onthesetof possiblestackcon-
figurations. Real programsexecutein a roughly top-dowvn
fashion—westartexecutingmain () beforeexecutingary
of its callees—sathis seemsto rule out bottom-uppars-
ing. Unfortunately much of the work in the literatureon
recognizinggeneralcontet-free languagege.g.,the CYK,
Earley, Tomita,andGLR techniqueg37, 10, 16, 33]) uses

bottom-upmethods.

Consequentlywewereforcedto developnew techniques
for efficient top-dawn parsing.A full descriptionof our al-
gorithm is outsideof the scopeof this paper but we list
a few useful propertiesof the algorithmthat male it well
suitedfor our purposes:

e |t supportsonline parsing: aseachsystemcall is ob-
sened, we can decide whetherthe resulting partial
traceformsthe prefix of asentencén the contet-free
languageasrequiredfor real-timeintrusiondetection.

o It is relatively efficient: like othergenerakontext-free
recognizersits worst-caseunningtimeis cubicin the
length of the systemcall trace. This is likely to be
too slow for large applicationsput is muchbetterthan
exponential-timesolutions. In practice,we encounter
cubic-timebehaior only occasionally

e Mostimportantly it supportgeal-timeaccesso theset
of possibletop-dovn parsetrees. The key datastruc-
tureis arepresentationf thesetof possiblecall stacks
asa regularlanguageover the alphabetf stacksym-
bols. This lets us modify this datastructuredirectly
wheneer we needto stepoutsideof the contet-free
framawork.

More detailson this algorithmareavailableelsevhere[34].
4.4, The digraph model

We next introducea very simple approachwhich com-
binessomeof the advantage=f the callgraphmodelin a
simplerformulation. The basicapproachfirst introduced
in previous work on runtimeintrusiondetection[14], is to
considemwindows of consecutie systemcalls.

Ourmodelwill thusbealist of the possiblek-sequences
of consecutie systemcalls, startingat an arbitrary point
during programexecution. In our prototypeimplementa-
tion, we consideronly thespecialcasek = 2 for simplicity.
Notethat k-sequencesf systemcallswith &k = 2 areoften
referredto asdigraphs sowe call this the digraphmodel.
We considerhereboth the specialcaseof digraphsandthe
generakase.

Building the model We could derive the setof possible
k-sequence$rom the control-flov graphin a straightfor
ward fashion,but we obsene that thereis a more precise
approachavailableif we usethe context-free languageof
possiblesystemcall traces, L(T"), as introducedin Sec-
tion 4.3. To determinewhetherthe sequences € X* can
occurin a systemcall traceduring normalapplicationexe-
cution,we simply testwhether(X*sX*) N L(T") # (), which
is effectively computableg[18, 27]. Repeatinghis testfor

eachs € XF gives a generalalgorithm to build the de-
siredmodel. Unfortunately this precomputatiorhasrun-

ningtime ©(k* x |E| x |$|*), whichis exponentiaiin k. In

practice,it is slow enoughthatwe have only experimented
with thek = 2 case.

Monitoring algorithm Detectingattacksthen becomes
easyoncewe have performedthe abore precomputatiorto
build alist of theallowedk-sequencesiNe keepa history of
thelastk — 1 systemcalls,andwhenwe seea new system
call, we checkwhethertheresultingk-sequencés allowed.
Thus, the runtime monitoring algorithmis extremely effi-
cientfor this model;thetrade-of is thatthe digraphmodel
is lessprecisethanthe callgraphor abstractstackmodel,
andthuscanbe expectedto missmoreattacks.

5. Implementation issues

We sketchedabove threetheoreticaframevorksfor im-
plementingintrusion detectionusing static analysis. In
practice,though,therearea numberof complicationsthat
arisewhenimplementinghesedeas.Wediscusheresome
of theimportantimplementatiorchallengesindhow to han-
dlethem.

5.1.Non-standard control flow

Implementationsof control-flav analysis, when in-
tendedfor optimization, often give up in the presenceof
non-localcontrol flow (suchassignals,set jmp (), andso
on). However, we have foundthat,in practice realapplica-
tions of interestfor intrusiondetectionoften usethesefea-
tures.Thereforewe describenow to augmenthemodelling
frameworks describedabove to incorporatetheseforms of
non-standardontrolflow.

Function pointers To build the programcall-graphin the
presenceof function pointers, it is crucial to be able to
predictthe possibletargetsof every indirect call througha
functionpointer Many sophisticate@lgorithmsfor pointer
analysisareavailablein theliterature[11, 31, 30], butin our
implementatiorwe simply assumehatevery pointercould
referto ary functionwhoseaddresdiasbeentaken. Empir
ically, even this very crudetechniqgueseemso suffice for
our purposes.

Signals Many operating systemsallow applicationsto
register a signalhandlerto be executedupon receptionof
a signal. It is straightforvard to statically recognizesig-
nal handlers:we simply look for systemcalls of the form
signal (i, fp), which bindsthe handlerfp to thesignali
sothatwhenthis signalis receved, thefunctionreferredto

by thefunctionpointerfp will becalled.Consequenththe
real challengeis to augmentthe modelto representhese
additionalpossibilitiesfor controlflow.

Naively, one might consideraddingto the control-flov
graphanextra edgefrom eachnodeto eachpossiblesignal
handlerto representhis additionalcontrolflow. This naive
solutionwouldwork, butit addsanenormousmountof ex-
tra non-determinisnto the control-flov graph,soour anal-
ysiswould becomdesspreciseitheintrusiondetectionsys-
temwould becomesignificantlyslower (becauseve needto
follow more possiblepathsin the control-flov graph)and
pooreratrecognizingntrusions(becauseealattacksmight
mimic unlikely pathsthroughsignal handlersandthereby
avoid detection) We would preferto modelsignalswithout
incurringthesecosts.

Fortunately thereis a cleansolution available. We ex-
ploit the presenc®f aruntimecomponentn our system:

Principle 1. If you can arrange to receivean extra event
when&er someexceptionalpath (sud as invocationof a
signal handler) might be taken, you can oftenimprove the
precisionof themodel.

In this case we arrangeto monitor not only the system
callsthe applicationmakeshbut alsothe signalsthe applica-
tion receves, andwe ensurethatall the extra pathsin the
control-flov graphare pre-guadedby an initial signalre-
ceptionevent. In mary Unix operatingsystemsall signal
handlersnvokethesigreturn() systencall afterthey re-
turn, sowe alsoadda post-guad to the endof eachextra
path,too.

It is straightforvard to augmentthe control-flov graph
to ensurethat every executionof a signal handlerwill be
bracletedby both a pre-andpost-guard.Theseextra paths
in the control-flov graphwill not be triggeredunlessthe
appropriatesignalis receved,andto save spacghey maybe
implicitly representedndonly re-generatedn demandso
they areeffectively invisible exceptin the casesvherethey
arenecessaryTheseechniquegprovide a precisegfficient,
andsimpleway to extendary of themodelsin Section4 to
reflectthe semantic®of signals.

The setjmp() primitive ANSI C provides a form of
non-local control flow that is sometimesusedto provide
a crudeform of exceptionhandlingor error recovery: the
setjmp () primitive savesthe stackpointerandotherregis-
ters,andthenlongjmp () maybecalledby a subroutineo
roll theregistersandhencethestack,backto its savedstate.
In the callgraphmodel, we may simply add an extra tran-
sition from eachlongjmp () to every possibleset jmp (),

5The ability to monitor signalsis corveniently alreadyavailable with
most existing mechanismdor processtracing, sinceit is usedby some
dehuggers.

but this will not work for the abstractstackmodelbecause
longjmp () modifiesthe call stack.

We do not know of a goodstaticapproacho call stack
analysisn thepresencef set jmp (), but fortunately there
is no needto solwe this problemstatically Insteadwe ex-
tendtheruntimemonitoringagent.Our monitormaintainsa
runninglist of all call stacksthatwerepossiblewhensome
setjmp() call was visited earlierin this executiontrace.
Eachlongjmp () call canbeemulatedoy addingthis accu-
mulatedlist to the automators currentsetof states.Since
setsof statesarerepresentedsregularlanguagesn theab-
stractstackmodel (seeSection4.3), the union operations
may beimplementecefficiently.

As a future extension,we might also enforcethe con-
straintthat returningfrom a function activation invalidates
ary setjmp() it may have called. This would allow usto
garbage-colleabld set jmp () stategtherebyreducingstor
agecostsby someunknovn amount)andto excludeimpos-
sible longjmp () tamets(therebyimproving precisionand
attackdetectionpower). Sofar, though,we have not found
the need. Our experiencehasbeenthat set jmp () is typ-
ically usedjust often enoughthatit cannotbe completely
ignoredbut rarely enoughthatthe burdenof theabore sim-
ulationtechniquess minimal.

In ary caseourexperiencewith setjmp () suggestshe
following lessorfor hybrid static-dynamisystem§:

Principle 2. Someprogram propertiesthat are difficult to
infer statically may becomeeasierto modelsatisfactorily
whenthe burden is offloadedto a runtime agent, whee
available

5.2.0ther modelling challenges

Libraries Ourapproachrequiresamodelfor eachlibrary
function that might be called. Therefore we usea modu-
lar analysisto build thesemodels. In particular we mod-
ified the gcc compilerto outputintermediateanalysisout-
put files alongsideeachobijectfile asit compiled,andwe
modifiedthelinker to combinethe intermediatdiles into a
whole-programanalysis.A sidebenefitwasthatwe could
analyzesxisting softwarepackagedy simply usingthepro-
vided Makefilesto compilethem.

8In the digraphmodel,neitherPrinciple 1 nor 2 is muchhelp,sinceno
helpis availablefrom theruntimeagentnoris thereary corvenientway to
monitor set jmp () andlongjmp () callsatruntime. Thus,we areforced
to usemore consenrative techniques.Considertemporarilyextendingthe
alphabetvith thesymbols§ and.£ torepresenset jmp () andlongjmp ()
invocations. We infer thatdigraphsj s2 is possiblein someprogramex-
ecutiononly if (1) s; s2 is apossibledigraphin the original (unextended)
languagepr (2) both s; £ is a possibledigraphwhenthe languages ex-
tendedwith £ and§sy is apossibledigraphwhenthelanguageés extended
with § and .£.

We found that library codetaxed the limits of our tool
more thoroughlythan mostapplications,and a dispropof
tionateamountof our effort was spenton the C libraries.
For instance the GNU stdio implementationusesfunc-
tion pointersextensvely to emulatean object-orientegro-
grammingstyle; with our naive pointer analysis,the in-
ferred modelsweretoo imprecise,so we replacedour au-
tomatedanalysisresultswith hand-craftednodels.In con-
trast,thedatabasédibrary 1ibdb alsousedfunctionpointers
extensvely to parametrizelatabas@nplementationshut in
this casewe werewilling to acceptthe imprecision. As a
third example,the GNU ELF librariesmake heary useof
bothsetjmp () andfunction pointersto implementexcep-
tion handling,sowe resortedo refiningtheinferredmodel
by handin someplacesto improve its precision.

Therearemary disadwantages$o hand-luilt models:they
are time-consumingo construct;they are difficult to get
right (andthusunsoundnesandfalsealarmsarearisk); and
they makeit unpleasanto keepupwith changesgo thecode.
Ideally, we would have preferreda morepreciseautomatic
analysissothatwe could avoid thesedisadwantageshut in
practiceevenour crudetechniquesveregenerallysufficient
to getthejob donewithoutcompromisingour primarygoals
in thefew casesvheremanualanalysisvasnecessary

Dynamic linking Dynamically linked libraries posean-
otherchallengebecausehey force usto updatethe model
at runtime. In our implementationwe predictin advance
thesetof librarieswhich might belinkedin andbuild mod-
els for all of themfrom source. This canintroducefalse
alarmsif our predictionbecomesut of date(when,e.g.,a
new versionof thelibrary becomesvailable),which means
that everything must be updatedwheneer the underlying
libraries are. This is not a fundamentalimitation, and a
more satisfyingsolutionwould be to build a modelat run-

time from objectcode,but we have not exploredthis direc-
tion becausét hasnotbeennecessarjn our experienceln

ary casepindingapplicationdo librariesstaticallyhassub-
stantialsecuritybenefitspecausd preventsintroductionof

Trojanhorsesvia dynamiclinking attacks.

Threads Threadgposeyetanotherchallengepecausehe
context-switchingoperationintroducesanothertype of im-
plicit control flow. If it were possibleto reliably receve
‘thread context-switch’ events (seePrinciple 1), handling
threadswould be straightforvard; this is no problemfor
kernelthreadsput unfortunatelyusernthreadgposeathorry
challengeandwe know of nogoodgenerakolution. A sec-
ondissueis thatthreadedcodemay containsecurityvulner
abilities dueto synchronizatiorbugsthat we do not know
how to detect.Becausef thesechallengesandbecauseo
security-criticalapplicationwe examinedusedthreadspur
prototypeimplementatiordoesnot supportthreadedctode.

5.3.Optimizations

Irr elevant systemcalls Up to now we have describedan
intrusiondetectiorsystenthatmonitorsall systemcallsthe
applicationinvokes, and we originally expectedthis to be
optimal. However, we foundthatignoring, e.g.,thebrk ()
systemcall cangreatlyimprove performanceby reducing
the size and ambiguity of the model: in mary programs,
memoryallocationcanoccurjustaboutanywhere soseeing
abrk() systemcall givesusvery little contextual informa-
tion. This may causeus to missdenial-of-serviceattacks,
but thosearebeyondthe scopeof this paper

In somecasesignoringcertainsystencallscanevenim-
prove the precisionof the model. It may soundparadoxical
thatthrowing away informationcanimprove precision,but
considerthe digraphmodel: excluding very commonsys-
temcallsgivesmorecontet. It is usefulto beableto enable
this optimizationon a perapplicationbasis.

Systemcall arguments Themostimportantoptimization
is basedntheobsenationthatwe cangainquiteabit of ex-
trainformationabouttheapplicationbehaior by examining
theargumentdo eachsystemcall. Sincewe canoftenstat-
ically predictsomesystemcall agumentswith little effort,
we mightaswell checkthematruntime.\We recognizdex-
ically constantsystemcall agumentsin our prototypeand
foundthateventhis extremelycrudetechniqueprovidesno-
ticeableimprovementsto both precisionand performance;
seethemeasurements the next section.

6. Evaluation

In this sectionwe measurahe performancef our three
approachegqthe abstract stadk, callgraph, and digraph
models)on a humberof typical security-criticalapplica-
tionsthatonemightwantto monitorfor intrusions.For each
model, we measuregwo variants: a basicimplementation
thatignoressystemcall aguments,andthenanimproved
implementatiorthat checksall systemcall agumentsthat
canbe staticallypredicted. In eachcase we focuson two
key metrics: runtime overhead(performancg androbust-
nessof detectionagainst targetedattack (precision. As
will becomeclear, our resultsindicatethatthereis a strong
tradeof betweerperformancendprecision.

Performance In Figure3, we shav theruntimeoverhead
incurredby our systemwhenappliedto four representatie
applicationswith known security vulnerabilities,finger,
gpopper, procmail, and sendmail. Of these,finger
is the smallest(at 1K lines of code,excluding comments,
blanklines, andlibraries),andsendmail is the largest(at
32K lines); the othertwo arein the middle. The heightof

eachbarin Figure 3 indicatesthe performanceverheadof
eachmodel,measuredn secondf extra computatiorper
transaction.

The figuresuseshadingto shaw the effect of checking
systemcall aguments.Onemight expectthatcheckingar
gumentscouldimprove performancédy reducingambiguity
in themodelandthusreducingthe numberof possiblepaths
throughthe modelthatwe needto explore at runtime. The
measurementsonfirmthis hypothesisshoving that—even
thoughwe implementednly anextremelycrudedata-flav
analysis—theperformancéenefitsaresubstantial.

We initially expectedthat,dueto its compleity, the ab-
stract stack model would be consistentlyslowver than the
callgraphmodel. This is partially confirmedby our experi-
ments,but we weresurprisedo find mary exceptions.For
instance,n the caseof procmail, it appearghatthe im-
provedprecisionprovided by theabstracstackmodelmore
thanmakesup for the compleity of this model.In general,
moving to more precisemodelsmay reducethe degree of
non-determinisnand therebyreducethe numberof possi-
ble pathsexploredat runtime.

Notethatthereis a wide variationin runningtimes. The
digraph modelsare consistentlyextremely fast (the over-
headis too small to measure) but the other modelsare
sometimesastly slower. For sendmail, the callgraphand
abstractstackmodelswereso slow thatwe forcibly termi-
natedthe experimentafter an hour of computation. Since
ourgoalis for real-timeintrusiondetectionjmposingmore
thanafew second®f lateng onto ary interactve applica-
tion is absolutelyunacceptablean hour is clearly several
ordersof magnitudeoo much. Consequentlyfor someap-
plications,only the digraphmodelis fastenough;for oth-
ers,themoresophisticateaallgraphor abstracstackmod-
elsarealsoworkable.We concludethat,in all casesatleast
oneof theapproacheprovidesacceptabl@erformancebut
thetypeof modelmustbechoseronaperapplicationbasis.

Our prototypeimplementatiorhasknown problemsthat
male its performancesub-optimal.SeeSection?.

Mimicry attacks To motivatethe needfor precisemod-
els, we introducea new classof attacksagainstintrusion
detectionsystemsthe mimicry attack. Recallthat one of
our primary designgoalsis to detectnot only the attacks
thatarecommontoday but alsoto detectthe attacksof the
future. Furthermore our model of the applicationproba-
bly cannotbe keptsecretfrom attaclers. Consequentlyour
modelsneedto be preciseenoughthat thereis no way for
an attacler to causeary harmwithout deviating from the

"We usetheword transactiorto denotea singleinteractie event, such
asdelivery of a pieceof email. For interactive applicationsthat are not
compute-intensie, we believe the maingoalis to avoid introducingmore
thanafew secondf lateny pertransactionandsowe measurebsolute
ratherthanrelative overheadsAll measurementsereperformedona450
MHz Pentiumll runningJava, using|BM’ s JIT for Linux.

42 min. > 1 hour

70 4

W Stack
60 @ Callgraph
M Digraphs

50 4

40

30 4

20

i
| _ <l

finger gpopper procmail

monitoring overhead per transaction, in seconds

—_‘
sendmail

Figure 3. Overhead imposed by the run-
time monitor for four representative ap-
plications, measured in seconds of extra
computation per transaction.

20 B Stack
@ Callgraph
M Digraphs

average branching factor

sendmail

procmail

finger gpopper

Figure 4. Precision of each of the models,
as characteriz ed by the average branc hing
factor (defined later in Section 6). Small
number s represent better precision.

Noteson both figures: For eachapplication,we shav measurementfor threemodelsusinga clusterof threevertical bars: the abstract
stackmodel(leftmostbar), the callgraphmodel(middle), andthe digraphmodel (rightmost). Eachvertical bar usesshadingto represent
two measurementsthe shorter solid-coloredsegmentrepresentshe casewhere agumentsare checled; the total height of the bar

(includingboththe solid-coloredandlightly-shadedegions)shovs the casewhenargumentsareignored.

model, even whenthe attacler canpredictwhat modelwe
areusing. Otherwise attaclerswill befreeto develop ma-
licious exploit codethat mimicsthe operationof the appli-
cation,stayingwithin theconfinesof themodelandthereby
evadingdetectionby our systemdespiteits harmful effects.

In general,if the attacler someha obtainscontrol of
the applicationwhenour intrusiondetectionautomatas in
the states, andif someinsecurestates’ is reachabldrom
s throughary pathin the automatathenthe attacler will
beableto bring the systemto aninsecurestatewithoutrisk
of detectionby synthesizinghe systemcalls thatmake up
thepaths — --- — s’. We call this a mimicry attad, and
we expectthat,asintrusiondetectiorbecomesnorewidely
deployed, mimicry attacksareunavoidable[26].

Note that imprecisemodels containimpossible paths,
which introducesa vulnerability to mimicry attacksif ary
of thosepathscanreachan insecurestate. Consequently
the primary defenseagainst mimicry attackslies in high-
precisionmodels.

Precision Unfortunately we do not know the right way?
to quantifyanintrusiondetectiorsystems degreeof robust-
nessagainstmimicry attacks sowe do nothave acomplete

8In practice,it may often be difficult even to identify just the set of
insecurestatesof the system.

characterizatiorof the precisionof our models. Nonethe-
less,we will attemptto give someintuition for the preci-
sionof our modelsby applyingthefollowing metric. Imag-
ine freezingthe intrusiondetectionsystemin the middle of

someapplicationexecutiontrace. Thereis someset S of

systemcalls that would be allowed to come next without

settingoff ary alarms. We definethe branding factor to

bethesizeof S. A small branchingfactormeansthatthe

intruderhasfew choicesaboutwhatto donext if shewishes
to evadedetectionandsowe canexpectthatsmallbranch-
ing factordeave theintrudermostconstrainedndleastable
to causeharm. Finally, becauseave cannotpredictat what
point during executionthe attacler might obtaincontrol of

theapplicationwe suggesto measurghe aveiage branc-

ing factor over all normalexecutiontraces. We stressthat
this metricis insufficient onits own, but it seemgo yield a

usefulfirst approximation.

Figure 4 shows the precision of our models on our
four sampleapplicationsunderthe averagebranchingfac-
tor metric. We can see that checking systemcall ar-
gumentsprovides substantiabrecisionimprovements be-
causeit reduceshe numberof possiblepathsthroughthe
model, and becausesomesystemcalls are harmlesswvhen
their agumentsare fixed in advance. For instance,an
open("/etc/motd", O_RDONLY) call is harmlesswhen

its agumentsarestaticallyknown, but otherwisecould po-

tentiallybeexploitedby attaclersto overwritearbitraryfiles

onthesystem Ourexperiencés thatunchecledsystencall

argumentgyreatlyincreaseurexposureo mimicry attacks.
Sincecheckingagumentsmprovesboth performanceand
precisionwe concludethatit shouldalwaysbe enabled.

We can also seethat, when systemcall agumentsare
checled,theabstracstackmodelis muchmoreprecisehan
the callgraphmodel, which is itself more precisethanthe
digraphmodel.

We have also examinedthe generatednodelsby hand
to evaluatehow muchharma sophisticatedattacler could
causeusingmimicry technigues.We are confidentthatall
threeof the finger modelsleave very little room for at-
tack, dueto the factthatthe finger sourcecodedoeslit-
tle elsebut opena network connectionand accessvorld-
readabldiles on the system.Resultsfor the otherapplica-
tions,though,aremixed. Thedigraphmodelseemainlikely
to resista mimicry attack,and generallywe feel it should
not be relied uponfor defenseagainstmaliciouscodespe-
cially tailoredto fool our system. However, the abstract
stackmodel seemsto do fairly well: we believe it would
successfullyimit the harmfuleffectsof ary compromisén
gpopper Of procmail. Ontheotherhand,for sendmail,
the generatedbstracistackmodelis too comple for usto
male ary determination.

We considerit animportantopenproblemto develop a
metricor methodologyfor quantifyingthe resistancef in-
trusiondetectionsystemgo unforeseemttacks suchasthe
mimicry attacksintroducedabove.

Attacks detected We havetestedoursystenonanumber
of known attacksfrom the pastdecadeor so. For instance,
eachof the four applicationsdiscussedbove hasa known
securityvulnerability; we confirmedthat we were ableto
detectthe known attackon thoseapplications.

Probablythe most commonclassof attackswe detect
arebuffer overrunswhich seemto accountor perhapsalf
of all attacksin recentyears[8, 35]. Becausemostexist-
ing exploit scriptsgrab full root privilege and take other
distinctive actions(suchaslaunchinga shell underthe at-
tacker’s control) immediatelyafter exploiting the overrun
vulnerability, detectionis typically straightforvard for our
tool. Ourtool mayevenbeoverkill for detectingmisbeha-
ior this blatant—maw othersystemswill alsodetectthese
attacksalbeitwith substantiafalsealarmrates—Ioit anun-
usualfeatureof ourtool is thatit is alsodesignedo detect
some'stealthy’ attacksaswell.

Our approachis also able to detect Trojan horsesin
trustedsoftware. One currentfavorite of todays attaclers
is the rootkit toolkit, which replacessomesystemutili-
ties with a versionthat containsa backdoor We verified
that our implementatiorwas able to detectwhen someof

thesebackdoorsvereexercisedwhich causeshe behaior
to deviatefrom thatspecifiedby the original sourcecode).

Themostinterestingeatureof ourapproachs thatit can
alsodetectmoreexotic attacks gvenonesthatthe designers
themselesdid notknow about.For instancepneextremely
subtleattackexploitedthe ability to passervironmentvari-
ablesto telnetd to causehedynamiclinkerto link with a
sharedibrary providedby theadwersary;our systemwould
have detectedthis attack, and ary other dynamic-linking
attackthat might be discoveredin the future, becauseour
modelis generatedtaticallywith the correctlibrary. More
recently format string attackshave provided anotherun-
expectedway to introducemaliciouscodeinto vulnerable
applications;sinceour detectionmechanismmakesno as-
sumptionsabouthow malicious code may be introduced,
we canexpectour systemto applyto formatstring attacks,
aswell asto ary otherwaysto take control of vulnerable
applicationsthat may be discoveredin the future. We feel
that theseexamplesillustrate the importanceof detecting
unforeseerattacks.

Despitethesesuccessesye feel strongly that our tool
shouldnot be usedasthe soledefenseagainstary of these
attacks,but insteadshould be usedto complementother
techniques. Prevention is often a more effective barrieg
andintrusiondetectionsystemsare usuallybestviewed as
abackuplayerin casethemainline of defensés breached.

7. Futur ework

This work opensup mary avenuesfor future research.
The main limitation of our approachis that the run-time
overheadis very high for some automata;hhowever, we
expectthat we could achieve betterperformanceby using
more adwancedstaticanalysisto get more precisemodels.
Also, theprototypewaswrittenin Java; we couldrecodeour
systemin C or assembllanguageanddirectly integrateit
into the operatingsystemkernelto reducethe performance
overheadsubstantially This work also raisesthe intrigu-
ing possibility of reusingthe specificatiorthatwe generate
to automaticallyverify propertiesof security-criticalpro-
gramswith a modelchecler. We note that our callgraph
modelis a finite automatorthat appearsiearlyideal for a
modelchecler. Our stackmodelwill be morechallenging
to modelcheck,but therehasbeentheoreticawork in this
area[5, 13, 32, 36, 4].

8 Conclusions

We have successfullyappliedstaticprogramanalysisto
intrusiondetection.Our systemscalego handlerealworld
programs.Also, our approachs automatic:the program-
mer or systemadministratormerely needsto run our tools

on the programat hand. All other automaticapproaches
to intrusion detectionto date have beenbasedon statisti-
calinferenceeadingto mary falsealarms;in contrastour
approachis provably sound— when the alarm goesoff,
somethinghasdefinitely gonewrong. Nonethelessye can
immediatelydetectif a programbehaesin animpossible
(accordingto its source)way, thusdetectingintrusionsthat
othersystemsniss.

We relied on a stratgyic combinationof static analysis
and dynamic monitoring. This combinationyields better
resultsthan either methodaloneand presentsa promising
new approactto theintrusiondetectionproblem.

Acknowledgements

We thankAlex Aiken, Nikita Borisov, Eric Brewer, Jef
Foster David Gay, Steve Gribble, Alan Hu, Adrian Perrig,
andDawn Songfor usefuldiscussionsboutthis work.

References

[1] J. P Anderson. Computersecurity threatmonitoring and
suneillance.Technicakreport,Jamed> AndersonCompary,
Fort WashingtonPennsylania,April 1980.

[2] S.Axelsson. The base-ratdallagy andits implicationsfor
the difficulty of intrusiondetection. In Proceedingsf the
6th ACM Confeenceon ComputelandCommunicationSe-
curity, 1999.

[3] M. Bernaschik. Gabrielli, andL. V. Mancini. Operating
systemenhancement® preventthe misueof systemcalls.
In Proc. of the 7th ACM Confeenceon ComputerandCom-
municationsSecurity pagesl74-183 Athens,Greece.

[4] A. Bouajjani,B. JonssonM. Nilsson,andT. Touili. Reg-
ular modelchecking. In 12th ComputerAided \ferification
SpringerVerlag,2000.

[5] O. Burkart. Automatic verification of sequentialinfinite-
stateprocessesvolume 13540f Lectue Notesin Computer
Science SpringefVerlag,1991.

[6] T. Colcombetand P. Fradet. Enforcing trace properties
by programtransformation. In Proceedingsof the 27th
ACM Symposiunon Principlesof ProgrammingLanguaes
ACM, 2000.

[7] P. CousotandR. Cousot. Temporalabstracinterpretation.
In Proceedingsf the 27th ACM Symposiunon Principles
of ProgrammingLanguajes ACM, 2000.

[8] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole.
Buffer overflows: Attacksanddefensegor thevulnerability
of the decade. In Proc. 2000 DARFA Information Surviv-
ability Conf and Exp.(DISCEX'00), pagesl54-163IEEE
Comp.Soc.,1999.

[9] D.E.Denning.An intrusion-detectiomodel. IEEE Trans-
actionson Softwae Engineering 13(2), February1987.

[10] J.Earley. An efficient context-free parsingalgorithm. Com-
municationf the ACM, 13:94-1021970.

[11] M. Emami,R. Ghiya,andL. J. Hendren.Conte&t-sensitie
interproceduraboints-toanalysisn thepresencef function
pointers.In Proceeding®fthe SIGPLAN94 Confeenceon
ProgrammingLanugaye Designand Implementationpages
242-256 ACM SIGPLAN, 1994,

[12] M. D. Ernst,J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely programinvariantsto sup-
port programevolution. IEEE Transactionsn Softwae En-
gineering 27(2):1-25Feh 2001.

[13] A. Finkel, B. Willems, andP. Wolper A direct symbolic
approacho modelcheckingpushdevn systems.Electonic
Notesin Theoetical ComputerScience9, 1997. Proceed-
ingsof Infinity’97.

[14] S. Forrest,S. Hofmeyr, A. Somayaji,and T. Longstaf. A
senseof selffor unix processesln Proceedingd 996 IEEE
Symposiunoen Securityand Privacy, 1996.

[15] I. Goldben, D. Wagner R. Thomas,andE. A. Brewer. A
secureervironmentfor untrustedhelperapplications:Con-
fining thewily hacler. In SixthUSENIXSecuritySymposium
Proceedingspagesl—12,SanJose CA, July 1996.

[16] S. Graham,M. Harrison, and W. Ruzzo. An improved
contet-free recognizer ACM Transactionson Program-
mingLanguayesand Systems2(3):415-462July 1980.

[17] N. HeintzeandJ. G. Riecke. The SLamcalculus:program-
ming with secreg andintegrity. In ConfeenceRecod of
the Twenty-Rfth Annual ACM Symposiunon Principles of
ProgrammingLanguajes pages365-377ACM, 1998.

[18] J.E. HopcroftandJ. D. Ullman. Introductionto automata
theory languages,andcomputationAddison-Weésley, 1979.

[19] C.Ko. ExecutionMonitoring of Security-CriticalPrograms
in Distributed Systems: A Specification-based\pproac.
PhDthesis,U.C. Davis, Septembef996.

[20] C.Ko. Logic inductionof valid behaior specificationgor
intrusiondetection.In Proceedingof the 2000IEEE Sym-
posiumon Securityand Privacy, pagesl42—-153,0akland,
CA, May 2000.IEEE.

[21] C.Ko, G.Fink, andK. Levitt. Automateddetectionof vul-
nerabilitiesin privilegedprogramdy executionmonitoring.
In Proceeding®f the TenthComputerSecurityApplications
Confeence pagesl34-144Orlando,FL, Dec.1994.IEEE
ComputerSocietyPress.

[22] C. Ko, M. Ruschitzka,andK. Levitt. Executionmonitor
ing of security-criticalprogramsin distributed systems:A
specification-basedpproach. In Proceedingsof the 1997
IEEE Symposiunon Securityand Privacy, pagesl75-187,
Oakland,CA, May 1997.1EEE.

[23] B. W. Lampson.A noteon the confinemenproblem.Com-
municationofthe ACM, 16(10):613-6150ct. 1973.

[24] G. Morrisett,D. Walker, K. Crary, andN. Glew. Fromsys-
tem F to typed assemblylanguage. ACM Transactionson
ProgrammingLanguaesand Systems21(3):527-568May
1999.

[25] G. C. Necula. Proof-carryingcode. In Proceedingof the
24th ACM SIGPLAN-SIGET Symposiunon Principles of
ProgrammingLanguajes pagesl06—-119Jan.1997.

[26] T.H. PtacekandT. N. Newsham.Insertion,evasion,andde-
nial of service: Eluding network intrusiondetection. Tech-
nical report,SecureNetworks, January1998.

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

T. Reps,S. Horwitz, andM. Sagv. Preciseinterprocecural
dataflav analysisvia graphreachability In Proceedingf
the 22nd ACM Symposiunon Principles of Programming
Languages ACM, 1995.

D. A. Schmidt. Dataflow analysiss modelcheckingof ab-
stractinterpretation.In Proceedingf the 25th ACM Sym-
posiumon Principles of ProgrammingLanguajes ACM,
1998.

F. B. SchneiderEnforceablesecuritypolicies. TechnicaRe-
port 98-1664,Cornell University, Departmenbf Computer
ScienceCornellUniversity, Ithaca,NY, 14853,Jan.1998.
M. Shapiro and S. Horwitz. Fast and accurateflow-
insensitve points-toanalysis. In Proceedingsf the 24th
ACM SIGPLAN-SIGAET Symposiunon Principles of Pro-
grammingLanguaes pagesl-14,Jan.1997.

B. Steensgard. Points-to analysis in almost linear
time. In ConfeenceRecod of the 23rd ACM SIGPLAN-
SIGACT Symposiunon Principles of Programming Lan-
guages (POPL’96), pages32—41, St. Petershrg, Florida,
Jan.21-24,1996.ACM Press.

B. Stefen andO. Burkart. Model checkingthe full modal
mu-calculusfor infinite sequentialprocesses. Theoeti-
cal Computer Science(TCS) 1999. Special Issue for
ICALP’97, to appeatAugust1999.

M. Tomita. An efficientaugmented-conte-free parsingal-
gorithm. ComputationaLinguistics 13(1-2):31-461987.
D. Wagner Static analysisand computersecurity: New
techniquesfor softwae assuance PhD thesis,University
of Californiaat Berkeley, Dec.2000.

D. Wagner J. S. Foster E. A. Brewer, and A. Aiken. A
first steptowardsautomatedietectionof buffer overrunvul-
nerabilities. In Proceeding2000Networkand Distributed
SystenBecuritySymposiuminternetSociety 2000.

P. WolperandB. Boigelot. Verifying systemswith infinite
but regularstatespacesin ComputerAidedVerification’98,
pages88-97.Springer 1998.

D. H. Younger Recognitiorandparsingof context-freelan-
guagesn timen?3. InformationandControl, 10(2):189-208,
1967.

