Solid state
from Burroughs

by WILLIAM LONERGAN and PAUL KING,
Product Planning, Data Processing Systems,
Burroughs Corporation

C()mputing systems have conventionally been designed
via the ‘hardware’ route. Subsequent to design, these sys-
tems have been handed over to programming systems peo-
ple for the development of a programming package to fa-
cilitate the use of the hardware. In contrast to this, the B
5000 system was designed from the start as a total hard-
ware-software system. The assumption was made that high-
er level programming languages, such as ALGOL, should
be used to the virtual exclusion of machine language pro-
gramming, and that the system should largely be used to
control its own operation. A hardware-free notation was uti-
lized to design a processor with the desired word and sym-
bol manipulative capabilities. Subsequently this model was
translated into hardware specifications at which time cost
constraints were considered.

design objectives

The fundamental design objective of the B 5000 system was
the reduction of total problem through-put time. A second
major objective was facilitation of changes both in programs
and system configurations. Toward these objectives the fol-
lowing aspects of the total computer utilization problem
were considered: :

Statement of problems in higher-level machine-independ-
ent languages; efficiency of compilation of machine language;
speed of compilation of machine language; program de-
bugging, in higher-level languages; problem set-up and load
time; efficiency of system operation; ease of maintaining
and making changes in existing programs, and ease of re-
programming when changes are made in a system configura-
tion. s e
design criteria :

Early in the design phase of the B 5000 system the follow-
ing principles were established and adopted:

Program should be independent of. its location and un-
modified as stored at object time; data should be indepen-
dent of its location; addressing of memory within a program
should take advantage of contextual addressing schemes to
reduce redundancy; provisions should be made for the gen-
eralized handling of indexing and. subroutines; a full com-
pliment of logical, relational and control operators should
be provided to enable efficient translation of higher-level
source languages such as ALGOL and COBOL; program
syntax should permit an almost mechanical translation from
source languages into efficient machine code; facilities
should be provided to permit the system to largely control
its own _operation: input-output operations should be di-
vorced from processing and should be handled by an op-

crating svstem: ulti-programming and true parallel
processing. (requires multiple processors) should be facili-
tated, and changes in svstem configuration (within certain
broud limitations) should not require reprogramming.
28

SYSTEM

system organization

The B 5000 system achieves its unique physical and op-
erational modularity through the use of electronic switches
which function logically like telephone crossbar switches.
Figure 1 depicts the basic organization of the system as
well as showing a maximum system.

master control program

A master control program will be provided with the B 5000
system. It will be stored on a portion of the magnetic drum.
During normal operations, a small portion of the MCP
will be contained in core memory. This portion will handle
a large percentage of recurrent system operations. Other
segments of the MCP will be called in from the magnetic
drum, from time to time, as they are required to handle less
frequently-occuring events, or system situations. When-
ever the system is executing the master control program,
it is said to be in the Control State. All entries to the Con-
trol State are made via ‘interrupts.” A special operation is
provided, which can only be executed when the system is
in the Control State, to permit control to return to the ob-
ject program it was executing at the time the ‘interrupt’
occurred. -

The following are a few typical occurrences which causes
an automatic ‘interrupt’ in the system: An input-output
channel is available, an input-output operation has been
completed or an indexing operation was attempted which
violated the storage protection features built into the sys-
tem.

In addition to processing interrupt conditions, the master
control program handles fundamental parts of the total sys-
tem operation such as the initiation of all input-output op-
erations, tanking of input-output areas when required, file
control, allocation of memory, scheduling of jobs (priority
ratings, system requirements of each object program, and
the present system configuration are considered), mainten-
ance of an operations log and maintenance of a svstem
description.
operating modes
The B 5000 can either operate with fixed-length words or
with variable-length fields. These two modes of operation
are called the word mode and the character mode. For
certain operations, a processor operating on words is most
desirable and for other operations, a variable field length
mode of operation is most desirable. By combining both
abilities in one processor, a processor can operate in the
mode most desirable for the operation at hand. In a B 5000
system, it is even possible for one processor to be operating
in the word mode and the other in the character mode.

When operating in the word mode, a standard format for.
the data word is used as illustrated in Figure 2.

Note that the standard word is an octal floating point
word. However, the mantissa is treated as an integer rather

DRATAMATION

design of the -

—

N

L e]

= B i BB i
FE NENT © INTEGER PART

F—Flag (1 bit)
SE—Sign of Exponen! (1 bit)
Exponent (&6 bits) :

SO-Sign of Operand (1 bit)
Integer Part (39 bits)

Figure 2
Data Word — Word Mode

than as a fraction (heretofore the reverse has been com-
mon practice). This provides two benefits: first, an integer-
has the same internal representation as its unnormalized
floating point correspondent; and, second, the range of
numbers that can be expressed, rather than being from 8+*
to 8 is 87 to 8. The first feature eliminates the need
for fixed-to-floating point conversion; integers and floating
point numbers can be mixed in arithmetic calculations. The
second expands the range where trouble with range is most
often encountered, namely, in numbers with extremely
large magnitude.

The flag serves a dual purpose. The function of the flag
depends on how the program references the data word. If
the data word is a single variable and not an element of an
array, the flag identifies the word as being operand, that
is, a_data word.. If the word is an element of an array, the
flag may be used to identify this particular element as an
element of data which is not to be processed by the normal
program. (for example, a boundary point in mesh calcula-
tions).

When operating in the character mode, each data word
consists of eight alphanumeric characters as illustrated in

" First | Second | Third | Fourth | Fifth | Sixth | Seventh | Eighth
Char- : Char- Char- Char- . Char- Char- Char- ' Char-
acter | acter acter ' acter . acter | acter acter | acter

Figure 3
Data Word — Character Mode

Figure 3. Programs in the character mode can address any
character in a word. Fields can start at any position in a
word. A processor in a single operation can operate on fields
of any length up to 63 characters long; operations on ficlds
of greater length can easily be programmed. For example,
two 57 character fields could be compared in a single op-
eration.

There are two instances when the character mode op-
erates with words of the tvpe used in the word mode. Op-
erations are provided in the character mode for converting
numeric information in the alphanumeric representation to
the standard word type of the word mode and vice versa.
In both of these instances, the length of the alphanumeric
fields being converted to or from the word mode type of
word can be no greater than eight characters long. Again,
conversion of fields of greater length can easily be pro-
grammed.

The purpose of the word mode is to provide the ad-
vantages of high-speed parallel operations, floating-point
abilities and the inherent information density possible in a
binary machine. In the. first case, it is economically feasible
to provide parallel operations in a word machine; the cost
of parallel operations on variable length fields would be
prohibitive. In the last case, a given size memory can con-
tain over twenty percent more numeric information if that
information is expressed in binary rather than binarv-coded
decimal, and over eighty percent more information than
can be expressed in six-bit alphanumeric representation,

The purpose of the character mode is to provide editing,
scanning, comparison and data manipulative abilities (al-
though addition and subtraction are also provided). The
type of editing facilities provided obviate the need for the
artificial “add-shift-extract-store” type of editing. For ex-
ample, operations are provided for generalized insertion of

3 ;. et .
i x A 7 4

. ¥

Figure 1
Organization of the B 5000 System

May 1961

29

1
i
L
1
i
i

" editing symbols (such as blanks, decimal points, floating
dollar signs, etc.) and for the substitution or suppression
of any unwanted characters.. For those interested in the new
area of Information Processing Languages, the character
mode is particularly well suited to list structures.
program organization
Programs in the B 5000 are composed of strings of syl-
lables. A syllable is the basic unit of the program and is
twelve bits in length. The term “syllable” is used rather
than instruction to distinguish it from conventional single-
address or multi-address instructions. Each program word
contains four syllables and they are executed sequentially
in a left-to-right order within the program word, and se-
quentially by word. Branching is allowed to any syllable
within a word. Before delving into some of the details of

the internal operation of the B 5000 processor, it is neces- °

sary to discuss stacks, Polish notation, and the Program
Reference Table.

the stack

(The internal organization of single-address computers forces
the wasting of both programming and running time
for the storage and recall of the intermediate results in the
sequence of computation. The data must be placed into the
proper registers and memory cells before the operation can
be executed, and their contents must often be completely
rearranged before the next operation can be performed.
Multi-address computers are constructed to make the execu-
tion of a few selected operations more efficient, but at the
expense of building inefficiencies into all the rest. Automatic
programming aids attack this problem indirectly: they re-
lieve the programmer of the need to laboriously code his
way around machine design, but they still must provide
object coding to accomplish the storage and recall functions.
In_brief, conventionally designed computers, with or with-
out automatic_programming aids, require the wasteful ex-

penditure of programming effort, memory capacity, and

running.time-to overcome the limitations of their internal
organization,

- The problem is attacked directly in the B 5000 by in-
corporation of a “pushdown” stack, which completely elimi-
nates the need for instructions (coded or compiled) to store
or recall intermediate results.

In a B 5000 procebsor, the stack is composed of a pair of
registers, the A and B registers, and a memory area. As
operands are picked up by the programs, they are placed in
the A register. If the A register already contains a word of
information, that word is transferred to the B register prior
to loading the operand into the A register. If the B register
is also occupied by information, then the word in B is
stored in a memory area defined by an address register S.
Then the word in A can be transferred to B and the op-
erand brought into the A register. The new word coming
into the stack has pushed down the information previously
held in the registers. As each pushdown occurs, the ad-
dress in the S register is automatically increased by one.
The information contained in the registers is the last infor-
mation entered into the stack; the stack operates on a “last
in - first out” principle. As information is operated on in the
stack, operands are eliminated from the stack and results of
operations are returned to the stack. As information in the
stack is used up by operations being performed, it is pos-
sible to cause “pushups,” i.e., a word is brought from the
memory area addressed by the S register, and the address
in the S register is decreased by one.

To eliminate unnecessary pushdowns and pushups, the
A and B registers both have indicators used for remember-
ing whether the registers contain information or are emptv.
When an operand is to be placed in the stack and either of
the registers is empty, no pushdown into memory oceurs.
Also. when an operation leaves one or both of the registers
empty, no antomatie pushup oceurs.

polish notation
The Polish logician, J. Lukasiewicz, developed a notation
which allows the writing of algebraic or logical expressions
which do not require grouping symbols and operator prece-
dence conventions. For example, parentheses are neces-
sary as grouping symbols in the expression A(B+C) to con-
vey the desired interpretation of the expression. In the ex-
pression A+B/C, the normal interpretation is A+(B Q),
rather than (A+B)/C, because of the convention that the -
operator is of higher precedence than the + operator. The
right-hand Polish notation used in the B 3000 is based on
placing the operators to the right of their operands: A +
B becomes AB+ in Polish notation. A+B+C can be writ-
ten either as AB+C+, or as ABC++. In the expression
ABC++, the first + operator says to add the operands B
and C. The second + operator says to add A to the sum
of B and C. Returning to the frst examples above,
A(B+C) can be written as BC+AX or ABC+X in Polish.
The second example is written as BC/A+ or ABC/+. The
extension of Polish notation to handle equations is shown in
the following example:

Conventional notation Z=A(B - C)/(D+E)

Polish notation ABC - XDE+,/Z=
the stack in use
To illustrate the functioning of the stack, two simple ex-
amples are shown in Figures 4 and 5. In the examples, the
letters P, Q and R represent syllables in the program that
cause the operands P, Q, and R to be picked up and placed
in the stack. The symbols + and X represent syllables that
cause the add and mubltiply operations to occur. The two
examples represent different ways of writing P(Q+R) in
Polish notation. The first example in Figure 4 does not re-
quire pushdowns or pushups. The second example, shown
in Figure 5, requires a pushdown in the execution of the
syllable R, and a pushup in the execution of the svilable X,
The columns in the table represent the contents of the vari.
ous registers after execution of the svllable listed in the
first column.

Polish Notation QR--P ¢

1 Contents of
Svllable i ;
Executed ! Register A ; Registf-_r_B
Q j Q | Empty
R i R | Q
- . Empty R+Q
P P R+Q
X Empty P(R+Q)
Figure 4

 Polish Notation PQR - X

Syllabel ' Contents of
Executed Register A:Register B Register S Cell 101
B P e e a
0. B 7 100 =
! Pushdown: Empty 0 10 T3 u__“ P
. Execute | R . Q 101 P
+ | Empty Q-R 101 P
« | Pushup Q=R P T%!OO -
Execute Empty P(Q—R) 100 -

Figure 5

DARATAMRATION

independence of addressing

One of the goals set in the design of the B 5000 was
to make the programs independent of the actual memory
locations of both the program itself and the data, in order
to provide really automatic program segmentation. Through
automatic program segmentation, it is possible to have pro-
gram size practically independent of the size of core mem-
ory.-The systems analyst or programmer intending to do
multi-processing is then no longer faced with the difficult
task of planning what jobs are to be run together in order
that system storage capacities are not exceeded.

In achieving independence of addressing, a solution re-
quiring large contiguous areas of memory was not deemed
satisfactory. Each_segment of the program and each data
area should be completely. relocatable without modification
to-the program: It is then possible to load all the segments
of a program or programs onto the drum at load time and
call in the segments to any available space in core mem-
ory as needed during run time. If some segment of a pro-
gram is overlaid by a subsequent segment of a program,
the segment of the program destroyed in core memory is
still available on the drum to be called in again if needed.

Due to the very high program densities in the B 5000,
the availability of high capacity drum storage on every
svstem and automatic segmentation, a minimum B 5000
system has the capacity for a program or programs equiva-
lent to approximately 40,000 to 60.000 single address in-
structions. Of course, if an installation normally ran such
large programs, the system would very likely not be a mimi-

May 1961

mum system. However, the installation having an occas-
ional need to run very large programs is not prevented
from doing so by storage capacity.

Processing speed now becomes a function of the size of
core memory. If large programs are run in a svstem with
small core memory, time will be consumed in recalling pro-
gram segments from drum to core. If the core memory is
expanded, less time will be spent in such activity and the
program or programs will be speeded up, and no repro-
gramming is required.
program reference table
The means of achieving independence of addressing in
the B 5000 is called a Program Reference Table {PRT).
The PRT is a 1,025 word relocatable area in memory used
primarily for_storing control words that locate data areas
or_program_segments., There are also control words for de-
scribing input-output operations. These control words,
called descriptors, .contain the base address and size of
data areas, program segments and input-output areas. A de-
scriptor specifying an input-output operation also contains
the designation of the unit to be used and the tvpe of op-
eration to be performed. Operands may also be stared in
the PRT, providing direct access to single values such as
indices, counts, control totals, etc.

In the word mode of the B 5000, every item of data is
considered to be either a single value or an element of an
array of data. If it.is-a single value, it will be obtained di-
rectly by-indexing.a-descriptor contained in the PRT.

Program segments are described by program descrip-

) b

3=

-~

F

tors. In addition to core base address, the program de-
scriptor contains the location in drum storage of the pro-
gram segment and an indication if the program segment
is currently in core memory starting at the address specified
in the descriptor. Entry to a program segment is made via
its program descriptor contained in the PRT.. If the pro-
gram segment is in core memory, entry will be made to
the program segment. However, when entry is attempted to
a program segment whose descriptor indicates that the
segment is not in core memory, automatic entry to the
Master Control Program will occur and the desired seg-
ment will then be brought in from the drum. Notice that
in moving from one segment to another, it is not necessary
to know whether the segment to be entered is currently

in core memory. Branching within a program segment is.

self-relative, i.e., the distance to jump either forward or
backward is specified, not the address to be jumped to.

As a result of keeping all actual addresses of data and’

program in the PRT, the program itself does not contain
any addresses, but only references to the PRT.-To specify
one of the 1,024 positions in the PRT requires only 10 bits
which contributes greatly to the high program density
achieved in the B 5000. Since the PRT is relocatable, ref-
erences to the PRT contained in the program are to rela-
tive locations, thus completely freeing the program from
any dependence whatsoever on actual memory locations.

word mode program

The word mode of the B 5000 processor has four types of
syllables. The syllable type is distinguished by the two
high-order bits of each 12-bit syllable. The types of syllahle
and the identification bits are:

00 — Operator Syllable

01 — Literal Syllable

10 — Operand Call Syllable
11 — Descriptor Call Syllable

The first of these, the operator syllable, causes operations
to be performed. The remaining ten bits of the operator
syllable are the operation codes. There are approximately
sixty different operations in the word mode. For those
operations requiring an. operand or operands, the processor
checks for sufficient operands in the registers; if they are
not there, pushups from the stack in ‘memory occur auto-
matically. 5

The literal syllable is used for placing constants in the
stack to-be-used as operands: The ten bits of the literal
syllable are transferred to the stack. This allows the pro-
gram to contain integers less than 1024 as constants.

The operand call syllable, and the descriptor call syl-
lable address locations in the program reference table. The
purpose of the operand call syllable is to place an operand
in_the stack; the purpose of the descriptor call syllable
is to_place the address of an.operand, a descriptor, in the
stack. There are four situations that arise, depending on
the word read from the program reference table.

1. The word is an gperand.

2. The word is a descriptor containing the address of the

operand.
3. The word is a descriptor containing the base address

of the data area in which the operand resides.
4. The word is a program descriptor containing the

base_address of a subroutine,

For (1), the operand call syllable has completed its ac-
tion by placing an operand in the stack. The descriptor
call svllable will cause the construction of a descriptor of
the operand. replacing the operand by the constructed
descriptor.

For (2), the operand call syllable then reads the operand

from the cell addressed. The descriptor call svllable has
completed its action.

32

For (3), indexing of the descriptor by the item that
is now the second item in the stack occurs. For an operand
call syllable, the operand is obtained from the indexed
address; for the descriptor call syllable, action is complete
after the indexing.

In the case of (4), subroutine entry occurs to the sub-
routine addressed. A word of the three previous types may
be left in the registers upon return from the subroutine,
in which instance the actions described above will take
place, depending upon the type of syllable which initiated
the subroutine.

Essentially, the four types of action that occur for an
operand call syllable are obtaining an operand directly,

_indirectly, from an array, or by computation: Sometimes

in the use of the call syllables, it is not known which type
of action will occur for a particular syllable when the
program is. created. This is particularly true for call syl-
lables in subroutines.

Programs in the word mode consist of strings of syllables
which follow the rules of Polish notation. Variable length
strings of call syllables and literal syllables, which place
items of information in the stack, are followed by operator
syllables which perform their operations on information
in tHe stack. :

The indexing features of the B 5000 allow generalized.

indexing. and at the same time provide complete storage
protection, Data areas and program segments of different
programs may be intermingled, but a program is pre-
vented from storing outside of its data areas. The method
of indexing allows any of the 1,024 words of the program
reference table to be considered index registers. Multi:
level indexing is provided, i.e., indices of arrays can them-
selves be elements of arrays.

The subroutine control provided in the B 5000 allows
nesting of subroutines —even recursive nesting (a sub-
routine is a subroutine of itself) — arbitrarily deep. Dy-
namic allocation of storage for parameter lists and tempo-
rary working storage simplifv the use of subroutines.
Storage is automatically allocated and deallocated as re-
quired.
character mode program
In the character mode of the B 5000 Processor, there is
only one type of syllable, called the operator syllable.
Program segments in the character mode are constructed
of strings of these syllables. The character mode is designed
to provide editing, formatting, comparison, and other forms

of data manipulation. In doing so, the processor uses two

areas of memory — the source and destination areas. When
a program switches from word mode to character mode,
two descriptors containing the base addresses of these areas
are supplied. The source area or destination area may be
changed at any time during character mode so that the
program may act on several areas.

The character mode operator svllable is split into two 6-
bit parts; the last part specifies the operation to be per-
formed and the first part specifies the number of times
the operation is to be performed. Operations are provided
for the transferring, deletion, comparison, and insertion of
characters or bits. Also, there are operations which allow
the repetition of svllable strings. This is quite useful for
complex table look-up operations and for editing informa-
tion which contains repeated patterns.

conclusion

The Burroughs B 5000 system has been designed as an
integrated hardware-software package which offers such
benefits as savings in the memory space required to store
equivalent object programs; multi-processing and parallel
processing; and running, identical programs on systems
with different size memories and different svstem eonfig-
rations with no loss in individual svstem efficiency.

CIRCLE 115 ON READER CARD

DRATAMATION

—

= p—_

