G. M. Amdahl
G. A. Blaauw
F. P. Brooks, Jr.

Architecture of the IBM System /360

Abstract: The architecture * of the newly announced IBM System/360 features four innovations:

1. An approach to storage which permits and exploits very large capacities, hierarchies of speeds, read-
only storage for microprogram control, flexible storage protection, and simple program relocation.

2. An input/output system offering new degrees of concurrent operation, compatible channel operation,
data rates approaching 5,000,000 characters/second, integrated design of hardware and software, a new
low-cost, multiple-channel package sharing main-frame hardware, new provisions for device status infor-
mation, and a standard channel interface between central processing unit and input/output devices.

3. A truly general-purpose machine organization offering new supervisory facilities, powerful logical pro-
cessing operations, and a wide variety of data formats.

4. Strict upward and downward machine-language compatibility over a line of six models having a per-
formance range factor of 50.

This paper discusses in detail the objectives of the design and the rationale for the main features of the
architecture. Emphasis is given to the problems raised by the need for compatibility among central process-
ing units of various size and by the conflicting demands of commercial, scientific, real-time, and logical in-

formation processing. A tabular summary of the architecture is shown in the Appendices.

introduction

The design philosophies of the new general-purpose ma-
chine organization for the IBM System/360 are discussed
in this paper.t In addition to showing the architecture*
of the new family of data processing systems, we point out
the various engineering problems encountered in attempts
to make the system design compatible, at the program bit
level, for large and small models. The compatibility was
to extend not only to models of any size but also to their
various applications—scientific, commercial, real-time, and
SO on.

* The term architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization of the data flow
and controls, the logical de51gn, and the physical 1mplementatlon

TAddmonal details concerning the architecture, engineering desxgn,

programmmg, and application of the IBM System/360 will appear in a
series of articles in the IBM Systems Journal.

The section that follows describes the objectives of
the new system design, i.e., that it serve as a base for new
technologies and applications, that it be general-purpose,
efficient, and strictly program compatible in all models.
The remainder of the paper is devoted to the design
problems faced, the alternatives considered, and the deci-
sions made for data format, data and instruction codes,
storage assignments, and input/output controls.

Design objectives

The new architecture builds upon but differs from the de-
signs that have gradually evolved since 1950. The evolution
of the computer had included, besides major technological
improvements, several important systems concepts and
developments:

REPRINTED FROM IBM JOURNAL OF RESEARCH AND DEVELOPMENT, VOL. 8, NO. 2, 1964; ©1964, 2000

0018-8646 / 00 / $5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

21

22

1. Adaptation to business data processing.

2. Growing importance of the total system, especially the
input/output aspects.

3. Universal use of assembly programs, compilers, and
other metaprograms.

4. Development of magnetic recording on tapes, drums,
and disks.

5. Hundred-fold expansion of storage capacities.
6. Adaptation for real-time systems.

During this period most new computer models, from
the point of view of their logical structure, were improved,
enlarged, or technologically recast versions of the machines
developed in the early 1950’s. IBM products are not
atypical; the evolution has gone from IBM 701 to 7094,
650 to 7074, from 702 to 7080, and from 1401 to 7010.

The system characteristics to be described here, how-
ever, are a new approach to logical structure and function,
designed for the needs of the next decade as a coordinated
set of data processing systems.

e Advanced concepts

It was recognized from the start that the design had to
embody recent conceptual advances, and hence, if neces-
sary, be incompatible with existing products. To this end,
the following premises were considered:

1. Since computers develop into families, any proposed
design would have to lend itself to growth and to successor
machines.

2. Input/output (I/0) devices make systems specifically
useful for given applications. A general method was needed
for using I/O devices differing in data rate, access, and
function.

3. The real value of an information system is properly
measured by answers-per-month, not bits-per-microsecond.
The former criterion required specific advances to increase
throughput for a given internal speed, to shorten turn-
around time for a given throughput, and to make the
whole complex of machines and programming systems
easier to use.

4. The functions of the central processing unit (CPU)
proper are specific to its application only a minor fraction
of the time. The functions required by the system for its
own operation, e.g., compiling, input/output management,
and the addressing of and within complex data structures,
use a major share of time. These functions had to be made
efficient, and need not be different in machines designed
for different applications.

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

5. The input/output channel and the input/output control
program had to be designed for each other.

6. Machine systems had to be capable of supervising
themselves, without manual intervention, for both real-
time and multiprogrammed, or time-shared, applications.
To realize this capability requires: a comprehensive inter-
ruption system, tamper-proof storage protection, a pro-
tected supervisor program, supervisor-controlled program
switching, supervisor control of all input/output (includ-
ing unit assignment), nonstop operation (no HALT), easy
program relocation, simple writing of read-only or un-
modified programs, a timer, and interpretive consoles.

7. It must be possible and straightforward to assemble
systems with redundant I/0, storages, and CPU’s so that
the system can operate when modules fail.

8. Storage capacities of more than the commonly available
32,000 words would be required.

9. Certain types of problems require floating-point word
length of more than 36 bits.

10. As CPU’s become increasingly reliable, built-in
thorough checking against hardware malfunction is im-
perative for all systems, regardless of application.

11. Since the largest servicing problem is diagnosis of
malfunction, built-in hardware fault-locating aids are
essential to reduce down-times. Furthermore, identifica-
tion of individual malfunctions and of individual invalidi-
ties in program syntax would have to be provided.

e Open-ended design

The new design had to provide a dependable base for a
decade of customer planning and customer programming,
and continuing laboratory developments, whether in tech-
nology, application and programming techniques, system
configuration, or special requirements.

The various circuit, storage, and input/output tech-
nologies used in a system change at different times, causing
corresponding changes in their relative speeds and costs.
To take advantage of these changes, it is desirable that the
design permit asynchronous operation of these compo-
nents with respect to each other.

Changing application and programming techniques
would require open-endedness in function. Current trends
had to be extrapolated and their consequences anticipated.
This anticipation could be achieved by direct provision,
e.g., by increasing storage capacities and by using multiple-
CPU systems, various new I/0 devices, and time shar-
ing. Anticipation might also take the form of general-
ization of function, as in code-independent scan and
translation facilities, or it might consist of judiciously re-
serving spare bits, operation codes, and blocks of operation
codes, for new modes, operations, or sets of operations.

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Changing requirements for system configuration would
demand not only such approaches as a standard interface
between I/0 devices and control unit, but also capabilities
for a machine to directly sense, control, and respond to
other equipment modules via paths outside the normal
data routes. These capabilities permit the construction of
supersystems that can be dynamically reconfigured under
program control, to adapt more precisely to specialized
functions or to give graceful degradation.

In many particular applications, some special (and often
minor) modification enhances the utility of the system.
These modifications (RPQ’s), which may correct some
shortsightedness of the original design, often embody
operations not fully anticipated. In any event, a good
general design would obviate certain modifications and
accommodate others.

o General-purpose function

The machine design would have to provide individual
system configurations for large and small, separate and
mixed applications as found in commercial, scientific, real-
time, data-reduction, communications, language, and logi-
cal data processing. The CPU design would have to be
facile for each of these applications. Special facilities such
as decimal or floating-point arithmetic might be required
only for one or another application class and would be
offered as options, but they would have to be integral,
from the viewpoint of logical structure, with the design.

In particular, the general-purpose objective dictated that:

1. Logical power of great generality would have to be
provided, so that all combinations of bits in data entities
would be allowed and might be manipulated with oper-
ations whose power and utility depend upon the general
nature of representations rather than upon any specific
selection of them.

2. Operations would have to be code-independent except,
of course, where code definition is essential to operation,
as in arithmetic. In particular, all bit combinations should
be acceptable as data; no combination should exert any
control function when it appears in a data stream.

3. The individual bit would have to be separately manip-
ulatable.

4. The general addressing system would have to be able
to refer to small units of bits, preferably the unit used for
characters.

Further, the implications of general-purpose CPU design
for communications-oriented systems indicated a radical
departure from current systems philosophy. The conven-
tional CPU, for example, is augmented by an independent
stored-program unit (such as the IBM 7750 or 7740) to
handle all communications functions. Since the new CPU

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

would easily perform such logical functions as code trans-
lation and message assembly, communications lines would
be attached directly to the I/O channel via a control unit
that would perform only character assembly and the elec-
trical line-handling functions.

o Efficient performance

The basic measure of a good design is high performance
in comparison to other designs having the same cost. This
measure cannot be ignored in designing a compatible line.
Hence each individual model and systems configuration
in the line would have to be competitive with systems that
are specialized in function, performance level or both.
That this goal is feasible in spite of handicaps introduced
by the compatibility requirement was due to the especially
important cost savings that would be realized due to
compatibility.

o Intermodel compatibility

The design had to yield a range of models with internal
performance varying from approximately that of the IBM
1401 to well beyond that of the IBM 7030 (STRETCH). As
already mentioned, all models would have to be strictly
program compatible, upward and downward, at the pro-
gram bit level.

The phrase “strictly program compatible” requires a
more technically precise definition. Here it means that a
valid program, whose logic will not depend implicitly upon
time of execution and which runs upon configuration A,
will also run on configuration B if the latter includes at
least the required storage, at least the required 1/O de-
vices, and at least the required optional features. Invalid
programs, i.e., those which violate the programming
manual, are not constrained to yield the same results on
all models. The manual identifies not only the results of
all dependable operations, but also those results of ex-
ceptional and/or invalid operations that are not depend-
able. Programs dependent on execution-time will operate
compatibly if the dependence is explicit, and, for example,
if completion of an I/O operation or the timer are tested.

Compatibility would ensure that the user’s expanding
needs be easily accommodated by any model. Compati-
bility would also ensure maximum utility of programming
support prepared by the manufacturer, maximum sharing
of programs generated by the user, ability to use small
systems to back up large ones, and exceptional freedom in
configuring systems for particular applications.

It required a new concept and mode of thought to make
the compatibility objective even conceivable. In the last
few years, many computer architects had realized, usually
implicitly, that logical structure (as seen by the program-
mer) and physical structure (as seen by the engineer) are
quite different. Thus each may see registers, counters, etc.,

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

23

24

that to the other are not at all real entities. This was not
so in the computers of the 1950’s. The explicit recognition
of the duality of structure opened the way for the com-
patibility within System/360. The compatibility require-
ment dictated that the basic architecture had to embrace
different technologies, different storage-circuit speed ratios,
different data path widths, and different data-flow com-
plexities. The basic machine structure and implementation
at the various performance levels are shown in Fig. 1.

Figure 1 Machine structure and implementation.

The design decisions

Certain decisions for the architectural design became
mileposts, because they (a) established prominent charac-
teristics of the System/360, (b) resolved problems con-
cerning the compatibility objective, thus illuminating the
essential differences between small models and large, or
(c) resolved problems concerning the general-purpose ob-
jective, thus illuminating the essential differences among
applications. The sections that follow discuss these de-

STORAGE
CAPACITY 8-BIT BYTES WIDTH BITS CYCLE

MODEL IK =1024 EXCLUDING PARITY s

ADDRESSES 30 8-64K 8 2.0

40 16 - 256 K 16 2.5

50 32- 256K 32 2.0

60 128 - 512 K 64 2.0

62 256 - 512K 64 10

70 256 - 512K 64 1.0

INSTRUCTIONS
CONTROL DATA FLOW
CYCLE WIDTH BITS CIRCUIT DELAY
MODEL TYPE us MODEL EXCLUDING PARITY PER LEVEL, ns
30 READ ONLY STORE 1.0 INDEXED_ADDRESSES 30 8 30
40 READ ONLY STORE 0.625 40 8 30
50 READ ONLY STORE 0.5 50 32 30
60 READ ONLY STORE 0.25 60 64 10
62 READ ONLY STORE 0.25 62 64 0
70 CONVENTIONAL CIRCUITS - 70 64 s
VARIABLE
FIXED A FLOATING POINT

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

GENERAL REGISTERS FLOATING POINT REGISTERS
16 x 32) 4 x 64)
LOCAL STORE

WIDTH BITS CYCLE
MODEL TYpE EXCLUDING PARITY us
30 MAIN STORE 8 2.0

40 CORE ARRAY 16 1.25
50 CORE ARRAY 32 0.5
60 TRANSISTOR REGISTERS 64 -
62 TRANSISTOR REGISTERS 64 -
70 TRANSISTOR REGISTERS 64 -

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

cisions, the problems faced, the alternatives considered,
and the reasons for the outcome.

e Data format

The decision on basic format (which affected character
size, word size, instruction field, number of index registers,
input-output implementation, instruction set layout, stor-
age capacity, character code, etc.) was whether data length
modules should go as 2" or 3.2". Even though many
matters of format were considered in the basic choice,
we will for convenience treat the major components of
the decision as if they were independent.

Character size, 6 vs 4/8. In character size, the funda-
mental problem is that decimal digits require 4 bits, the
alphanumeric characters require 6 bits. Three obvious
alternatives were considered — 6 bits for all, with 2 bits
wasted on numeric data; 4 bits for digits, 8 for alpha-
numeric, with 2 bits wasted on alphanumeric; and 4 bits
for digits, 6 for alphanumeric, which would require adop-
tion of a 12-bit module as the minimum addressable
element. The 7-bit character, which incorporated a binary
recoding of decimal digit pairs, was also briefly examined.

The 4/6 approach was rejected because (a) it was desired
to have the versatility and power of manipulating character
streams and addressing individual characters, even in
models where decimal arithmetic is not used, (b) limiting
the alphabetic character to 6 bits seemed short-sighted,
and (c) the engineering complexities of this approach
might well cost more than the wasted bits in the character.

The straight-6 approach, used in the IBM 702-7080 and
1401-7010 families, as well as in other manufacturers’
systems, had the advantages of familiar usage, existing
1/0 equipment, simple specification of field structure, and
commensurability with a 48-bit floating-point word and a
24-bit instruction field.

The 4/8 approach, used in the IBM 650-7074 family
and elsewhere, had greater coding efficiency, spare bits in
the alphabetic set (allowing the set to grow), and commen-
surability with a 32/64-bit floating-point word and a 16-
bit instruction field. Most important of these factors was
coding efficiency, which arises from the fact that the use
of numeric data in business records is more than twice as
frequent as alphanumeric. This efficiency implies, for a
given hardware investment, better use of core storage,
faster tapes, and more capacious disks.

Floating-point word length, 48 vs 32/64. For large
models addition time goes up slowly with word length,
and multiplication time rises almost linearly. For small,
serial models, addition time rises linearly and multiplica-
tion as the square of word length, Input/output time for
data files rises linearly. Large machines more often require
high precision ; small machines more urgently require short
operands. For this aspect of the basic format problem,
then, definite conflicts arose because of compatibility.

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Good data were unavailable on the distribution of
required precision by the number of problems or running
time. Indeed, accurate measures could not be acquired on
such coarse parameters as frequency of double-precision
operation on 36-bit and 48-bit machines. The question
became whether to force all problems to the longer 48-bit
word, or whether to provide 64 to take care of precision-
sensitive problems adequately, and either 32 or 36 to give
faster speed and better coding efficiency for the rest. The
choice was made for the IBM System/360 to have both
64- and 32-bit length floating point. This choice offers the
user the option of making the speed/space vs precision
trade-off to best suit his requirements. The user of the large
models is expected to employ 64-bit words most of the
time. The user of the smaller models will find the 32-bit
length advantageous in most of his work. All floating-
point models have both lengths and operate identically.

Hexadecimal floating-point radix. With no conficts in
questions of large vs small machines, base 16 was selected
for floating point. Studies by Sweeney' show that the fre-
quency of pre-shift, overflow, and precision-loss post-shift
on floating-point addition are substantially reduced by this
choice. He has shown that, compared with base 2, the per-
centage frequency of occurrence of overflow is 5 versus 20,
pre-shift is 43 versus 58, and precision-loss post-shift is
11 versus 18. Thus speed is noticeably enhanced. Also,
simpler shifting paths, with fewer logic levels, will accom-
plish a higher proportion of all required pre-shifting in a
single pass. For example, circuits shifting 0, 1, 2, 3, or 4
binary places cover 829, of the base 2 pre-shifts. Sub-
stantially simpler circuits shifting 0, 1, or 2 hexadecimal
places cover 939, of all base 16 pre-shifts. This simplifica-
tion yields higher speed for the large models and lower
cost for the small ones.

The most substantial disadvantage of adopting base 16
is the shift in bit usage from exponent to fraction. Thus,
for a given range and a given minimum precision, base 16
requires 2 fewer exponent bits and 3 more fraction bits
than does base 2. Alternatively and equivalently, rounding
and truncation effects are 8 times as large for a given
fraction length. For the 64-bit length, this is no problem.
For the 32-bit length, with its 24-bit fraction, the minimum
precision is reduced to the equivalent of 21 bits. Because
the 64-bit length was available for problems where the
minimum precision cramped the user, the greater speed
and simplicity of base 16 was chosen.

Significance arithmetic. Many schemes yielding an esti-
mate of the significance of computed results have been
proposed. One such scheme, a modified form of unnor-
malized arithmetic, was for a time incorporated in the
design. The scheme was finally discarded when simulation
runs showed this mode of operation to cost about one
hexadecimal digit of actual significance developed, as
compared with normalized operation. Furthermore, the

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

25

26

significance estimate yielded for a given problem varied
substantially with the test data used.

Sign representations. For the fixed-point arithmetic
system, which is binary, the two’s complement representa-
tion for negative numbers was selected. The well-known
virtues of this system are the unique representation
of zero and the absence of recomplementation. These
substantial advantages are augmented by several properties
especially vseful in address arithmetic, particularly in the
large models, where address arithmetic has its own hard-
ware. With two’s complement notation, this indexing
hardware requires no true/complement gates and thus
works faster. In the smaller, serial models, the fact that
high-order bits of address arithmetic can be elided with-
out changing the low-order bits also permits a gain in
speed. The same truncation property simplifies double-
precision calculations. Furthermore, for table calculation,
rounding or truncation to an integer changes all variables
in the same direction, thus giving a more acceptable
distribution than does an absolute-value-plus-sign repre-
sentation.

The established commercial rounding convention made
the use of complement notation awkward for decimal
data; therefore, absolute-value-plus-sign is used here. In
floating point, the engineering virtues of normalizing only
high-order zeros, and of having all zeros represent the
smallest possible number, decided the choice in favor of
absolute-value-plus-sign.

Variable- versus fixed-length decimal fields. Since the
fields of business records vary substantially in length, cod-
ing efficiency (and hence tape speed, file capacity, CPU
speed, etc.) can be gained by operating directly on vari-
able-length fields. This is easy for serial-by-byte machines,
and the IBM 1401-7010 and 702-7080 families are among
those so designed. A less flexible structure is more appro-
priate for a more parallel machine, and the IBM 650-7074
family is among those designed with fixed-word-length
decimal arithmetic.

As one would expect, the storage efficiency advantage of
the variable data format is diminished by the extra instruc-
tion information required for length specification. While
the fixed format is preferable for the larger machines, the
variable format was adopted because (a) the small com-
mercial users are numerous and only recently trained in
variable-format concepts, and (b) the large commercial
system is usually I/O limited; hence the internal perform-
ance disadvantage of the variable format is more than
compensated by the gain in effective tape rate.

Decimal accumulators versus storage-storage operation.
A closely related question involving large/small models
concerned the use of an accumulator as one of the oper-
ands on decimal arithmetic, versus the use of storage
locations for all operands and results. This issue is per-
tinent even after a decision has been made for variable-

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

length fields in storage; for example, it distinguishes IBM
702-7080 arithmetic from that of the IBM 1401-7010
family.

The large models readily afford registers or local stores
and get a speed enhancement from using these as ac-
cumulators. For the small model, using core storage for
logical registers, addition to an accumulator is no faster
than addition to a programmer-specified location. Addition
of two arbitrary operands and storage of the result becomes
LOAD, ADD, STORE, however, and this operation is
substantially slower for the small models than the MOVE,
ADD sequence appropriate to storage-storage operation.
Business arithmetic operations (as hand coded and es-
pecially as compiled from COBOL) often take this latter
form and rarely occur in strings where intermediate
results are profitably held in accumulators. In address
arithmetic and floating-point arithmetic, quite the opposite
is true.

Field specification: word-marks versus length. Variable-
length fields can be specified in the data via delimiter
characters or word-marks, or in the instruction via specifi-
cation of field length or start-finish limits. For business
data, the word-mark has some slight advantage in storage
efficiency: one extra bit per 8-bit character would cost
less than 4 extra length bits per 16-bit address. Further-
more, instructions, and hence addresses, usually occupy
most core storage space in business computers. However,
the word-mark approach implies the use of word-marks on
instructions, too, and here the cost is without compensating
function. The same is true of all fixed-field data, an im-
portant consideration in a general-purpose design. On
balance, storage efficiency is about equal; the field speci-
fication was put in the instruction to allow all data combi-
nations to be valid and to give easier and more direct
programming, particularly since it provides convenient
addressing of parts of fields. Length was chosen over limit
specification to simplify program relocation and instruc-
tion modification.

ASCII vs BCD codes. The selection of the 8-bit char-
acter size in 1961 proved wise by 1963, when the American
Standards Association adopted a 7-bit standard character
code for information interchange (ASCII). This 7-bit
code is now under final consideration by the International
Standards Organization for adoption as an interna-
tional standards recommendation. The question became
“Why not adopt ASCII as the only internal code for
System/360?”

The reasons against such exclusive adoption was the
widespread use of the BCD code derived from and easily
translated to the IBM card code. To facilitate use of both
codes, the central processing units are designed with a
high degree of code independence, with generalized code
translation facilities, and with program-selectable BCD or
ASCII modes for code-dependent instructions. Neverthe-

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Figure 2a Extended binary-coded-decimal (BCD) interchange code.

Bit Positions — 01

(T e e .
4567 00] 10 1 00 01 10 u 00 01 10 11 00
0000 | NULL BLANK & -
0001 /
0010
0011
0100 PF RES | BYP | PN
0101 HT NL | tF RS
0110 LC BS EOB | UC
o DEL | IDL | PRE EOT
1000
1001 . . "
1010 ? !
on . $ ’ *
1100
1101
nio
m

o
=
—
o
—

o |a
—_—f -
- | w

L3
3

-
o
£ |<

x

ajo

3

<
xiQ|mim|o|ol=]|>»]|V

I |o
a |o
~

2IOIT|O|Z|Z|T{R]|<{A
Nl <IxXlgl<]|c]|]|w
vlowiv]olu|alw]|vw|=|e

-
N

-H++AT
3

Figure 2b 8-bit representation of the 7-bit American Standard Code for Information Interchange (ASCII).

Bit Positions ————————» 76

| f 00 YT 01 I 10 | 1]
X5

4321 00 0l 10 11 00 01 10 1 00 01 10 1 00 01 10 1
0000 | NULL DC0 BLANK| © @ P P
0001 | SOM | DC, 1 1 A Q a q
0010 [EOA | DC, " 2 B R r
0011 [EOM | DC,4 * 3 C S c s
0100 | EQT ?TCSP g 4 D T d t
0101 { WRU | ERR % 5 E U e v
0110 | RU SYNC & 6 F v f v
o111 | BELL | LEM ' 7 G| w 9 w
1000 | BKSP | Sg (8 H X h x
1001 | HT Sy) 9 I Y i y
1010 | LF So * J 4 i z
1011 | VT S3 + ; K C k

1100 | FF S4 , < L N]

1101 | CR S5 - = M 3 m

mo| so Se . > N { n ESC
| s S7 / ? O | & ° DEL

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000 G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

28

less, a choice had to be made for the code-sensitive I/0
devices and for the programming support, and the solution
was to offer both codes, fully supported, as a user option.
Systems with either option will, of course, easily read or
write I/O media with the other code. The extended BCD
interchange code and an 8-bit representation of the 7-bit
ASCII are shown in Fig. 2.

Boundary alignment. A major compatibility problem
concerned alignment of field boundaries. Different models
were to have different widths of storage and data flow,
and therefore each model had a different set of preferences.
For the 8-bit wide model the characters might have been
aligned on character boundaries, with no further con-
straints. In the 64-bit wide model it might have been pre-
ferred to have no fields split between different 64-bit
double-words. The general rule adopted (Fig. 3) was that
each fixed field must begin at a multiple of its field length,
and variable-length decimal and character fields are uncon-
strained and are processed serially in all models. All
models must insure that programmers will adhere to these
rules. This policing is essential to prevent the use of
technically invalid programs that might work beautifully
on small models but not on large ones. Such an outcome
would undermine compatibility. The general rule, which
has very few and very minor exceptions, is that invalidities
defined in the manual are detected in the hardware and
cause an interruption. This type of interruption is distinct
from an interruption caused by machine malfunctions.

o Instruction decisions

Pushdown stack vs addressed registers. Serious considera-
tion was given to a design based on a pushdown accumu-
lator or stack.? This plan was abandoned in favor of
several registers, each explicitly addressed. Since the
advantages of the pushdown organization are discussed in
the literature,® it suffices here to enumerate the disad-
vantages which prompted the decision to use an addressed-
register organization:

1. The performance advantage of a pushdown stack organi-
zation is derived principally from the presence of several
fast registers, not from the way they are used or specified.

2. The fraction of “surfacings” of data in the stack which
are ‘“profitable,” ie., what was needed next, is about
one-half in general use, because of the occurrence of
repeated operands (both constants and common factors).
This suggests the use of operations such as TOP and SWAP,
which respectively copy submerged data to the active
positions and assist in clearing submerged data when the
information is no longer needed.

3. With TOP’s and SWAP’s counted, the substantial in-
struction density gained by the widespread use of implicit
addresses is about equalled by that of the same instruc-

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

tions with explicit, but truncated, addresses which specify
only the fast registers.

4. In any practical implementation, the depth of the stack
has a limit. The register housekeeping eliminated by the
pushdown organization reappears as management of a
finite-depth stack and as specification of locations of
submerged data for TOP’s and SWAP’s. Further, when
part of a full stack must be dumped to make room for new
data, it is the bottom part, not the active part, which
should be dumped.

5. Subroutine transparency, i.e., the ability to use a sub-
routine recursively, is one of the apparent advantages of
the stack. However, the disadvantage is that the trans-
parency does not materialize unless additional independ-
ent stacks are introduced for addressing purposes.

6. Fitting variable-length fields into a fixed-width stack is
awkward.

In the final analysis, the stack organization would have
been about break-even for a system intended principally for
scientific computing. Here the general-purpose objective
weighed heavily in favor of the more flexible addressed-
register organization.

Full vs truncated addresses. From the beginning, the
major challenge of compatibility lay in storage addressing.
It was clear that large models would require storage
capacities in the millions of characters. Small (serial)
models would require short addresses to conserve precious
core space and instruction fetch time. Some help was given
by the decision to use register addressing, which reduces
address appearances in the instruction stream by a factor
approaching 2.

An early decision had dictated that all addresses had to
be indexable, and that a mechanism had to be provided
for making all programs easily relocatable, The indexing
technique had fully proved its worth in current systems.*
This technique suggested that abundant address size could
be attained through a full-sized index register, used as a
base. This approach, coupled with a truncated address in
the instruction, gives consequent gains in instruction
density. The base-register approach was adopted, and
then augmented, for some instructions, with a second level
of indexing.

Now the question was: How much capacity was to be
made directly addressable, and how much addressable
only via base registers? Some early uses of base register
techniques had been fairly unsuccessful, principally be-
cause of awkward transitions between direct and base
addressing. It was decided to commit the system com-
pletely to a base-register technique; the direct part of the
address, the displacement, was made so small (12 bits,
or 4096 characters) that direct addressing is a practical
programming technique only on very small models. This

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

DOUBLE WORD
WORD WORD
HALFWORD HALFWORD HALFWORD HALFWORD
BYTE " BYTE BYTE BYTE BYTE BYTE BYTE BYTE
HALFWORD FIXED-POINT NUMBER
s 15
INTEGER
0 15
FULLWORD FIXED-POINT NUMBER
31
s INTEGER
) 30
SHORT FLOATING-POINT NUMBER
s 7 24
CHARACTER FRACTION
) 7 31
LONG FLOATING-POINT NUMBER
s ? 56
CHARACTER FRACTION
° 7 63
PACKED DECIMAL NUMBER
4 a a 4 4 4 4 4
et | oist | oer peiv | ot | oieir | ot SIGN
ZONED DECIMAL NUMBER
4 4 a 4 4 4 4 4
ZOoNE | DiGIT | zonEe oIGIT | zone | oiGIT SIGN | DiGIT
FIXED-LENGTH_LOGICAL INFORMATION
LOGICAL DATA:
° 30
VARIABLE-LENGTH LOGICAL INFORMATION
8 8 8
CHARACTER CHARACTER CHARACTER
INSTRUCTIONS BY FORMAT TYPE RR_FORMAT
8 4 a
0P CODE R R2
) 7 n 15
RX_FORMAT
8 a 4 4 12
0P CODE RI X2 B2 D2
0 7 0 13 19 ET
RS FORMAT
3 4 4 4 12
0P CODE RI R3 B2 p2
0 7 i 15 19 3
SI_FORMAT
8 8 4 12
0P CODE 2 8l DI
° 7 15 19 3
55 FORMAT
8 a a 4 12 4 12
0P CODE u L2 Bl ol 82 D2
o 7 N 15 19 3 35 27

Figure 3 Boundary alignment of formats.

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000 G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

30

commitment implies that all programs are location-inde-
pendent, except for constants used to load the base
registers. Thus, all programs can easily be relocated. This
commitment also implies that the programming support
effectively and efficiently handles the mechanics of base-
register use. The assembler automatically constructs and
assigns base-plus-displacement addresses as it constructs
the symbol table. The compilers not only do this, but also
allocate base registers to give efficient programs.

Decimal vs binary addressing. It was decided to use
binary rather than decimal addressing, because (a) as-
sembly programs remove the user one level from the
address, thus reducing the importance of familiar usage,
(b) binary addressing is more efficient in the ratio 3.32/
4.00, and (c) table exploitation is easier and more gen-
eral because any datum can be made into or added to
a binary address, yielding a valid address. This decision,
however, represented some conflict with past approaches.
Machines for purely business applications had often used
decimal addressing (in the ancestral machine of the
family). Most business computers now have binary ad-
dressing or have evolved to mixed-radix addressing.

Multiple accumulators. An extrapolation of technologi-
cal trends indicated the probable availability of small,
high-speed storage. Consequently, the design uses a sub-
stantial number of logically identifiable registers, which
are physically realized in core storage, local high-speed
storage, or transistors, according to the model. There are
sixteen 32-bit general-purpose registers and four 64-bit
floating-point registers in the logical design, with room
for expansion to eight floating-point registers. Surprisingly
enough, the multiple-register decision was not a large-
small conflict. Each model has an appropriate (and differ-
ent) mechanization of the same logical design.

Storage hierarchies. Technology promises to yield a
continuing spectrum of storage systems whose speed
varies inversely with capacity for equal cost-per-bit. Of
equal significance, problem requirements naturally follow
a matching pattern — small quantities of data are used
with great frequency, medium quantities with medium
frequency, and very large quantities with low frequency.
These facts promise substantial performance/cost ad-
vantages if storage hierarchies can be effectively used.

It was decided to accept the engineering, architec-
tural, and programming disciplines required for stor-
age-hierarchy use. The engineer must accommodate in
one system several storage technologies, with separate
speeds, circuits, power requirements, busing needs, etc.,
all requiring asynchronous operation of all storage with
respect to the CPU, The system programmer must contend
with awkward boundaries within total storage capacity
and must allocate usage. He must devise addressing for
very large capacities, block transfers, and means of
handling, indexing across and providing protection across

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

gaps in the addressing sequence.

Separate vs universal accumulators. There are several
advantages of having fixed- and floating-point arithmetic
use the same logical (as opposed to physical) registers.
There are some less obvious disadvantages which weighed
in favor of separate accumulator sets. First, in a given
register specification (4 bits, in our case) the use of sepa-
rate sets permits more registers to be specified because of
the information implications of the operation code. Sec-
ond, in the large models instruction execution and the
preparation of later instructions are done concurrently
in separate units. To use a single register set would couple
these closely, and reduce the asynchronous concurrency
that can be attained. Historically, index registers have
been separated from fixed-point registers, limiting analy-
sis of register allocation to index quantities only. Inte-
gration of these facilities brings the full power of the fixed-
point arithmetic operation set to bear upon indexing
computations. The advantages of the integration appear
throughout program execution (even compiler and as-
sembly execution), whereas the register allocation burdens
only compilation and assembly.

o Input/output system

The method of input/output control would have been a
major compatibility problem were it not for the recognition
of the distinction between logical and physical structures.
Small machines use CPU hardware for I/0 functions;
large machines demand several independent channels,
capable of operating concurrently with the CPU and with
each other. Such large-machine channels often each con-
tain more components than an entire small system.

Channel instructions. The logical design considers the
channel as an independently operating entity. The CPU
program starts the channel operation by specifying the
beginning of a channel program and the unit to be used.
The channel instructions, specialized for the 1/O function,
specify storage blocks to be read or written, unit oper-
ations, conditional and unconditional branches within the
channel program, etc. When the channel program ends,
the CPU program is interrupted, and complete channel
and device status information are available.

An especially valuable feature is command chaining, the
ability of successive channel instructions to give a sequence
of different operations to the unit, such as SEARCH,
READ, WRITE, READ FOR CHECK. This feature per-
mits devices to be reinstructed in very short times, thus
substantially enhancing effective speed.

Standard interface. The generalization of the com-
munication between the central processing unit and an
input/output device has yielded a channel which presents
a standard interface to the device control unit. This inter-
face was achieved by making the channel design trans-
parent, passing not only data, but also control and status

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

information between storage and device. All functions
peculiar to the device are placed in the control unit. The
interface requires a total of 29 lines and is made inde-
pendent of time through the use of interlocking signals.

Implementation. In small models, the flow of data and
control information is time-shared between the CPU and
the channel function. When a byte of data appears from an
1/0 device, the CPU is seized, dumped, used and restored.
Although the maximum data rate handled is lower (and
the interference with CPU computation higher) than with
separate hardware, the function is identical.

Once the channel becomes a conceptual entity, using
time-shared hardware, one may have a large number of
channels at virtually no cost save the core storage space
for the governing control words. This kind of multiplex
channel embodies up to 256 conceptual channels, all of
which may be concurrently operating, when the total data
rate is within acceptable limits. The multiplexing consti-
tutes a major advance for communications-based systems.

Conclusion

This paper has shown how the design features were chosen
for the logical structure of the six models that com-
prise the IBM System/360. The rationale has been given
for the adoption of the data formats, the instruction set,
and the input/output controls. The main features of the
new machine organization are its general-purpose utility
for many types of data processing, the new approaches

to large-capacity storage, and the machine-language com-
patibility among the six models.

The contributions discussed in this paper may be sum-
marized as follows:

1. The relative independence of logical structure and
physical realization permits efficient implementation at
various levels of performance.

2. Tasks that are common to operating a system for
most applications require a complement of instructions
and system functions that may serve as a base for the
addition of application-oriented functions.

3. The formats, instructions, register assignment, and
over-all functions such as protection and interruption of
a computer can be so defined that they apply to many
levels of performance and that they permit diverse special-
ization for particular applications.

It is hoped that the discussions of these design features
will shed some light on the present and future needs of
data processing system organization.

Appendices

The design resulting from the decision process sketched
above is tabulated in five appendices showing formats,
data and instruction codes, storage assignments and
interruption action. (Appendices 1 through 5 appear on
the following four pages.)

Acknowledgments

The implementation of System/360 depends upon diverse
developments by many colleagues. The most important of
these developments were glass-encapsulated semi-inte-
grated semiconductor components, printed circuit back-
panels and interconnections, new memories, read-only
storages and microprogram techniques, new 1/O devices,
and a new level and approach to software support.

The scope of the compatibility objective and of the whole
System/360 undertaking was largely due to B. O. Evans,
Data Systems Division Vice-President—Development.

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

References

1. D. W. Sweeney, “An Analysis of Floating-Point Addition
and Shifting,” to be published in the IBM Systems Journal.

2. See, for example, R. S. Barton, “A New Approach to the
Functional Design of a Digital Computer,” Proc. WJCC 19,
393-396 (1961).

3. F. P. Brooks, Jr., “Recent Developments in Computer
Organization,” Advances in Electronics 18, 45-64 (1963),

4. G. A. Blaauw, “Indexing,” in Planning a Computer System,
W. Buchholz, ed., McGraw-Hill Book Company Inc., 1962,
pp. 150-178.

Received January 21, 1964

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

31

SSOJPPE® UOCLIONARSU] €9 ~ OO

jsew 8dued}}iubs 6¢

ysew moqjaspun jusuodx3y ec
ysew moyjuasnc (RWIOQ 2
qsew MmOtJa2A0 ulod—peaxiy 9F

Asew weaBouad 6€ -~ 9F

(0D) #pod> uopiripue) SE - o€

(271) oPod y3budq uolonursu] €€ - 2€
?po> uojydnassul Ig - 91

(d) 2aeas wayqoud st

(M) ®3eas yenm vt

(W) %sww xd24yd> sujyoey €1

(v) spow IIOSV 2t

fox uoy3d9304d 1t - 8
YBRW (PULPIXT 2
ASBW 9 FUURYD J03DI1IS 9
ASRW S QTIUUDYD 4032195 [
ASRW § T2UURYD J403}DR12S v
ASTVW £ Q2UUBYD JO}DI1IS £
ASRW Z JIUURYD J03DI1IS 2
ASPW | Q2UUBYD J0}O219§ 1
NEPW (IuuURYD JOxXIV1d}IINK o

sysew woeysAs 2 - O

rE=2=1=0=6=8=L=9=G=p=E=Z=~0—6—B—L~9~G=pf =2 =] =0+6=8=L—9 =G t—f~F s
1 | svuw | | !
] SS3¥AAY NOILONYLSNI fWwvyooud|od 1971
| 1 [I I
L T e e o ot a2 2 g B O o o O

e p F =0 =6 >@m L =9 =G = 4= —Z— [~0=6=8 =L ~9—G~¥—C—Z—1 —0=6=8—L=9~G=b—E=2~T1~09
| | | | |
| 3005 NOILJNBYILINI 1d MW V] A3N | NSYW WILSAS |

[} | | [|
——mLEef =2 =g =2~ =2n2=2~2n =B~ 1~l == [~ [~} = [= =T =1 =0=0~0=0~0~0~0—0—-0—0

pJos snyievis weuboud

X9pU} JO SSIIPPE Pseg 1L - 8
poaouB] 2 - 0O

FI=0=6-8=2—=9-G—9—E—2—1~0~6=8~L~9-G—Y—E~2—1-0—6—8—L—-9—G—Y—E~2—T~0q
I | I
| X3GN1 ¥O SS3WAAV 3sva ! * |
| [|
LEmEmZmZmZmZm2=Tm2=2=C~2~ I =1=1=1=1=1=T=1=1=1=0=0—0—0—0=0—0—0~0~03

$4938)169y xIpu] pue eseg

SLVWY¥Od QUOM TOWLNOD

‘uoynsado O /] un Buunp ‘paypeds usym ‘10 uoyniado yndino

Jindul un jo uoydjdwod ay P sSNIDS [SUUBYD By SOINIPUI PIOM
sninyg [euuny) ay] ‘Budusanbas jndino /indur iUl 0f pasn s1 pio
$SOIpPpPY [ouuny) Y] "o|qnl Sy Jo Wrd sn pajsi| aIn [duUUDYd By
04 usAIB o Apw YYM spunwiwod ay) ‘Bupusnbes pun uoynsedo
indjno /indul sjosjuod pIoAy pupwwo) [ouunyy ayl -uondnisajuy
uodn pa1oss s1 MSd YL ‘9PPIOIS pup sioysiBea o|qussaIppR WOy
panunuod 7 xpuaddy

N ADVYLENS N L0VYLENS IVOI9507 1OV¥LIaNns AYYNIS~=LYIANOD 18841
n agv n qaav WWI1907 GQYV IWKWIDIO~LY¥IANOD ottty
3AIALQ 3Q1IAl1Q 30IAIQ 1018
ATdILINKW ATdILNK ADILINN AdILINKW oot
N L0vdians N 1Ovyiens oviians ovyians 1101
N Qav N agv aav aav ot0t
YVANOD JYVYIROD YVdWOD EEAL L h] 1001
avol avol avo avo ooot
8O IAISNTIOXI NOILIGNOD/HONVHE 1t10
¥0 ANNOD NO HONVHE otto
TIVOIO0T JUVANOD NNITT GNV HONVYEB to%0
aGNVY 31N03X3 ooto
YILIOVYVHI LU3ISNI 1100
YILOVYVHD 3¥OLS 0100
$$3¥0aavY avo 1000
3¥0LS 3¥0LS 3¥04S 3¥0LS 0000
XXXXTTTO xXXxx01 10 XXxXXT010 Xxxx0010 XXX
I90RS SN0 W3T50T OV SNIASNVEI—aNV
ANIOd=-9NILVOTd LNICH=SNILVOId qHoATIINS QUOMATIVH SSYD
ANIOd=-03XId ANIOd=-03XEd
Xy Xy Xy Xy LVYWNOS
N 10vyiens N 1OVHLeNnS WWOI90T Lovuiens 12821
n qav n aagy V21907 aav ot
303A10 301Al1Q 30IAl10 1018
A ILINK A ILINK AILINW oottt
N LOvyLi8ns N 1Oovuiens 40vaiens 1108
N agv N agv agy VYO YOSIAN¥3INS o103
JUVANDD J¥VYdNOD 3YVYIWOD A3 LYASNI 1001
avon avon avol A3 A3S 0001
YO IAISATOXI NOILIONOD/HONYHO t1t0
YO0 1INNOD NO HONVYE otto0
TIVOIO0T IWVAROD NI ONV HONVYE 1080
3ATIVH AATVH QONV JNSYW WYHO0Hd 43S 0010
AINIRIVWINOD QVOT LNINIAJWOD QYOI LNIW3IJWOD aQV0 1100
1831 GNVY av07 4S3L ANV QYO 4S31 ANV QVO 0100
3AILVO3N QvOI 3AILVO3N QVOT 3AILYO3N avO0T 1000
3AILISOd QVOT 3AILISOd OVOTl 3AILISO0d QVOT 0000
XXXXT500 XXXX0F00 xXXxx1000 x2XXX0000 ARKX
180RS SN0 WSI50T ONV SRIASITAS "SAIVIS
ANJOd~ONILVOTd INIOD-9ONILVOId cqyoOATIN ONY ONIHONYYE SSYD
ANIOd=03X1d
-1 oy yy -1} LVHYO0S

$3000 NO1.iV¥3d0

(efnioys-oBna0)s) S
pup (uoypwiojul aypIpsWIWI-9BDI0NS) |§ ‘(9BnIoIs-10is1601) ¢y ‘(uoy
=0d0] aBnlols paxaput-18is169a) YY ‘(194s18al-19451601) Yy sibwI0) uoy
-3n4§sul uIbW dAY Y o} Bulplioddn padnosB ssowsaypng ain sopod
oy) ‘suoynsodo [pdiBo] pup dyewyiup julod-Buynoy ‘dSlBUIYIID
gugod-poxy s» yons ‘sassnp> uipw ays Aq padnoiB aip sepod Jig-g8 oYL
‘o|qns Buimoj|oj ayi ur umoys 24p sepod uoywsedo ||y 7 xtpuaddy

32

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

(fvaja2a0 panunuod)

uojrdnuasizuy per1o0Jsjuos-weabouyd ov
uoyijdasoxa 3iun 6¢

AIBYD 3N 8€

PU? 39}A3Q PE

PuU® q3uuey) 9€

Rsng se

PU® jilum 04a3u0)d vE

431} 1pow snyers £€

uoljusiiry 2E

SNPIS Lv - 2E

$SILPPR pURWWOD [E - @
o497 2 - ¥

Rax uoyid90ud g - 0

FE—2-1-0-6-8—L~9—S—Y—€—2~T1—0—6—-8=L—9—G—¥—L—~Z— [~0~6=B=L =0 =G—y—E =2 ~~—

1
1
I

I
SNLVLS |

L9—0=9=9=G—G~G~G—E~G—G-G~G=G—t—Y—h—t—Y—Ymt=Y—b—p—E —E—E~E~L =L —~E—ES ——

SSIUGAV ANVHWWOD

SS3UAAY ONVWWOD

———r10=6-8—2-9-G~p—E =B~ 1 ~0—6=8~L—9—S—4—E—Z~ [~0—6=B=L=9=G—y~E~Z~T~04

| I |
100 0 0] A3x |
| | 1

———LE—E=Z~2-2-2-2-2~2—-28~28—2—T~I~I=1=T=1=T=T=T=1=0=0=0=0=0=0~0=0—0~0J

PJOM SN}EIS 1PUURYD

SS24PPR PURWWOD IE - @
ousz 2 - ¢
moxco_«oo~osnm lo

rl=0=6-8—L=9=S—9—E—2—1-0=6—8—L—9=G~h=E=2=1=0=6-B—L~-9~-G—Y—E=Z~1~01

| I i
oo ool A3n |
| I |

LE=E~B—2-28—2—2-2—2~2—2=2=1=1=1~1=l=1=I=1=[=1~ 0~0=0~0—0=0~0~0—0—07

PJIOM SSI4PPY uUURY)D

3UNOd £9 - @v
paaouby 2% ~ O¥
0427 68 - Lf

feq) uoyjzdnaaaiu) paqroujuos—weusboud 9

beq} ding =14

fev1) uoyzedsipu}l Yibuay sssaddng vE
fevq} puewwod ureyd €€

fe1} ejep ujeyd cE

s681) puvwwod 9¢ ~ 2€
ssouppe e3vg I£ - @
2PpOO pURWWODY 2 - O

r€—2-1-0-6—-8-L~9-5—y—£—2-1-0-6-8-L—-9-G=9p~E£—2=1=0~6-8=L—-9=G—Y—E—Cq —

1
1
I

I 1 I
10 0 01 sovd 1
1 1 I

L9-9—9—9—G—G—G~G~E~G~G~G—G—G—¥—t—Y~h—Y—Y— =Y —P—Y—E~E=E—E~E—E—L €I ——

$53¥aQY viva

——— r1-0-6-8—2—9—G—Y—E~2—T—0—6—-8—L~9—G—¥—E~2~T1—0—6—B—L~9—-G—-t—E£—2—T =09

|)
| 300> GNVWHOD |
)]

LEmEnB-Z-2—2~2~2-2-2-2~2~1~1-1=1= 1= =1~ =11~ 0—0~0~0~0—0~0—0—0~0"

P4OM PUTWWOD PUURYD

panunuod 7 xpuaddy

33

Hpdn snipis N4 ssejdwod ays sayndtpul pup Bupuanbas uoldnlsul

S[OJJUOY PIOA\ SRS WIDJBOId oYl °"suoudNIsuUl JO spley X pup g
ays Aq paymads aip pup ssaippp jo siiq pz dpiaoad siosiBaas xapul
pup asnq ay] ‘sjqp} Buimojjoy aY} ul umoys ain uoyniado [Buunyd

pup ndd 103 paiinbal spiom [OJU0d [P JO SIPUNOY dYL 7 xipuaddy

30IA10
ATGILINKW
dovyians
aav

JYVINOD

aav aNv 0y¥3Z

MIVANN

Novd

135440 M 3AON
xxxxT11¥

VRTSIT
ss

xxxx7101%

®1qnoq
®16uyg
paz)ivwaocuun

"
=]

[
=]

AYYW ONV L1O3

1103

1S3L ONY 3LVIISNVYL
FIVISNVYL

d0 3IAISNTIDX3

p-1s]

WO1I907 3YVIHOD
ANy

3NOZ 3A0KW

3A0NW

JI¥3INWNN 3IAOR

xXxxxQ111 Xxxx{01%

W56
$S

TINNYHD £S3L
0/1 17VH

O/1 AS31

0/1 13vis

ANGILTNKW avoT
40 3IAISNTIDX3

HO

TIVO1907 3UVIHOD
ANV

ELY 1]
NASYW ¥IAGNN AS3L
3dILINN 3¥0LS

xxxx0101 xXxXxx1001

INGIND7INGNT

aNY ¢VD1907

¢INIOd-Q3X1d
1sesy

1e2)60y @1qneg = 10
s 1es)60q 216u)s = s
PPZ 119WION

pusbBa

"
z

Tt
oty
Io11
0011
1101
o101
1001
0001
Ttto0
0ot10
1010
00t0
1100
0100
1000
0000

XXXX00TT ARAX

SSV
AVRWE0J

Q 1437 LJIHS 11t

a LH9IY 1d41IHS o111
79 1337 14IHS 1013
10 LHOIH AJIHS o011
S 1437 LJIHS 1101

S LHOIY 1JINHS otot
TS 41437 LJIHS 1001
1S LHOIY LJIHS 0001
WND3=-MOT/HONYYE 1tio
HOIH/HONVYE o110
153¥10 av3ay 1010
1D23WIa 3LTHM 0010
ASONOVIQ 1100

ASd avo oto0

1000

ASYW WILSAS 13S 0000

XXXX0001 AXKK
SNITITAS ANV
ONIHDOLIRAS SALVLS SSVID
SONIHONVYE
1s*sy AVHY04

panunuod | xipuaddy

VOL. 8, NO. 2, 1964, REPRINT

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

239qduwod x 2
232qdwo x 1
239qdwod x]

seeeeeee 01000000
eeeeseee 10000000
reReRReR 00000000

2 1%uUuURYD 40399195
1 13uuURYD J4030919§
qauueyd J4ox33d}}1np
(v A314014d +0Z1 MSd M2u *9g5 MSd P10) TRATAGIINTTY

NOTIASIXI ~~~ "~ "I3§ SIT& ~TE=3T FIT& ASa NOTIVSTITINIAT
NOILDNYULSNI D71 MSVW 300D NOILDNHYILNI 2JUNOS NOILJNHYILNG

NOILOV NOILJNVM¥ILNI

‘o[qnE sy} uy paIviep
Jayiiny st sp ‘97| ‘epod YiBuo] uoINLSUI SYE Ul UMOYS S| ‘I[P]IDAD
J ‘suoypnysul Buiposaad oy jo yibuol YL ‘MSd PI° 244 jo PIeY
SSOAPPR UOHINASUI SY§ Ul PIINdIPUI SI PalINI20 jou ppy uoydniiay
=uj 9y} J1 §xou pawsoyad ag 0F uoydINISUl YL "PBIRYD SI UOHNIOXD
UOHINMSUI YIIYM Ul Jouupw oy pup ‘uoydniiatul un jusaosd o} pasn
oq Aow yorym spq yspw ayy ‘uoydnaisajul ey jo a3inos ays sayuUSP!
YPIYM pMSd PIO 9Yi ul opod oys aIp 4oy pamdIpu| ‘dqpi Bulmol
=]03 9y} ul umoys aip N0 Apw YIym suoydnisoul IV ¢ xipuaddy

*uoijdnaaszuy uw Aq pue ¢3SONOVIA
¢HSYW WILSAS L3S *MSd OVODT Aq pafueys 9q Aew O0S1® 2p0D U0} IPUOD Byy

SISV

0492 924® $31Q PIIOVVIT 4O FINSIY cuez
fujyaom qQ2UURYD 4O Riun Buiaom

paddoys uoissjusuva} ©3eQg paddoys

uoisyodad jaoys S

SMO1ja9n0 3 INS Y mojjaeno

U0 PuR B})qQ PIPIVVIS 2uo

043z 11® 30U S} I INSIY 0a22 jou

BuiIOM 30U JPUURYD IO Fiun Buyxaom jou

Qeu0) 3Pa2do 30U q2UURYD 40 Riupn 49do jou

U0 pUR OuLDZ Y3}O0Q BUR $3)1Q PI}OI9S paxiw

moq ssuedwod puwvaado 3sady Mo

0422 uvY} S$I| $} FINSIY 0a9z 9

uojis}osad Buo” 1

359 j0u $93Rq FINS24 OUIZUON 232qdwoduy

yBiy s2avdwod puvaado 3sua) g Yy

spow }2824-31%Y U} }lun °paddors uolssiwsuva} vieq peyyey
pdomiqey H

042z ueyy J3reaeb S} FinseY oasz B

paomiIng P

qundbe suevdwod spurvaddp qends

PPJ40}S PJOM SNIRIS TIUURYD Po240rs ASO

uoy3dnauadiuyl 40 3$23 JO) APEUIJL PIOM SNIVIE |PUURYD Aped2a msSd
oud2zuou 23Rq 3 NSIu 3se) 239q9dwo>d

$4n250 uoijisod ubis 2y} jJo 3no Auueds y Raawd
Asnq 12uuvyd 4o 3lupn fisnq

21QR11PAR JPUURYD pu® jlupn sqqerieAR

PusSnsTY

panunuos ¢ xipuaddy

esq3uueyd> O/I PuUv spou
Jeinoj3saed syy uodn spusdap e24%® }NO-uEDS Dijsoubeip By} Jo BT)1S IYL »

#0940 jno-ueds d13soube)q 0000 0001 82t

MSd mau yndynosindul pJom 2qqnop 0001 1I10 o021

MSd madu dulydey pdom 21qnop 0000 ITI0 28T

ASd meu wwaboud pJom 21qnop 000! OIT0 ¢OT

ASd MPU 118> J40SyAdedng pJom a1qnop 0000 0170 96

MASd mdu JRULSEX] PdoMm 29qnop 0001 1010 @8

pasnupn pP4om 0010 1010 ¥

dPuwyy P4oM 0000 1030 OB

pasnun pJaom 0011 0010 92

PJIOM SS2UPPE qBUURYD pJom 0001 0010 T2

PJIOM SNIRIS PuUURY) puom 31qnop 0000 0010 ©9

MSd P16 indinosindul pJom 31qnop 0001 1100 9S

ASd P1O duryoEn pJom 21qnop 0000 1100 8¢

MSd P10 weaboud pPJdom 2q9qnop 0001 0100 OF

MSd P10 1182 Jos)Ausdng pJyom 29qRnOP 0000 0100 CE

ASd P10 QRUJIIIX] pJaom 29gnop 0001 1000 +¢2

2MDD Buipwoq mwaboud @)3v] pJaom aqnop 0000 1000 91
TMO3 Suipreeq weaboad 1eiriu] pJom 21qnop 0001 0000 ©
MSd Bujpeoq weaboud e)ul pd4om 29Qnop 0000 0000 O

350387d HISNIT 533533V

ANIWNOISSY 3IOVU0LS ININVWYID

‘wniBoid oy Aq pessoippp oq os|p Anw suoynso] paubissp Apusu
-pused |y ‘poessnd st ooz uaym jdnisojui un sopiacid pup umop
pPeuNod) oWl oYl "MSd IX3U B4 SP PIUIRIO SI UOHPIO] ,MOu,,
8y} woly MSd Yl Pup UOHRIO] ,PIO, SYI Ul PoIOIS SI MSd fusdand
sy} uoydauiajuy un Bulng “pesejdwod si uoynsado Bulpno] oy} Jopp
uoyniado ndH |04u0d 0F MSd P SP pup uoynwaojul jndur Jayny jo
suolndo] oy Ayeds o} 5,0 s pasn Ajuanbaesqns s uoypwLOUl
SIYl ‘€T ©4 0 suoywa0] ojuy 921A9p jndul paydads D wosy ppaI AL
sojiq pz Buippo] wniboad [Pl Buling “towy oyl eppdn o Jepio
up pun suoydnsiojui Buunp ‘Buippo] wniBoad [pyIul Buunp speu
~unyd> O/ pun NdD oYl Aq possasppp 241D SUOHNIO| BSIYL ‘dqP} SIY
uj umoys 8an suoyndo| abnLojs paubissn Apusunuusd ||V ¢ xipuaddy

Iuned £9 - 8¢

Ad9ys Bujujeyd %

ROPYD 104300 DR JURFu] 9
AIBYD 1043u0D RuURYD [-22
NoPyo ejep q3uueyd £24
AIIYD UO}IOB}OIG €Y

AoeYyd> weuBougd 2

yiBuey 3osaaodug 1v

panunuod 7 xipuaddy

34

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

ss spaomirey sIayy 13 Tt £
Is 40 Sy spuomjiey omy ot ot -4
Xy SpJom} IRy Omy 10 ot 2
¥y paomjqey aug 00 10 [
®1qe)1vAR jON 00 [
IVAS0T ALSNIY T=53"3IT® €E~2E SG55 HISNTT
NOILDNYASNI NOILDNYLSNI NOILDNYLSNI S118 MSd NOILONYISNI

IPUIWAIY

2321dwoo
23}2qdwod
2321dwod
2321dwo>d
2327dwod
2391dwod
239q1dwod
?2321dwod

2321dwod

ssaaddns
2391duwod
2321dwo>
EXY JTREVIESY
ssa2addns
232qdwo>
232q1dwos/ss2addns
2321dwod
23U WAL
ssaaddns
33eu)wad}/s32addns
23jouwadysssaaddns
ssauaddns
ssaaddns
ssaaddns

2321dwo>
232qdwod
?3r2qdwo>
23921dwod

ONIQYOIIY HLONIT NOILONBLSNI

s1qei2ipeadun x

TIVO HOSIAY3DNS 30 PRI 2TY Puv [y Jo siig -

x £1

(1 Ryyaoyad

® XX X X X X X
MMM MNMNNS

(e A2

(2 Rayraoyad

A

2*1 6%
21 @of
2

£

€ LE
2t

2*1 of
£*2
£e201
£%2¢1%0
£2¢0

2

FAd ¢
£¢2*1

(z R

X X X X
m<w o

$31Q SSIAPPE 32)AdQ v
PUSDEY

00000000 00000000 uoidunjiew dujyowy

SZIT MSd m3u gy MSd P10) WIPTSFUTHSEH

xXxXxxxxx{ 00000000
XXXXXXT{X 00000000
xXXXXIXX 00000000
XXXXIXXX 00000000
XXXTXXXX 00000000
XX[XXXXX 00000000
XEXXXXXX 00000000
TXXXXXXX 00000000

FEITI Y

K9y Fdnaaszuj
qeubis teua’drx3zy
AeuBls qeuU4d X3
qeuBys qeuad3x3y
qeub)s qeuasixy]y
Teufys (eusayx3y
qeufi}s qeua?23x3

-0NMme N0

14014d Q@ MSd MPU 492 MSd P10) ATUIIFXT

ddddadada 00000000 $31q uUo}3dhajzsu]

96 MSd MPu ¢2E MSd P10) TITSTIFTTAIFARG

11110000 00000000 2PiAYP 3ujod-Buijreoqy
01110000 00000000 aduwdyJjubyg
10110000 00000000 Mmoqjaspun jusuodx3
00110000 00000000 mo1}a2A0 jusuodxy
11010000 00000000 p1AIP jew}daQg
01010000 00000000 morjaano qrw)dIQ
10010000 00000000 2p1ALP jujod—poxygy
00010000 00000000 Me1ja2A0 jujod—paxiy
11100000 00000000 e3eqQ
01100000 00000000 uojjedy)jydadg
10100000 00000000 fujssaappy
00100000 00000000 uoy}d>a3oad

11000000 00000000 *3n39x3
01000000 00000000 uojirevaado pafeyialag
10000000 00000000 uoyjeaadg

y40314d ¢p01 MSd MIu 0y MSd P10) BFIBITG
eveveveew 01100000 9 1%uUURYD JO0}I2125
epeveee® (10100000 G YPUURYD U03DIIS
eveereR® 00100000 ¥ 12UUVYD JO3}DP 19S5
evewvveeR (1000000 € 12UUBYD JOIIP1S

panunuod ¢ xipuaddy

4ado jou
43do jou
432do jou
4ado jou

mnorjuanc
moqjaano

moqjuaano
morjaaao

mnoqjuasno
motrjasao

moqjaano

Raawd
moqjaano
moqjaano
moqjasno
moylaano
Mmoqjuaano

Raaeds
#moqjaane

L2l

Bujisaom

Buyyaom
Asnq

paddogs

?32qduwod
ou2z 6
oa?z 6

ybiy

oud2
oJd22z
ouZ

- -]

ouaz 6
oca2z 6
ybyy
o442z 6
o422z B

Quaz B
ousz B
ubiy
oa2z B

Raagessouaz
ouaz
o422z
oa2z
ouaz
ousz
ooz
o42z 6
oa22 6

ybiy

Raaueseounz
ousz B

- - -

35

PPJIOLS MSD Qe ieAR 0/1 1s31

Rpesa m5D OBu)yaom jou QINNVHD 1S34

P2J03}S NSO d1qRYIVAR 0/1 L¥VLS

Poii1ey Buyyaom jou 0/1 17vH
FUSTYSISAG IRNATRG=TAAGT

?2391dwodu} o4z A1S31L ONV JLVISNYYL

paxiw o422 ASVH YAONN LS3L

o4®z jou caaz ¥o

o043z jou oa2z Y0 IALISNTIOX3
o4z 1 o422 AYYW OGNV L1103
ousz 9 os22 1103
moq qenbs TIVO1907 IUVAWOD
04?22z j0u cuaz ANV
BUSTIVISAG 1ESTEET
o492z 042z “I/S QIZITIVWYONNA L1DOVHLANS
oudz 4 os22z 178 Q3ZITIVWHON 1dvyians
— ouoz /S 3IAILISOd aQvDl
o4z oa2z /S 3AILVO93N QVOTl
o422z ouaz I/$ AN3IW3TIHWOD avon
o042z ouaz /S L1S31 ANV Qv01l
"o Qendba T1/S 3UVJIWOD
oudz ouaz /S Q3IZITIYWUHONNN QOvV
049Z ocuaz /S Q3ZITWKMNON GOV
STISWUITIV FUTSI=BUTI®6TI
o4’z 9 osvz Gav ONvV 0¥3Z
oJu2z 9 ou’z TIVWID3Q 1DOVyLens
moq 1endbs TIVWID3A IUVINOD
042z ou2z IYWID3a aqv
STYSUUFTIV TEaT53g
042z jou - “WOIO0T LOVHiENnS
oudz q o492 4/H Lovulens
ca2z 9 042z IIONIS LHOIY LIIHS
0492z q 022 378N00 LHOIY LJIHS
ou2z 1 cu2z 3I9NIS 14371 LILIHS
ousz q o4dz 378n0Q 1437 L3IHS
_— ocuasz 3ALL1S0d avon
o043z 9 ocaez 3AL1VO93IN avon
oudz q ocunz ANIWINIKWOD av0
o043z cusz A1S31 ANV QvDT
moq 1enda 4/H JUVIWDD
0422z jou o4z YO 1907 Qav
os22z 9 ocJ2z 4/H Qav
STIFTUFTIV FUTOISPSITI
T [

ONIL13S 300D NOILIOGNOD

‘ue[p} 8¢ 0} Ydunaq By}

asnnd JIm sBuiyes apod YIYM soyads uoydnLsul sy Ul PauIduGd
ysPw jiq-1n0j 8Y) ‘UOHINIISU] NOLLIANOD NO HONVIA P JO 3W0din0 oy}
saujwisjep 9pod uoHIpuod ay) ‘pabunydun SPOd UOHIPUOD dY} IADI|
SUOHINJISUL J8Y4O ||V “8|qp} Buimo|og oys u pajsi] 8D (MSd 344 JO €€
PUD ZTE Siq) SpO2 UOHIPUOD BY} {9S YIIYM suoMNINASUl (I # xipuaddy

VOL. 8, NO. 2, 1964, REPRINT

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

36

Gene M. Amdahl

B.S. in Physics 1948, South Dakota State College; M.S. in
Physics, 1949, and Ph.D., 1952, University of Wisconsin.
Between 1952 and 1956 he was associated with the IBM De-
velopment Laboratory at Poughkeepsie. During the period he
was project engineer and systems designer of the IBM 704
and STRETCH computers. From 1956 to 1960 Dr. Amdahl
worked at the Ramo Wooldridge Corporation and at Aeronu-
tronic Systems, Inc., where he was manager of Data Processing
Engineering. He rejoined IBM in Research in 1960 as Director
of Experimental Machines. He has been Advanced Systems
Design Manager in the Data Systems Division, Poughkeepsie,
and is currently Technical Manager of Large Scientific Systems.

Gerrit A. Blaauw

B.S. in Electrical Engineering, Lafayette College, 1948; Ph.D.
in Applied Science, Harvard University, 1952, While at Harvard,
was a member of the staff of the Computation Laboratory and
participated in the design of the Mark III and Mark IV cal-
culators. From 1952-1955 was a member of the staff of the
Mathematics Center in Amsterdam, Netherlands, where he
cooperated in the design of the ARRA and FERTA com-
puters. Joined IBM in 1955 at the Poughkeepsie Product
Development Laboratory. He has been engaged in the systems
planning of various machine projects in Data Systems Division.
Is a member of the ACM, IEEE, and Sigma Xi.

Frederick P. Brooks, Jr.

A.B. in Physics, Duke University, 1953. Received S.M., 1955
and Ph.D., 1956, Harvard University, for graduate work in
design and application of computers. From 1956 to 1959, Dr.
Brooks participated in the planning of the STRETCH and HARVEST
computers at the IBM Product Development Laboratory in
Poughkeepsie. From 1959 to 1960 he studied computer organiza-
tion theory at IBM Yorktown Research Center. At present he
is IBM Processor Manager, in Poughkeepsie, and is responsible
for the specification and development of new computers. Mem-
ber of IEEE, ACM, Phi Beta Kappa, and Sigma Xi.

G. M.AMDAHL, G.A.BLAAUW, AND F. P. BROOKS, JR.

VOL. 8, NO. 2, 1964, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

