

Finding Bank Number and Address within a bank

Solution: We will use the following relation to determine the bank number for x, B(x), and the address of x within the bank, A(x):

 $B(x) = x MOD N_{\mu}$ $A(x) = x MOD W_{b}$

and we will choose $N_{\rm b}$ and $W_{\rm b}$ to be co-prime, i.e., there is no prime number that is a factor of $N_{\rm b}$ and $W_{\rm b}$ (this condition is satisfied if we choose N_b to be a prime number that is equal to an integer power of two minus 1).

We can then use the Chinese Remainder Theorem to show that B(x) and A(x) is always unique.

Fast E	Bank N	umbe	er				0
• Chinese R As long as two $b_i = x \mod$	emainder o sets of int $a_i, 0 \le b_i$	r Theo egers ai i < ai, 0	rem and bifo ≤ x < ℓ	How thes $a_0 \times a_1$	e rules $\times a_2 \times .$		
and that ai an solution (unar – bank num – address w – N word ad • 3 banks Nb	d aj are co-p nbiguous m ber = b_0 , nu ithin bank = dress 0 to N = 3, and Se	prime if i apping): mber of t b ₁ , num I-1, prime 8 word q. Interle	≓ j, then f banks = a ber of wo e no. ban ls per b baved	the integ ords in baks, word ank, W Modu	er x has ank = a_1 s power /b = 8. lo Interle	only one of 2 eaved	
Bank Number:	0	1	2	0	1	2	
within Bank:	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 7 10 13 16 19 22	2 5 8 11 14 17 20 23	0 9 18 3 12 21 6 15	16 1 10 19 4 13 22 7	8 17 2 11 20 5 14 23	

DRAM History DRAMs: capacity +60%/yr, cost –30%/yr – 2.5X cells/area, 1.5X die size in -3 years '98 DRAM fab line costs \$2B - DRAM only: density, leakage v. speed Rely on increasing no. of computers & memory per computer (60% market) SIMM or DIMM is replaceable unit => computers use any generation DRAM · Commodity, second source industry => high volume, low profit, conservative - Little organization innovation in 20 years

· Order of importance: 1) Cost/bit 2) Capacity - First RAMBUS: 10X BW, +30% cost => little impact

	Mitsubishi	Samsung
Blocks	512 x 2 Mbit	1024 x 1 Mbit
Clock	200 MHz	250 MHz
 Data Pins 	64	16
 Die Size Sizes will be mut 	24 x 24 mm	31 x 21 mm
 Metal Layers 	3	4
Technology	0.15 micron	0.16 micron

Error Correction Codes (ECC)

- Memory systems generate errors (accidentally flippedbits)
- DRAMs store very little charge per bit
- "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets.

- Less frequently, "hard" errors can occur when chips permanently fail.
 Problem gets worse as memories get denser and larger
- Where is "perfect" memory required?
- servers, spacecraft/military computers, ebay, ...
- Memories are protected against failures with ECCs

Extra bits are added to each data-word

 used to detect and/or correct faults in the memory system
 in general, each possible data word value is mapped to a unique "code word". A fault changes a valid code word to an invalid one - which can be detected.

- Decompose unknown vector into k bits: $x=x_0+2x_1+...+2^{k-1}x_{k-1}$
- Each column is result of multiplying a by 2ⁱ

Motivation: Who Cares About I/O?

- · CPU Performance: 60% per year
- I/O system performance limited by mechanical delays (disk I/O)
- < 10% per year (IO per sec or MB per sec)
- Amdahl's Law: system speed-up limited by the slowest part!
 - 10% IO & 10x CPU => 5x Performance (lose 50%) 10% IO & 100x CPU => 10x Performance (lose 90%)
- I/O bottleneck: Diminishing fraction of time in CPU Diminishing value of faster CPUs

- 1956 IBM Ramac early 1970s Winchester Developed for mainframe computers, proprietary interfaces Steady shrink in form factor: 27 in. to 14 in.
- 1970s developments
- - 5.25 inch floppy disk formfactor (microcode into mainframe) early emergence of industry standard disk interfaces
 » ST506, SASI, SMD, ESDI
- Early 1980s
- PCs and first generation workstations Mid 1980s
 - Client/server computing
 - Centralized storage on file server
 - » accelerates disk downsizing: 8 inch to 5.25 inch - Mass market disk drives become a reality
 - » industry standards: SCSI, IPI, IDE
 - » 5.25 inch drives for standalone PCs, End of proprietary interfaces

(0)

$x^2 + x + I$	$x^{12} + x^6 + x^4 + x + 1$	$x^{22} + x + 1$
$^{3} + x + 1$	$x^{13} + x^4 + x^3 + x + 1$	$x^{23} + x^5 + 1$
$x^{4} + x + I$	$x^{14} + x^{10} + x^6 + x + 1$	$x^{24} + x^7 + x^2 + x + 1$
$x^{5} + x^{2} + I$	$x^{15} + x + 1$	$x^{25} + x^3 + I$
$x^{6} + x + I$	$x^{16} + x^{12} + x^3 + x + 1$	$r^{26} + r^6 + r^2 + r + 1$
$x^{7} + x^{7} + I$ $x^{8} + x^{4} + x^{3} + x^{2} + I$	$x^{17} + x^3 + 1$	$x^{27} + x^5 + x^2 + x + 1$
$x^{9} + x^{4} + I$	$x^{18} + x^7 + 1$	$x^{28} + x^3 + 1$
$x^{I\theta} + x^3 + I$	$x^{19} + x^5 + x^2 + x + 1$	$x^{29} + x + I$
$x^{11} + x^2 + I$	$x^{2\theta} + x^3 + 1$	$r^{3\theta} + r^6 + r^4 + r + 1$
	$x^{21} + x^2 + 1$	$r^{3l} + r^3 + l$
Galois Field	Hardware	$x^{32} + x^7 + x^6 + x^2 + 1$
ultiplication by x	⇔ shift left	
king the result m	od $p(x) \Leftrightarrow XOR$ -ing with the	ne coefficients of p(x)
	when the most	significant coefficient
taining all 2 ⁿ -1 n	on-zero 👄 Shifting and XC	DR-ing 2 ⁿ -1 times.

Alterna Techno	itive ologi	Data es: E	Stor arly	age 1990	S		
	Сар	BPI	TPI	BPI*TF	PI Data X	fer Access	
Technology	(MB)			(Millio	e/s) Time		
Conventional Ta	ipe:						
Cartridge (.25")	150	12000	104	1.2	92	minutes	
IBM 3490 (.5")	800	22860	38	0.9	3000	seconds	
Helical Scan Tar	be:						
Video (8mm)	4600	43200	1638	71	492	45 secs	
DAT (4mm)	1300	61000	1870	114	183	20 secs	
Magnetic & Opti	cal Disk						
Hard Disk (5.25") 1200	33528	1880	63	3000	18 ms	
IBM 3390 (10.5") 3800 2	7940	2235	62	4250	20 ms	
Sony MO (5.25")	640	24130	18796	454	88	100 ms	

Tape vs. Disk
 Longitudinal tape uses same technology as hard disk; tracks its density improvements
 Disk head flies above surface, tape head lies on surface
Disk fixed, tape removable
 Inherent cost-performance based on geometries: fixed rotating platters with gaps (random access, limited area, 1 media / reader) vs. removable long strips wound on spool (sequential access, "unlimited" longth, multiple (reader)
New technology trend: Helical Scan (VCR, Camcoder, DAT) Spins head at angle to tape to improve density

Relative Co	ost of St	orage Tech	nnology—	
Late 1995/E	Early 199	96		-
Magnetic D	isks			
5.25"	9.1 GB	\$2129 \$1985	\$0.23/MB \$0.22/MB	
3.5"	4.3 GB	\$1199 \$999	\$0.27/MB \$0.23/MB	
2.5"	514 MB 1.1 GB	\$299 \$345	\$0.58/MB \$0.33/MB	
Optical Dis	ks			
5.25"	4.6 GB	\$1695+199 \$1499+189	\$0.41/MB \$0.39/MB	
PCMCIA Ca	ards			
Static RAM	4.0 MB	\$700	\$175/MB	
Flash RAM	40.0 MB	\$1300	\$32/MB	
	175 MB	\$3600	\$20.50/MB	

-	String Controller	Ð J	Ð	Ð	 ()
	String Controller	Ð	Ð	Ð	
Array	String Controller	Û	Ċ	Ċ)	 Ċ
-	String Controller	Û.	Ð	Ð	 Ð
-	String Controller	ÐÛ	Ð	Ð	 Ċ
	String Controller	Û (ť,		 Ċ
D-4- D	ry Group: unit	of data r	odunda	nev	

Summary	
Disk industry growing rapidly, improves: - bandwidth 40%/yr, creal density 60% (see \$100 factor?)	
• queue + controller + seek + rotate + transfe	r
Advertised average seek time benchmark r than average seek time in practice	nuch greater
 Response time vs. Bandwidth tradeoffs 	
• Queueing theory: $W = \left(\frac{\frac{1}{2}(1+\mathcal{L})\overline{x}u}{1-u}\right)$ or (c=1):	$W = \left(\frac{\overline{x}u}{1-u}\right)$
 Value of faster response time: 	
 0.7sec off response saves 4.9 sec and 2.0 sec (70%) transaction => greater productivity 	otal time per
 everyone gets more done with faster response, but novice with fast response = expert with slow 	