

Review:1-T Memory Cell (DRAM)

- Write:

- 1. Drive bit line
- 2.. Select row
- Read:
- 1. Precharge bit line to Vdd/2
- 2.. Select row
- 3. Cell and bit line share charges
" Very small voltage changes on the bit line
- 4. Sense (fancy sense amp)
" Can detect changes of ~ 1 million electrons
- 5. Write: restore the value
- Refresh
- 1. Just do a dummy read to every cell.

4 Key DRAM Timing Parameters

- $t_{\text {RAC }}$: minimum time from RAS line falling to the valid data output.
- Quoted as the speed of a DRAM when buy
- A typical 4Mb DRAM $t_{\text {RAC }}=60 \mathrm{~ns}$
- Speed of DRAM since on purchase sheet?
- $t_{R C}$: minimum time from the start of one row access to the start of the next. $-t_{R C}=110 \mathrm{~ns}$ for a 4Mbit DRAM with a $t_{R A C}$ of 60 ns
- $t_{C A C}$: minimum time from CAS line falling to valid data output.
-15 ns for a 4Mbit DRAM with a $t_{\text {RAC }}$ of 60 ns
- t_{PC} : minimum time from the start of one column access to the start of the next.
$-\mathbf{3 5} \mathrm{ns}$ for a 4Mbit DRAM with a $\mathrm{t}_{\text {RAC }}$ of 60 ns

Main Memory Performance

- DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time
- - 2:1; why?
- DRAM (Read/Write) Cycle Time :
- How frequent can you initiate an access?
- Analogy: A little kid can only ask his father for money on Saturday
- DRAM (Read/Write) Access Time:
- How quickly will you get what you want once you initiate an access?
- Analogy: As soon as he asks, his father will give him the money
- DRAM Bandwidth Limitation analogy:
- What happens if he runs out of money on Wednesday?

Main Memory Performance

mber revey uentem

- Wide:
- CPU/Mux 1 word; Mux/Cache, Bus Memory N words (Alpha: 64 bits \& 256 bits)

- Interleaved:
- CPU, Cache, Bus 1 word: Memory N Modules (4 Modules); example is word interleaved
- Simple:
- CPU, Cache, Bus, Memory
same width (32 bits)

Avoiding Bank Conflicts

- Lots of banks
int x[256][512];

$$
\text { for } \begin{aligned}
&(j=0 ; j<512 ; j=j+1) \\
& \text { for }(i=0 ; i<256 ; i=i+1) \\
& \times[i][j]=2 * x[i][j] ;
\end{aligned}
$$

- Even with 128 banks, since 512 is multiple of 128 , conflict on word accesses
- SW: loop interchange or declaring array not power of 2 ("array padding")
- HW: Prime number of banks

[^0]
Increasing Bandwidth - Interleaving

Main Memory Performance

- Timing model
- 1 to send address,
- 4 for access time, 10 cycle time, 1 to send data
- Cache Block is 4 words
- Simple M.P. $=4 \times(1+10+1)=48$
- Wide M.P. $=1+10+1=12$
- Interleaved M.P. $=1+10+1+3=15$

Finding Bank Number and Address within a bank

Problem: We want to determine the number of banks, N_{b}, to use and the number of words to store in each bank, W_{b}, such that:

- given a word address x, it is easy to find the bank where x will be found, $B(x)$, and the address of x within the bank, $A(x)$.
- for any address $x, B(x)$ and $A(x)$ are unique.
- the number of bank conflicts is minimized

Finding Bank Number and Address within a bank

Solution: We will use the following relation to determine the bank number for $x, B(x)$, and the address of x within the bank, $A(x)$:

$$
\begin{aligned}
& B(x)=x M O D N_{b} \\
& A(x)=x M O D W_{b}
\end{aligned}
$$

and we will choose N_{b} and W_{b} to be co-prime, i.e., there is no prime number that is a factor of N_{b} and W_{b} (this condition is satisfied if we choose N_{b} to be a prime number that is equal to an integer power of two minus 1).

We can then use the Chinese Remainder Theorem
to show that $B(x)$ and $A(x)$ is always unique.

Fast Bank Number

- Chinese Remainder Theorem

As long as two sets of integers ai and bi follow these rules
$b_{i}=x \bmod a_{i}, 0 \leq b_{i}<a_{i}, 0 \leq x<a 0 \times a_{1} \times a_{2} \times \ldots$
and that ai and aj are co-prime if $\mathbf{i} \neq \mathbf{j}$, then the integer \mathbf{x} has only one solution (unambiguous mapping):

- bank number $=b_{0}$, number of banks $=a_{0}$
- address within bank $=b_{1}$, number of words in bank $=a_{1}$
- N word address 0 to $\mathrm{N}-1$, prime no. banks, words power of 2
- 3 banks $\mathrm{Nb}=3$, and 8 words per bank, $\mathrm{Wb}=8$.
Seq. Interleaved Modulo Interleaved

Bank Number:	0	1	2	0	1	2

Address
within Bank: $\quad 0$

				1	2
0	1	2	0	16	8
3	4	5	9	1	17
6	7	8	18	10	2
9	10	11	3	19	11
12	13	14	12	4	20
15	16	17	21	13	5
18	19	20	6	22	14
21	22	23	15	7	23

Fast Page Mode Operation

- Regular DRAM Organization: Column
- N rows x N column x M-bit
- Read \& Write M-bit at a time
- Each M-bit access requires a RAS / CAS cycle
- Fast Page Mode DRAM
- N x M "SRAM" to save a row
- After a row is read into the register
- Only CAS is needed to access other M-bit blocks on that row
- RAS_L remains asserted while CAS_L is toggled

DRAM Future: 1 Gbit+ DRAM

	Mitsubishi	Samsung
- Blocks	$512 \times 2 \mathrm{Mbit}$	$1024 \times 1 \mathrm{Mbit}$
- Clock	200 MHz	250 MHz
- Data Pins	64	16
- Die Size	$24 \times 24 \mathrm{~mm}$	$31 \times 21 \mathrm{~mm}$
- Sizes will be much smaller in production		
- Metal Layers	3	4
- Technology	0.15 micron	0.16 micron

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{DRAMs per PC over Time} \\
\hline \& \& \begin{tabular}{l}
'99
256 Mb \\
\(\longrightarrow 1\) \\
\(\longrightarrow 2\)
\end{tabular} \& co2
1 Gb

\longrightarrow
\longrightarrow

\hline
\end{tabular}

Something new: Structure of Tunneling Magnetic Junction

- Speed of SRAM, density of DRAM, non-volatile (no refresh)
- "Spintronics": combination quantum spin and electronics
- Same technology used in high-density disk-drives

Big storage (such as DRAM/DISK):

Potential for Errors!

- Motivation:
- DRAM is dense \Rightarrow Signals are easily disturbed
- High Capacity \Rightarrow higher probability of failure
- Approach: Redundancy
- Add extra information so that we can recover from errors
- Can we do better than just create complete copies?
- Block Codes: Data Coded in blocks
- k data bits coded into n encoded bits
- Measure of overhead: Rate of Code: K/N
- Often called an (n, k) code
- Consider data as vectors in GF(2) [i.e. vectors of bits]
- Code Space is set of all 2^{n} vectors,

Data space set of 2^{k} vectors

- Encoding function: $\boldsymbol{C = f}(\boldsymbol{d})$
- Decoding function: $d=f\left(C^{\prime}\right)$
- Not all possible code vectors, C, are valid!

Potential DRAM Crossroads?

- After 20 years of 4 X every 3 years, running into wall? ($64 \mathrm{Mb}-1 \mathrm{~Gb}$)
- How can keep $\$ 1 B$ fab lines full if buy fewer DRAMs per computer?
- Cost/bit $-30 \% / \mathrm{yr}$ if stop $4 \mathrm{X} / 3 \mathrm{yr}$?
- What will happen to $\$ 40 \mathrm{~B} / \mathrm{yr}$ DRAM industry?

Error Correction Codes (ECC)

Memory systems generate errors (accidentally flippedbits)

- DRAMs store very little charge per bit
- "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets.
- Less frequently, "hard" errors can occur when chips permanently fail.
- Problem gets worse as memories get denser and larger

Where is "perfect" memory required?

- servers, spacecraft/military computers, ebay, ...

Memories are protected against failures with ECCs
Extra bits are added to each data-word

- used to detect and/or correct faults in the memory system
- in general, each possible data word value is mapped to a unique "code word". A fault changes a valid code word to an invalid one - which can be detected.

Correcting Code Concept
Space of possible bit patterns (2^{N})
O

Error changes bit pattern to non-code

Sparse population of code words ($2^{\mathrm{M}} \ll 2^{\mathrm{N}}$) - with identifiable signature

- Detection: bit pattern fails codeword check
- Correction: map to nearest valid code word

Simple Error Detection Coding

- Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have even parity:

Parity Bit

Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).

- A non-zero parity indicates an error occurred:
- two errors (on different bits) is not detected (nor any even number of errors)
- odd numbers of errors are detected.
- What is the probability of multiple simultaneous errors?

Hamming Error Correcting Code

- Use more parity bits to pinpoint bit(s) in error, so they can be corrected.
Example: Single error correction (SEC) on 4-bit data

$$
\text { use } 3 \text { parity bits, with 4-data bits }
$$

results in 7-bit code word

- 3 parity bits sufficient to identify any one of 7 code word bits
- overlap the assignment of parity bits overlap the assignment of parity bits
so that a single error in the 7 -bit work can be corrected
- Procedure: group parity bits so they correspond to subsets of the 7 bits:
- p_{1} protects bits $1,3,5,7$
- p_{2} protects bits $2,3,6,7$
- p_{3} protects bits 4,5,6,7

$$
\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
p_{1} & p_{2} & d_{1} & p_{3} & d_{2} & d_{3} & d_{d}
\end{array}
$$

Bit position number

\(\left.\begin{array}{l}001=1_{10}

011=3_{10}

101=5_{10}\end{array}\right\} \mathrm{p}_{1} \quad\)| number bit |
| :--- |
| from left to |
| right. |

$\left.101=5_{10}\right\} P$ $111=7_{10}$ $010=2_{10}$
$011=3_{10}$
$\left.\begin{array}{l}110=6_{10}\end{array}\right\} \mathrm{p}_{2}$
$111=7_{10}$
$100=4_{10}$
$101=5_{10}$
$\left.110=6_{10}\right\} \mathrm{P}_{3}$
$111=7_{10}$
p_{3}

Hamming Code Example

Interactive Quiz

- You receive:
-1111110
-0000010
-1010010
- What is the correct value?

Review: Hamming Error Correcting Code

- Overhead involved in single error correction code:
let p be the total number of parity bits and d the number of data bits in a $p+d$ bit word.
- If p error correction bits are to

If p error correction bits are to
point to the error bit ($p+d$ cases) plus indicate that no error exists (1 case), we need:
$2^{p}>=p+d+1$,
thus $p>=\log (p+d+1)$
for large d, p approaches $\log (d)$
8 data $=>4$ parity
16 data $=>5$ parity
32 data $=>6$ parity
64 data $=>7$ parity
Typical modern codes in DRAM memory systems: 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

Review: Code Types

- Linear Codes: $\bar{C}=\bar{G} \cdot \bar{d} \quad \bar{S}=\bar{H} \cdot \bar{C}$

Code is generated by G and in null-space of H

- Hamming Codes: Design the H matrix
- d=3 \Rightarrow Columns nonzero, Distinct
- d = $4 \Rightarrow$ Columns nonzero, Distinct, Odd-weight
- Reed-solomon codes:
- Based on polynomials in GF(2^{k}) (l.e. k-bit symbols)
- Data as coefficients, code space as values of polynomial:
$-P(x)=a_{0}+a_{1} x^{1}+\ldots a_{k-1} x^{k-1}$
- Coded: $P(0), P(1), P(2) \ldots, P(n-1)$
- Can recover polynomial as long as get any k of n
- Alternatively: as long as no more than n-k coded symbols erased, can recover data.
- Side note: Multiplication by constant in $\mathbf{G F}\left(\mathbf{2}^{\mathrm{k}}\right)$ can be represented by $\mathrm{k} \times \mathrm{k}$ matrix: $\mathrm{a} \cdot \mathrm{x}$
- Decompose unknown vector into k bits: $x=x_{0}+2 x_{1}+\ldots+2^{k-1} x_{k-1}$
- Each column is result of multiplying a by 2^{i}

I/O Systems

Storage Technology Drivers

- Driven by the prevailing computing paradigm
- 1950s: migration from batch to on-line processing
- 1990s: migration to ubiquitous computing
» computers in phones, books, cars, video cameras, ... " nationwide fiber optical network with wireless tails
- Effects on storage industry:
- Embedded storage
" smaller, cheaper, more reliable, lower power
- Data utilities
» high capacity, hierarchically managed storage
- Today: Processing Power Doubles Every 18 months
- Today: Memory Size Doubles Every 18 months(4X/3yr)
- Today: Disk Capacity Doubles Every 18 months
- Disk Positioning Rate (Seek + Rotate) Doubles Every Ten Years!

Disk Capacity now doubles every
18 months; before 1990 every 36 motnhs

Technology Trends

Historical Perspective

- 1956 IBM Ramac - early 1970s Winchester
- Developed for mainframe computers, proprietary interfaces
- Steady shrink in form factor: 27 in . to 14 in.
- 1970s developments
- 5.25 inch floppy disk formfactor (microcode into mainframe)
- early emergence of industry standard disk interfaces » ST506, SASI, SMD, ESDI
- Early 1980s
- PCs and first generation workstations
- Mid 1980s
- Client/server computing
- Centralized storage on file server
" accelerates disk downsizing: 8 inch to 5.25 inch
- Mass market disk drives become a reality
" industry standards: SCSI, IPI, IDE
" 5.25 inch drives for standalone PCs, End of proprietary interfaces

Historical Perspective

- Late 1980s/Early 1990s:
- Laptops, notebooks, (palmtops)
- 3.5 inch, 2.5 inch, (1.8 inch formfactors)
- Formfactor plus capacity drives market, not so much performance
» Recently Bandwidth improving at 40\%/ year
- Challenged by DRAM, flash RAM in PCMCIA cards
» still expensive, Intel promises but doesn't deliver
» unattractive MBytes per cubic inch
- Optical disk fails on performace (e.g., NEXT) but finds niche (CD ROM)

MBits per square inch:
DRAM as \% of Disk over time

source: New York Times, 2/23/98, page C3,
"Makers of disk drives crowd even mroe data into even smaller spaces"

Disk Performance Model /Trends

- Capacity
+ 100\%/year (2X / 1.0 yrs)
- Transfer rate (BW) $+40 \% /$ year ($2 \mathrm{X} / 2.0 \mathrm{yrs}$)
- Rotation + Seek time
$-8 \% /$ year ($1 / 2$ in 10 yrs)
- MB/\$
> 100\%/year (2X / <1.5 yrs)
Fewer chips + areal density

Several platters, with information recorded magnetically on both surfaces (usually)

- Bits recorded in tracks, which in turn divided into sectors (e.g., 512 Bytes)
- Actuator moves head (end of arm,1/surface) over track ("seek"), select surface, wait for sector rotate under head, then read or write
- "Cylinder": all tracks under heads

Disk Performance Example

Queuing Time + Seek Time + Rotation Time + Xfer Time + Ctrl Time
Order of magnitude times for $4 K$ byte transfers:
Seek: 12 ms or less
Rotate: $4.2 \mathrm{~ms} @ 7200 \mathrm{rpm}=0.5 \mathrm{rev} /(7200 \mathrm{rpm} / 60 \mathrm{~m} / \mathrm{s})$ (8.3 ms @ 3600 rpm)
Xfer: 1 ms @ 7200 rpm (2 ms @ 3600 rpm)
Ctrl: 2 ms (big variation)
Disk Latency $=$ Queuing Time $+(12+4.2+1+2) \mathrm{ms}=$ QT + 19.2ms Average Service Time $=19.2 \mathrm{~ms}$

Snapshot: Ultrastar 72ZX

What Kind of Errors

- In Memory
- In Disks?
- In networks?
- On Tapes?
- In distributed storage systems?

Concept: Redundant Check

- Send a message M and a "check" word C
- Simple function on $\langle M, C>$ to determine if both received correctly (with high probability)
- Example: XOR all the bytes in M and append the "checksum" byte, C , at the end
- Receiver XORs <M,C>
- What should result be?
- What errors are caught?

bit i is XOR of ith bit of each byte

Example: TCP Checksum

TCP Packet Format

- TCP Checksum a 16-bit checksum, consisting of the one's complement of the one's complement sum of the contents of the TCP segment header and data, is computed by a sender, and included in a segment transmission. (note end-around carry)
- Summing all the words, including the checksum word, should yield zero

Example: Ethernet CRC-32

CRC concept

- I have a msg polynomial $M(x)$ of degree m
- We both have a generator poly $\mathbf{G}(x)$ of degree m
- Let $\mathbf{r}(\mathbf{x})=$ remainder of $\mathbf{M}(\mathbf{x}) \mathbf{x}^{\mathbf{n}} / \mathbf{G}(\mathbf{x})$
$-M(x) x^{n}=G(x) p(x)+r(x)$
$-r(x)$ is of degree n
- What is $\left(M(x) x^{n}-r(x)\right) / G(x)$?
- So I send you $M(x) x^{n}-r(x)$
tack on n bits of remainder
- $m+n$ degree polynomial

Instead of the zeros

- You divide by $\mathbf{G}(x)$ to check
- $M(x)$ is just the m most signficant coefficients, $r(x)$ the lower m
- n -bit Message is viewed as coefficients of n -degree polynomial over binary numbers

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.

A field is defined as a set with the following:

- two operations defined on it
"" "addition" and "multiplication"
- closed under these operations
- associative and distributive laws hold
- additive and multiplicative identity
elements
- additive inverse for every element
multiplicative inverse for every non-zero element
- Example fields:
- set of rational numbers
- set of real numbers
- set of integers is not a field set of int
(why?)
Finite fields are called Galois fields.
- Example:
- Binary numbers 0,1 with XOR as "addition" and AND as
"multiplication".
- Called GF(2).
$-0+1=1$
$-1+1=0$
$-0-1=$?
$-1-1=$?

Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^{n} is either present or absent.
- Examples: $0,1, x, x^{2}$, and $x^{7}+x^{6}+1$

$$
=1 \cdot x^{7}+1 \cdot x^{6}+0 \cdot x^{5}+0 \cdot x^{4}+0 \cdot x^{3}+0 \cdot x^{2}+0 \cdot x^{1}+1 \cdot x^{0}
$$

- With addition and multiplication these form a field:
- "Add": XOR each element individually with no carry:

$$
\begin{array}{r}
x^{4}+x^{3}++x+1 \\
+\quad x^{4}++x^{2}+x \\
\hline x^{3}+x^{2}+1
\end{array}
$$

- "Multiply": multiplying by x^{n} is like shifting to the left.

$$
\begin{array}{rr}
& x^{2}+x+1 \\
\times \quad x+1 \\
\hline & x^{2}+x+1 \\
x^{3}+x^{2}+x \\
\hline x^{3} \quad+1
\end{array}
$$

So what about division (mod)

$\frac{x^{4}+x^{2}}{x}=x^{3}+x$ with remainder 0
$\frac{x^{4}+x^{2}+1}{x+1}=x^{3}+x^{2}$ with remainder 1

$$
x+1 \begin{aligned}
& x^{3}+x^{2}+0 x+ \\
& \begin{array}{l}
\frac{x^{4}+0 x^{3}+x^{2}+0 x+x^{3}}{x^{3}+x^{2}} \\
\frac{x^{3}+x^{2}}{0 x^{2}}+0 x
\end{array}
\end{aligned}
$$

$0 x+1$

Galois Fields - The theory behind LFSRs

- These polynomials form a Galois (finite) field if we take the results of this
multiplication modulo a prime polynomial $p(x)$.
- A prime polynomial is one that cannot be written as the product of two non-trivial polynomials $q(x) r(x)$
Perform modulo operation by subtracting a (polynomial) multiple of $p(x)$ from the result. If the multiple is 1 , this corresponds to XOR-ing the result with $p(x)$.
For any degree, there exists at least one prime polynomial.
- With it we can form $\boldsymbol{G F}\left(2^{n}\right)$
- Additionally,
- Every Galois field has a primitive element, α, such that all non-zero elements of the field can be expressed as a power of α. By raising α to powers (modulo $p(x)$), all non-zero field elements can be formed.
- Certain choices of $p(x)$ make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
For example, $x^{4}+x+1$ is primitive. So $\alpha=x$ is a primitive element and successive powers of α will generate all non-zero elements of GF(16). Example on next slide.

Galois Fields - Primitives

```
\alpha}=1\quad1\quad - Note this pattern of
\mp@subsup{\alpha}{}{I}= x coefficients matches the bits
\mp@subsup{\alpha}{}{2}=\mp@subsup{x}{}{2}}\mathrm{ from our 4-bit LFSR example.
\alpha}=\mp@subsup{x}{}{3
l
\alpha}=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2
\alpha}=\mp@subsup{x}{}{3}\quad+x+
\alpha}=\mp@subsup{x}{}{8}+
\alpha}=\mp@subsup{x}{}{3}\quad+
\mp@subsup{\alpha}{}{10}=}\quad\mp@subsup{x}{}{2}+x+
\alphalI= x 3}+\mp@subsup{x}{}{2}+
\mp@subsup{\alpha}{}{\prime2}=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1 - In general finding primitive
\mp@subsup{\alpha}{}{13}=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+1 - polynomials is difficult. Most
\mp@subsup{\alpha}{}{14}=\mp@subsup{x}{}{3}}+1\quad\mathrm{ people just look them up in a
\mp@subsup{\alpha}{}{15}=\quad1}\mathrm{ table, such as:
```


Building an LFSR from a Primitive Poly

- For k-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the Q output of the leftmost FF.
- Find the primitive polynomial of the form $x^{k}+\ldots+1$
- The $x^{0}=1$ term corresponds to connecting the feedback directly to the D input of FF 1.
- Each term of the form x^{n} corresponds to connecting an xor between FF n and $n+1$.
- 4-bit example, uses $x^{4}+x+1$
- $x^{4} \Leftrightarrow$ FF4's Q output
- $x \Leftrightarrow$ xor between FF1 and FF2
- $1 \Leftrightarrow$ FF1's D input

- To build an 8-bit LFSR, use the primitive polynomial $x^{8}+x^{4}+x^{3}+x^{2}+1$ and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Alternative Data Storage Technologies: Early 1990s

Alternative Data Storage Technologies: Early 1990s							(6)
Technology	Cap (MB)	BPI	TPI	$\begin{aligned} & \text { BPI*TP } \\ & \text { (Millior } \end{aligned}$	Data Xfer) (KByte/s)	Access) Time	
Conventional Tape:							
Cartridge (.25")	150	12000	104	1.2	92 m	minutes	
IBM 3490 (.5")	800	22860	38	0.9	3000 s	seconds	
Helical Scan Tape:							
Video (8mm)	4600	43200	1638	71	$492 \quad 4$	45 secs	
DAT (4mm)	1300	61000	1870	114	1832	20 secs	
Magnetic \& Optical Disk:							
Hard Disk (5.25")) 1200	33528	1880	63	30001	18 ms	
IBM 3390 (10.5")) 3800	7940	2235	62	42502	20 ms	
Sony MO (5.25")	640	24130	18796	454	881	100 ms	

Primitive Polynomials

$x^{2}+x+1$	$x^{12}+x^{6}+x^{4}+x+1$	$x^{22}+x+1$
$x^{3}+x+1$	$x^{13}+x^{4}+x^{3}+x+1$	$x^{23}+x^{5}+1$
$x^{4}+x+1$ $x^{5}+x^{2}+1$	$x^{14}+x^{10}+x^{6}+x+1$	$x^{24}+x^{7}+x^{2}+x+1$
$x^{5}+x^{2}+1$ $x^{6}+x+1$	$x^{15}+x+1$	$x^{25}+x^{3}+1$
$x^{6}+\boldsymbol{x + 1}$ $\boldsymbol{x}^{7}+x^{3}+1$	$x^{16}+x^{12}+x^{3}+x+1$	$x^{26}+x^{6}+x^{2}+x+1$
$x^{8}+x^{4}+x^{3}+x^{2}+1$	$\mathrm{x}^{17}+x^{3}+1$	$x^{27}+x^{5}+x^{2}+x+1$
$x^{9}+x^{4}+1$	$\mathrm{x}^{18}+\mathrm{x}^{7}+1$	$x^{28}+x^{3}+1$
$x^{10}+x^{3}+1$	$x^{19}+x^{5}+x^{2}+x+1$	$x^{29}+x+1$
$x^{\prime l}+x^{2}+1$	$x^{20}+x^{3}+1$	$x^{30}+x^{6}+x^{4}+x+1$
	$x^{2 l}+x^{2}+1$	$x^{31}+x^{3}+1$
Galois Field	Hardware	$x^{32}+x^{7}+x^{6}+x^{2}+1$

Multiplication by $x \quad \Leftrightarrow$ shift left

Taking the result $\bmod p(x) \Leftrightarrow$ XOR-ing with the coefficients of $p(x)$ when the most significant coefficient is 1 .
Obtaining all $2^{n}-1$ non-zero \Leftrightarrow Shifting and XOR-ing $2^{n}-1$ times.
elements by evaluating x^{k}
for $k=1, \ldots, 2^{n-1}$

Generating Polynomials

- CRC-16: $G(x)=x^{16}+x^{15}+x^{2}+1$
- detects single and double bit errors
- All errors with an odd number of bits
- Burst errors of length 16 or less
- Most errors for longer bursts
- CRC-32: $G(x)=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}$
$+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$
- Used in ethernet
- Also 32 bits of 1 added on front of the message
» Initialize the LFSR to all 1s

Tape vs. Disk

- Longitudinal tape uses same technology as hard disk; tracks its density improvements
- Disk head flies above surface, tape head lies on surface
- Disk fixed, tape removable
- Inherent cost-performance based on geometries: fixed rotating platters with gaps
(random access, limited area, 1 media / reader)
vs.
removable long strips wound on spool
(sequential access, "unlimited" length, multiple / reader)
- New technology trend:

Helical Scan (VCR, Camcoder, DAT)
Spins head at angle to tape to improve density

Current Drawbacks to Tape

- Tape wear out:
- Helical 100s of passes to 1000s for longitudinal
- Head wear out:
- 2000 hours for helical
- Both must be accounted for in economic / reliability model
- Long rewind, eject, load, spin-up times; not inherent, just no need in marketplace (so far)
- Designed for archival

Automated Cartridge System

6000×0.8 GB 3490 tapes $=5$ TBytes in 1992 \$500,000 O.E.M. Price
6000×10 GB D3 tapes $=60$ TBytes in 1998
Library of Congress: all information in the world; in 1992, ASCII of all books = 30 TB

Relative Cost of Storage TechnologyLate 1995/Early 1996

Magnetic Disks		
5.25" 9.1 GB	$\begin{aligned} & \$ 2129 \\ & \$ 1985 \end{aligned}$	$\begin{aligned} & \$ 0.23 / \mathrm{MB} \\ & \$ 0.22 / \mathrm{MB} \end{aligned}$
3.5" \quad ".3 GB	$\begin{aligned} & \$ 1199 \\ & \$ 999 \end{aligned}$	$\begin{aligned} & \$ 0.27 / \mathrm{MB} \\ & \$ 0.23 / \mathrm{MB} \end{aligned}$
$2.5 "$ 514 MB 1.1 GB	$\begin{aligned} & \$ 299 \\ & \$ 345 \end{aligned}$	$\begin{aligned} & \$ 0.58 / \mathrm{MB} \\ & \$ 0.33 / \mathrm{MB} \end{aligned}$
Optical Disks		
5.25" \quad ".6 GB	$\begin{aligned} & \$ 1695+199 \\ & \$ 1499+189 \end{aligned}$	$\begin{aligned} & \$ 0.41 / \mathrm{MB} \\ & \$ 0.39 / \mathrm{MB} \end{aligned}$
PCMCIA Cards		
Static RAM 4.0 MB	\$700	\$175/MB
Flash RAM $\quad \mathbf{4 0 . 0} \mathbf{~ M B}$	\$1300	\$32/MB
175 MB	\$3600	\$20.50/MB

Array Reliability

- Reliability of \mathbf{N} disks $=$ Reliability of 1 Disk $\div \mathbf{N}$
$\mathbf{5 0 , 0 0 0}$ Hours $\div \mathbf{7 0}$ disks $=\mathbf{7 0 0}$ hours
Disk system MTTF: Drops from 6 years to 1 month!
- Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with access: very high media availability can be achieved

Redundant Arrays of Disks

- Files are "striped" across multiple spindles
- Redundancy yields high data availability Disks will fail

Contents reconstructed from data redundantly stored in the array
\longrightarrow Capacity penalty to store it
\longrightarrow Bandwidth penalty to update

Redundant Arrays of Disks RAID 3 Parity Disk

logical record
Striped physical records

- Parity computed across recovery group to protect against hard disk failures

33\% capacity cost for parity in this configuration
wider arrays reduce capacity costs, decrease expected availability, increase reconstruction time

- Arms logically synchronized, spindles rotationally synchronized logically a single high capacity, high transfer rate disk

Targeted for high bandwidth applications: Scientific, Image Processing

Redundant Arrays of Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "shadow" Very high availability can be achieved
- Bandwidth sacrifice on write: Logical write = two physical writes
- Reads may be optimized
- Most expensive solution: 100\% capacity overhead

Targeted for high I/O rate, high availability environments

System Availability: Orthogonal RAIDs

End to End Data Integrity: internal parity protected data paths

Summary

- Disk industry growing rapidly, improves:
- bandwidth $40 \% / \mathrm{yr}$,
- areal density $60 \% /$ year, $\$ / \mathrm{MB}$ faster?
- queue + controller + seek + rotate + transfer
- Advertised average seek time benchmark much greater than average seek time in practice
- Response time vs. Bandwidth tradeoffs
- Queueing theory: $w=\left(\frac{\frac{1}{2}(1+c) \bar{x} u}{1-u}\right)$ or (c=1): $w=\left(\frac{\bar{x} u}{1-u}\right)$
- Value of faster response time:
-0.7 sec off response saves 4.9 sec and $2.0 \mathrm{sec}(70 \%)$ total time per transaction => greater productivity
- everyone gets more done with faster response,
but novice with fast response $=$ expert with slow

[^0]: - bank number = address mod number of banks
 - bank number = address mod number of banks
 - address within bank = Laddress / number of words in bank
 - modulo \& divide per memory access with prime no. banks?

