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Fundamental Issues

• 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Performance: Latency and Bandwidth 

(covered earlier)
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Fundamental Issue #1: Naming

• Naming:
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a 
compiler; via load where just remember 
address or keep track of processor number 
and local virtual address for msg. passing

• Choice of naming affects replication of data; 
via load in cache memory hierarchy or via SW 
replication and consistency
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Fundamental Issue #1: Naming

• Global physical address space: 
any processor can generate, address and 
access it in a single operation

– memory can be anywhere: 
virtual addr. translation handles it

• Global virtual address space: if the address 
space of each process can  be configured to 
contain all shared data of the parallel program

• Segmented shared address space: 
locations are named 
<process number, address> 
uniformly for all processes of the parallel 
program
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Fundamental Issue #2: 
Synchronization
• To cooperate, processes must coordinate
• Message passing is implicit coordination with 

transmission or arrival of data
• Shared address 

=> additional operations to explicitly coordinate: 
e.g., write a flag, awaken a thread, interrupt a 
processor
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Parallel Architecture Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data 

sets simultaneously and then exchange information 
globally and simultaneously (shared or message 
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS 
Interconnection HW
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Scalable Machines

• What are the design trade-offs for the spectrum 
of machines between?

– specialize or commodity nodes?
– capability of node-to-network interface
– supporting programming models?

• What does scalability mean?
– avoids inherent design limits on resources
– bandwidth increases with P
– latency does not
– cost increases slowly with P

3/1/05 CS252 s05 smp 9

Bandwidth Scalability

• What fundamentally limits bandwidth?
– single set of wires

• Must have many independent wires
• Connect modules through switches
• Bus vs Network Switch?

P M M P M M P M M P M M

S S S S

Typical switches

Bus

Multiplexers

Crossbar
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Dancehall MP Organization

• Network bandwidth?
• Bandwidth demand?

– independent processes?
– communicating processes?

• Latency?

° ° °

Scalable network
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Generic Distributed Memory Org. 

• Network bandwidth?
• Bandwidth demand?

– independent processes?
– communicating processes?

• Latency?

° ° °

Scalable network
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Switch
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Switch Switch
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Key Property

• Large number of independent communication 
paths between nodes

=> allow a large number of concurrent transactions 
using different wires

• initiated independently
• no global arbitration
• effect of a transaction only visible to the nodes 

involved
– effects propagated through additional transactions
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Programming Models Realized by 
Protocols

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

Network Transactions
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Network Transaction 

• Key Design Issue: 
• How much interpretation of the message?
• How much dedicated processing in the Comm. 

Assist?

PM

CA

PM

CA
° ° °

Scalable Network

Node Architecture

Communication Assist

Message

Output Processing
– checks
– translation
– formating
– scheduling

Input Processing
– checks
– translation
– buffering
– action
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Shared Address Space Abstraction

• Fundamentally a two-way request/response protocol
– writes have an acknowledgement

• Issues
– fixed or variable length (bulk) transfers
– remote virtual or physical address, where is action performed?
– deadlock avoidance and input buffer full

• coherent?  consistent?

Source Destination

Time

Load r ← [Global address]

Read request

Read request

Memory access

Read response

(1) Initiate memory access
(2) Address translation
(3) Local /remote check

(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

Wait

Read response
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Key Properties of Shared Address 
Abstraction
• Source and destination data addresses are 

specified by the source of the request
– a degree of logical coupling and trust

• no storage logically “outside the address space”
» may employ temporary buffers for transport

• Operations are fundamentally request response
• Remote operation can be performed on remote 

memory 
– logically does not require intervention of the remote 

processor
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Consistency

• write-atomicity violated without caching

Memory

P1 P2 P3

Memory Memory

A=1;
flag=1;

while (flag==0);
print A;

A:0 flag:0->1 

Interconnection network

1: A=1

2: flag=1

3: load A
Delay

P1

P3P2

(b)

(a)

Congested path
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Message passing

• Bulk transfers
• Complex synchronization semantics

– more complex protocols
– More complex action

• Synchronous
– Send completes after matching recv and source data sent
– Receive completes after data transfer complete from 

matching send

• Asynchronous
– Send completes after send buffer may be reused
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Synchronous Message Passing

• Constrained programming model. 
• Deterministic!      What happens when threads added?
• Destination contention very limited.
• User/System boundary?

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send

(2) Address translation on Psrc

(4) Send-ready request

(6) Reply transaction

Wait

Recv Psrc, local VA, len

Recv-rdy reply

Data-xfer req

(5) Remote check for 
posted receive 
(assume success)

(7) Bulk data transfer
Source VA ⌫ Dest VA or ID

(3) Local/remote check

Processor 
Action?
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Asynch. Message Passing: Optimistic

• More powerful programming model
• Wildcard receive => non-deterministic
• Storage required within msg layer?

Source Destination

Time

Send (Pdest, local VA, len)

(1) Initiate send
(2) Address translation 

(4) Send data

Recv Psrc, local VA, len

Data-xfer req
Tag match

Allocate buffer

(3) Local /remote check

(5) Remote check for 
posted receive; on fail, 
allocate data buffer
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Asynch. Msg Passing: Conservative

• Where is the buffering?
• Contention control?  Receiver initiated protocol?
• Short message optimizations

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send
(2) Address translation on Pdest

(4) Send-ready request

(6) Receive-ready request

Return and compute

Recv Psrc, local VA, len

Recv-rdy req

Data-xfer reply

(3) Local /remote check

(5) Remote check for posted 
receive (assume fail); 
record send-ready

(7) Bulk data reply
Source VA ⌫ Dest VA or ID
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Key Features of Msg Passing 
Abstraction
• Source knows send data address, dest. knows 

receive data address
– after handshake they both know both

• Arbitrary storage “outside the local address 
spaces”

– may post many sends before any receives
– non-blocking asynchronous sends reduces the requirement 

to an arbitrary number of descriptors
» fine print says these are limited too

• Fundamentally a 3-phase transaction
– includes a request / response
– can use optimisitic 1-phase in limited “Safe” cases

» credit scheme
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Active Messages

• User-level analog of network transaction
– transfer data packet and invoke handler to extract it from the 

network and integrate with on-going computation

• Request/Reply
• Event notification: interrupts, polling, events?
• May also perform memory-to-memory transfer

Request

handler

handler
Reply
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Common Challenges

• Input buffer overflow
– N-1 queue over-commitment => must slow sources
– reserve space per source (credit)

» when available for reuse?    
• Ack or Higher level

– Refuse input when full
» backpressure in reliable network
» tree saturation
» deadlock free
» what happens to traffic not bound for congested dest?

– Reserve ack back channel
– drop packets
– Utilize higher-level semantics of programming model
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Challenges (cont)

• Fetch Deadlock
– For network to remain deadlock free, nodes must continue 

accepting messages, even when cannot source msgs
– what if incoming transaction is a request?

» Each may generate a response, which cannot be sent!
» What happens when internal buffering is full?

• logically independent request/reply networks 
– physical networks
– virtual channels with separate input/output queues

• bound requests and reserve input buffer space
– K(P-1) requests + K responses per node
– service discipline to avoid fetch deadlock?

• NACK on input buffer full
– NACK delivery?
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Challenges in Realizing Prog. Models 
in the Large
• One-way transfer of information
• No global knowledge, nor global control

– barriers, scans, reduce, global-OR give fuzzy global state

• Very large number of concurrent transactions
• Management of input buffer resources

– many sources can issue a request and over-commit 
destination before any see the effect

• Latency is large enough that you are tempted to 
“take risks”

– optimistic protocols
– large transfers
– dynamic allocation

• Many many more degrees of freedom in design 
and engineering of these system
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Network Transaction Processing

• Key Design Issue: 
• How much interpretation of the message?
• How much dedicated processing in the Comm. 

Assist?

PM

CA

PM

CA
° ° °

Scalable Network

Node Architecture

Communication Assist

Message

Output Processing
– checks
– translation
– formating
– scheduling

Input Processing
– checks
– translation
– buffering
– action

3/1/05 CS252 s05 smp 28

Spectrum of Designs

• None: Physical bit stream
– blind, physical DMA nCUBE, iPSC, . . .

• User/System
– User-level port CM-5, *T
– User-level handler J-Machine, Monsoon, . 

. .

• Remote virtual address
– Processing, translation Paragon, Meiko CS-2

• Global physical address
– Proc + Memory controller RP3, BBN, T3D

• Cache-to-cache
– Cache controller Dash, KSR, Flash

Increasing HW Support, Specialization, Intrusiveness, Performance (???)
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Shared Physical Address Space

• NI emulates memory controller at source
• NI emulates processor at dest

– must be deadlock free

Scalable network

P
$

Memory management unit

Data
Ld R       Addr

Pseudo 
memory

Pseudo- 
processor

DestReadAddrSrcTag

DataTagRrspSrc

Output processing 
 ·  Mem access 
 ·  Response

Commmunication 
 Input processing 

 ·  Parse 
 ·  Complete read

P
$

MMU

Mem

Pseudo- 
memory

Pseudo- 
processor

Mem

assist

3/1/05 CS252 s05 smp 30

Case Study: Cray T3D

• Build up info in ‘shell’
• Remote memory operations encoded in address

DRAM

Req
out

P
$

MMU

150-MHz DEC Alpha (64 bit)

8-KB instruction + 8-KB data

43-bit virtual address

Prefetch

Load-lock, store-conditional

32-bit

DTB

Prefetch queue
·  16 × 64

Message queue
·  4,080 × 4 × 64

Special registers
 ·  swaperand
 ·  fetch&add
 ·  barrier

PE# + FC

DMA

Resp
in 3D torus of pairs of PEs

· share net and BLT
· up to 2,048
· 64 MB each

Req
in

Resp
out

Block transfer

32- and 64-bit memory 
and byte operations

Nonblocking stores 
and memory barrier

engine 

physical address
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Case Study: NOW

• General purpose processor embedded in NIC

L2 $

° ° °

Bus adapter
SBUS (25 MHz)Mem

UltraSparc

s DMA

Host DMA

SRAM

Myrinet 

X-bar

r DMA

Bus interface

Main
processor

Link
Interface

160-MB/s
bidirectional
links

Myricom
Lanai NIC
(37.5-MHz processor,
256-MB SRAM
3 DMA units)

Eight-port
wormhole
switches
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Context for Scalable Cache Coherence

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

Realizing Pgm Models
through net transaction
protocols
- efficient node-to-net interface
- interprets transactions

Caches naturally replicate
data
- coherence through bus

snooping protocols
- consistency

Scalable Networks
- many simultaneous

transactions

Scalable
distributed
memory

Need cache coherence protocols that scale!
- no broadcast or single point of order
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Generic Solution: Directories

• Maintain state vector explicitly 
– associate with memory block
– records state of block in each cache

• On miss, communicate with directory
– determine location of cached copies
– determine action to take
– conduct protocol to maintain coherence

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory
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Adminstrative Break

• Project Descriptions due today
• Properties of a good project

– There is an idea
– There is a body of background work
– There is something that differentiates the idea
– There is a reasonable way to evaluate the idea
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A Cache Coherent System Must:

• Provide set of states, state transition diagram, 
and actions

• Manage coherence protocol
– (0)  Determine when to invoke coherence protocol
– (a)  Find info about state of block in other caches to 

determine action
» whether need to communicate with other cached copies

– (b)  Locate  the other copies
– (c)  Communicate with those copies  (inval/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)
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Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search” 
– others respond to the search probe and take necessary 

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t 
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least  p network 

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol
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One Approach: Hierarchical Snooping
• Extend snooping approach: hierarchy of broadcast media

– tree of buses or rings (KSR-1)
– processors are in the bus- or ring-based multiprocessors at the 

leaves
– parents and children connected by two-way snoopy interfaces

» snoop both buses and propagate relevant transactions
– main memory may be centralized at root or distributed among leaves

• Issues (a) - (c) handled similarly to bus, but not full 
broadcast 

– faulting processor sends out “search” bus transaction on its bus
– propagates up and down hiearchy based on snoop results

• Problems: 
– high latency: multiple levels, and snoop/lookup at every level
– bandwidth bottleneck at root

• Not popular today
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Scalable Approach: Directories

• Every memory block has associated directory 
information

– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate 

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and 

copies is through network transactions

• Many alternatives for organizing directory 
information
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Basic Operation of Directory

• k processors.  
•  With each cache-block in memory: k  

presence-bits, 1 dirty-bit
•  With each cache-block in cache:    1 

valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON   then { recall line from dirty proc (cache state to 

shared); update memory; turn dirty-bit OFF; turn p[i] ON; 
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all 

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ... 3/1/05 CS252 s05 smp 40

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack
 

Inval. ack
 

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers
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Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S
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Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_S

S

S
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Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pARead_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX

3/1/05 CS252 s05 smp 44

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req EW/_

I

E

W/req E

RU/_
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Directory Protocol (other transitions)

E

S

I

P1$ P2$

D

S

U

MDir
ctrlR/reply

R/req

W/req E

R/_

R/_

RX/invalidate&reply

W/req E
W/_

Inv/_

RU/_

RX/reply

Inv/write_back

Evict/?

Evict/write_back

Write_back
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A Popular Middle Ground

• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected non-

hiearchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• Examples:
– Convex Exemplar: directory-directory
– Sequent, Data General, HAL: directory-snoopy

• SMP on a chip?
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Example Two-level Hierarchies

P

C

Snooping 

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping
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Latency Scaling

• T(n) = Overhead + Channel Time + Routing Delay
• Overhead?
• Channel Time(n) = n/B   --- BW at bottleneck
• RoutingDelay(h,n)
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Typical example

• max distance: log n
• number of switches: α n log n
• overhead = 1 us, BW = 64 MB/s, 200 ns per hop
• Pipelined
T64(128)     = 1.0 us + 2.0 us +   6 hops * 0.2 us/hop = 4.2 us
T1024(128)  = 1.0 us + 2.0 us + 10 hops * 0.2 us/hop = 5.0 us

• Store and Forward
T64

sf(128)   = 1.0 us +  6 hops * (2.0 +   0.2) us/hop = 14.2 us
T64

sf(1024) = 1.0 us + 10 hops * (2.0 +   0.2) us/hop = 23 us
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Cost Scaling

• cost(p,m) = fixed cost + incremental cost (p,m)
• Bus Based SMP?
• Ratio of processors : memory : network : I/O ?

• Parallel efficiency(p) = Speedup(P) / P

• Costup(p) = Cost(p) / Cost(1)

• Cost-effective: speedup(p) > costup(p)
• Is super-linear speedup possible?


