Distributed Memory Multiprocessors

CS 252, Spring 2005
David E. Culler
Computer Science Division
U.C. Berkeley

Natural Extensions of Memory System

Scale

Switch

] e
(Interleaved)

tain memory
Interconnection network

[]
Shared Cache
Centralized Memory
Dance Hall, UMA ° °

‘ Interconnection network ‘

CS252 505 smp Distributed Memory (NUMA)

Fundamental Issues

« 3 Issues to characterize parallel machines
1) Naming
2) Synchronization

3) Performance: Latency and Bandwidth
(covered earlier)

C8252 s05 smp

Fundamental Issue #1: Naming

* Naming:
— what data is shared
— how it is addressed
— what operations can access data
— how processes refer to each other

* Choice of naming affects code produced by a
compiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing

Choice of naming affects replication of data;
via load in cache memory hierarchy or via SW
replication and consistency

€8252 s05 smp

Fundamental Issue #1: Naming

» Global physical address space:
any processor can generate, address and
access it in a single operation

— memory can be anywhere:

virtual addr. translation handles it

Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

Segmented shared address space:
locations are named

<process number, address>

uniformly for all processes of the parallel
program

C8252 s05 smp

Fundamental Issue #2:
Synchronization

* To cooperate, processes must coordinate

* Message passing is implicit coordination with
transmission or arrival of data

Shared address

=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a
processor

C8252 s05 smp

NOW Handout Page 1

Parallel Architecture Framework

g Programming Model
Communication Abstraction
Interconnection SW/OS

* Layers: Interconnection HW

— Programming Model:
» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages

» Data Parallel: several agents operate on several data
sets simultaneously and then exchange information
globally and si ly (shared or
passing)

— Communication Abstraction:
Shared address space: e.g., load, store, atomic swap
Message passing: e.g., send, recieve library calls

Debate over this topic (ease of programming, scaling)
=>many hardware designs 1:1 programming model

CS252 s05 smp

Scalable Machines

* What are the design trade-offs for the spectrum
of machines between?
— specialize or commodity nodes?
— capability of node-to-network interface
— supporting programming models?

* What does scalability mean?
— avoids inherent design limits on resources
— bandwidth increases with P
— latency does not
— cost increases slowly with P

CS252 s05 smp

Bandwidth Scalability

Typical switches

:Qf.ﬁ :Ei:(i un

BB B B0))

Bus

* What fundamentally limits bandwidth?

— single set of wires
« Must have many independent wires
« Connect modules through switches
* Bus vs Network Switch?

C8252 s05 smp

Dancehall MP Organization

* Network bandwidth?
+ Bandwidth demand?
— independent processes?
— communicating processes?

+ Latency?
CS252 s05 smp

Generic Distributed Memory Org.

Scalable network

148

00O~ O

* Network bandwidth?
+ Bandwidth demand?
— independent processes?
— communicating processes?

* Latency?
CS252 s05 smp

Key Property

+ Large number of independent communication
paths between nodes

=> allow a large number of concurrent transactions
using different wires

initiated independently
no global arbitration

effect of a transaction only visible to the nodes
involved

— effects pr d through additional transactions

C8252 s05 smp

NOW Handout Page 2

Programming Models Realized by
Protocols

CAD Database Scientific modeling

Multiprogramming Shared Message Data
address passing parallel

b
Communicatiol iware

Physical communication w

Network Transactions

CS252 s05 smp

Parallel applications

Programming models

Communication abstraction
¢ boundary
Operating systems support

boundary

Network Transaction

{ Scalable Network

Output Processing vee Y Input Processing
— checks @ e cation Assist @ — checks

_ translation ommunication SIS 7trans|.at|on

— formating ~ buffering

— scheduling u 0 n Node Architecture u 0 n - action

* Key Design Issue:

* How much interpretation of the message?

* How much dedicated processing in the Comm.
Assist?

CS252 s05 smp

Shared Address Space Abstraction

Source Destination

(1) Intiate memory access
(2) Address transiation
(3) LocalIremote check

Loadr « (Giobal address]

(6) Reply transaction

(7) Complete memory access

(4) Regquest transaction

(5) Remote memory access

Time

* Fundamentally a two-way request/response protocol
— writes have an acknowledgement
* Issues
— fixed or variable length (bulk) transfers
— remote virtual or physical address, where is action performed?
— deadlock avoidance and infut buffer full
. €S252 505 smp
« coherent? consistent?

Key Properties of Shared Address
Abstraction

Source and destination data addresses are
specified by the source of the request
— a degree of logical coupling and trust
no storage logically “outside the address space”
» may employ temporary buffers for transport
Operations are fundamentally request response

Remote operation can be performed on remote
memory

— logically does not require intervention of the remote
processor

€8252 s05 smp

Consistency

Iterconnecton natwork

[—

P

Cangestadpan
&) o °

« write-atomicity violated without caching

C8252 s05 smp

Message passing

* Bulk transfers

Complex synchronization semantics
— more complex protocols
— More complex action

* Synchronous

— Send completes after matching recv and source data sent

— Receive completes after data transfer complete from
matching send

» Asynchronous

— Send completes after send buffer may be reused

C8252 s05 smp

NOW Handout Page 3

Synchronous Message Passing

Source Destination
(1) Iniiate send Recy B, local VA, len
(2) Address translation on B,

Send Pig, local VA, len
(3) Localiremote check

(4) Send-roacy request [Jemwe

(5) Remote check for
posted recaive Wait
(assume success) Processor

Action?
(6) Reply transaction
Recv-rdy reply

(7) Bulk data transfer

Source VAGDest VA or 1D %
Datatrreq

Time.

« Constrained programming model.
« Deterministic! What happens when threads added?
« Destination contention very limited.

« User/System boundary?
CS252 s05 smp

Asynch. Message Passing: Optimistic

Source Destination
(1) Initate send
(2) Address translation
(3) Local remote check Send (Res, local VA, len)
(4) Send data
(5) Remote check for

posted receive; on fai, Tag match

allocate data buffer ’

Dataxterreq Allocate buffer

Recv B, local VA, len
Time

* More powerful programming model
» Wildcard receive => non-deterministic
» Storage required within msg layer?

CS252 s05 smp

Asynch. Msg Passing: Conservative

Source Destination

(1) Intate send
(2) Addross translation on By

S6nd R local VA, len
(3) Localremote check

©)Sondanty et sontryo
(6 Romotochock or postod —
e e

roceive ossumo Return and compute

(6) Receive-ready request Recy B, local VA, len

(7) Bulk data roply.
So

urce VAGDest VA or ID
Reovrdy e
Dataxtor roply %
Te

* Where is the buffering?
« Contention control? Receiver initiated protocol?
+ Short message optimizations

Key Features of Msg Passing
Abstraction

* Source knows send data address, dest. knows
receive data address

— after handshake they both know both
Arbitrary storage “outside the local address
spaces”

— may post many sends before any receives

— non-blocking asynchronous sends reduces the requirement
to an arbitrary number of descriptors

» fine print says these are limited too
* Fundamentally a 3-phase transaction
— includes a request / response
— can use optimisitic 1-phase in limited “Safe” cases
» credit scheme

€8252 s05 smp

Active Messages

Request —_—

m(handler
[

« User-level analog of network transaction

— transfer data packet and invoke handler to extract it from the
network and integrate with on-going computation

* Request/Reply

« Event notification: interrupts, polling, events?

« May also perform memory-to-memory transfer
CS252 s05 smp

Common Challenges

* Input buffer overflow

— N-1 queue over-commitment => must slow sources
— reserve space per source (credit)

» when available for reuse?

« Ack or Higher level

— Refuse input when full

» backpressure in reliable network

» tree saturation

» deadlock free

» what happens to traffic not bound for congested dest?
— Reserve ack back channel
— drop packets
— Utilize higher-level semantics of programming model

C8252 s05 smp

NOW Handout Page 4

Challenges (cont)

* Fetch Deadlock

— For network to remain deadlock free, nodes must continue
accepting messages, even when cannot source msgs
— what if incoming transaction is a request?
» Each may generate a response, which cannot be sent!
» What happens when internal buffering is full?
« logically independent request/reply networks
— physical networks
— virtual channels with separate input/output queues
* bound requests and reserve input buffer space
— K(P-1) requests + K responses per node
— service discipline to avoid fetch deadlock?
* NACK on input buffer full
— NACK delivery?
CS252 s05 smp

Challenges in Realizing Prog. Models
in the Large
One-way transfer of information
No global knowledge, nor global control

— barriers, scans, reduce, global-OR give fuzzy global state
Very large number of concurrent transactions

Management of input buffer resources

— many sources can issue a request and over-commit
destination before any see the effect

Latency is large enough that you are tempted to
“take risks”

— optimistic protocols

— large transfers

— dynamic allocation

Many many more degrees of freedom in design
and engineering of sngzssgsgypstem

Network Transaction Processing

Scalable Network
Message
Output Processing coo \ Input Processing
— checks Iy . — checks
_ translation Communication Assist — translzj!tion
— formating - buffering
— scheduling i

Node Architecture u l n - action

« Key Design Issue:
* How much interpretation of the message?

* How much dedicated processing in the Comm.
Assist?

C8252 s05 smp

Spectrum of Designs

* None: Physical bit stream

— blind, physical DMA nCUBE, iPSC, . ..
« User/System
— User-level port CM-5, *T
— User-level handler J-Machine, Monsoon, .

« Remote virtual address

— Processing, translation Paragon, Meiko CS-2
« Global physical address

— Proc + Memory controller RP3, BBN, T3D
« Cache-to-cache

— Cache controller Dash, KSR, Flash
Increasing HW Support, ialization, Intrusi Per (2??)

€8252 s05 smp

Shared Physical Address Space

S Rrsp Tag _ Data
Scalable network

Output processing
Tag Src _Addr Read Dest Mem access
- Response

ication

Input processing

- Complete reag

Pseudo™
processof memory

Ld R= Addi

Memory management unit

« NI emulates memory controller at source

< NI emulates processor at dest
— must be deadlock freeCS252 s05 smp

Case Study: Cray T3D

3D torus of pairs of PEs
* share net and BLT
- upt02,048
+ 64 MB each

150-MHz DEC Alpha (64 bit)
KB instruction + 8-KB data

Message queue

43.bit virual address

32- and 64-bit memory
and byte operations

Prefetch queue

16x64
Nonblocking stores
‘and memory barrier
swaperand

teh
o
o+ P TRR—

Special registers

* Build up info in ‘shell’

* Remote memory operations encoded in address
C8252 s05 smp

NOW Handout Page 5

Case Study: NOW

Myrinet
160-1Bis Eghipon "
bidrectonal wormiole
ks, suitchos

Myricom
N
e]G75
e B SRAN
5

« General purpose processor embedded in NIC
CS252 s05 smp

Context for Scalable Cache Coherence

Scalable Networks
- many simultaneous
transactions

Realizing Pgm Models

through net transaction
protocols
- efficient node-to-net interface
- interprets transactions

Scalable network

iR

Scalable
distributed-
memory

Caches naturally replicate
data

- coherence through bus
snooping protocols

- consistency

Need cache coherence protocols that scale!
- no broadcast or single point of order

CS252 s05 smp

Generic Solution: Directories

o o0

Directory Memory Directory

« Maintain state vector explicitly
— associate with memory block
— records state of block in each cache
* On miss, communicate with directory
— determine location of cached copies
— determine action to take
— conduct protocol to maintain coherence

C8252 s05 smp

Adminstrative Break

* Project Descriptions due today
* Properties of a good project
— There is an idea
— There is a body of background work
— There is something that differentiates the idea
— There is a reasonable way to evaluate the idea

€8252 s05 smp

A Cache Coherent System Must:

* Provide set of states, state transition diagram,
and actions

« Manage coherence protocol

— (0) Determine when to invoke coherence protocol

— (a) Find info about state of block in other caches to
determine action

» whether need to i with other hed copies
— (b) Locate the other copies
— (c) Communicate with those copies (inval/update)
* (0) is done the same way on all systems
— state of the line is maintained in the cache
— protocol is invoked if an “access fault” occurs on the line

« Different approaches distinguished by (a) to (c)

C8252 s05 smp

Bus-based Coherence

All of (a), (b), (c) done through broadcast on bus
— faulting processor sends out a “search”

— others respond to the search probe and take necessary
action

» Could do it in scalable network too
d to all pr , and let them respond
« Conceptually simple, but broadcast doesn’t
scale with p
— on bus, bus bandwidth doesn’t scale

— on scalable network, every fault leads to at least p network
transactions

— br

+ Scalable coherence:
— can have same cache states and state transition diagram
— different mechanisms to manage protocol
CS252 505 smp

NOW Handout Page 6

One Approach: Hierarchical Snooping

« Extend snooping approach: hierarchy of broadcast media
— tree of buses or rings (KSR-1)

— processors are in the bus- or ring-based multiprocessors at the

leaves
— parents and chil by tv y snoopy interfaces
» snoop both buses and pr tr i

— main memory may be centralized at root or distributed among leaves

 lIssues (a) - (c) handled similarly to bus, but not full
broadcast

— faulting processor sends out “search” bus transaction on its bus
— propagates up and down hiearchy based on snoop results
* Problems:
— high latency: multiple levels, and snoop/lookup at every level
— bandwidth bottleneck at root
* Not popular today

CS252 s05 smp

Scalable Approach: Directories

+ Every memory block has associated directory
information
— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and communicate
only with the nodes that have copies if necessary

— in scalable networks, communication with directory and
copies is through network transactions

* Many alternatives for organizing directory
information

CS252 s05 smp

Basic Operation of Directory

* k processors.

« With each cache-block in memory: k
presence-bits, 1 dirty-bit

« With each cache-block in cache: 1
valid bit, and 1 dirty (owner) bit

presence bits dirty bit
* Read from main memory by processor i:

« If dirty-bit OFF then { read from main memory; turn p[i] ON; }

« if dirty-bit ON then { recall line from dirty proc (cache state to
shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

+ Write to main memory by processor i:

« If dirty-bit OFF then { supply data to i; send invalidations to all
caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }

e C8252 s05 smp

Basic Directory Transactions

Requestor

Diretorynode
for block

Dirctorynode

(a) Read miss to a block in dirty state (b)Write miss to a block witlotsharers

€8252 s05 smp

Example Directory Protocol (15t Read)

P1: pA s
Rireply
/

Read pA

O

Id vA -> rd pA @
€S252 s05 smp

Example Directory Protocol (Read Share)

®

P1: pA R_((S
P2: pA Rireply

Id vA -> rd pA
C8252 s05 smp

NOW Handout Page 7

Example Directory Protocol (Wr to shared)

D

RX/invalidate&reply

P1: pA EX

_P2ep
reply xD(pA) \—

r_[(S
Invi_ Rireq
st vA -> wr pA 1d VA -> rd pA
©S252 505 smp v P

/[Invalidate pA

Example Directory Protocol (Wr to Ex)

Ru1€ o

P1: pA RI_

RX/invalidate&reply

/A Reply xD(pA)
- L Repl y,‘f)

R/,
Invi_

-
CS252 505 smp StVA ->wr pA

Directory Protocol (other transitions)

RU/ @
Write_back: RX/invalijate&reply
R po n
Rireply ctrl
RX/reply

Evict/write_back
—

Wireq E “

|
R/reMEvl “ll? I n E
L~

C8252 s05 smp

Inviwrite b

A Popular Middle Ground

* Two-level “hierarchy”
* Individual nodes are multiprocessors, connected non-
hiearchically
— e.g. mesh of SMPs
» Coherence across nodes is directory-based
— directory keeps track of nodes, not individual processors
» Coherence within nodes is snooping or directory
— orthogonal, but needs a good interface of functionality
+ Examples:
— Convex Exemplar: directory-directory
— Sequent, Data General, HAL: directory-snoopy

* SMP on a chip?

€8252 s05 smp

Example Two-level Hierarchies

(a) Snooping-snooping

® ® ® @ ® ® ® ®
EoF® [upHW [*** |GeH [nHO [V s @R I g O R | VT3 g © R YT 2 €]
=] =] | | | |
[] [] []
3} ¥ f 3
Bus (or Ring)
(¢) Directory-directory (d) Directory-snooping

C8252 s05 smp

Latency Scaling

* T(n) = Overhead + Channel Time + Routing Delay
* Overhead?

* Channel Time(n) = n/B --- BW at bottleneck

* RoutingDelay(h,n)

C8252 s05 smp

NOW Handout Page 8

Typical example

« max distance: log n

* number of switches: o n log n

« overhead = 1 us, BW = 64 MB/s, 200 ns per hop
 Pipelined

Tes(128) =1.0us+2.0us+ 6 hops * 0.2 us/hop = 4.2 us
T1024(128) =1.0us + 2.0 us + 10 hops * 0.2 us/hop = 5.0 us

« Store and Forward

Te,5(128) =1.0us + 6 hops * (2.0 + 0.2) usthop = 14.2 us
Te,5(1024) = 1.0 us + 10 hops * (2.0 + 0.2) us/hop = 23 us

CS252 s05 smp

Cost Scaling

cost(p,m) = fixed cost + incremental cost (p,m)
Bus Based SMP?
Ratio of processors : memory : network : /0 ?

Parallel efficiency(p) = Speedup(P) / P

Costup(p) = Cost(p) / Cost(1)

Cost-effective: speedup(p) > costup(p)
Is super-linear speedup possible?

CS252 s05 smp

NOW Handout Page 9

