
CS258 S99 1

NOW Handout Page 1

Distributed Memory Multiprocessors

CS 252, Spring 2005
David E. Culler

Computer Science Division
U.C. Berkeley

3/1/05 CS252 s05 smp 2

Natural Extensions of Memory System
P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

First-level $

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem MemShared Cache

Centralized Memory
Dance Hall, UMA

Distributed Memory (NUMA)

Scale

3/1/05 CS252 s05 smp 3

Fundamental Issues

• 3 Issues to characterize parallel machines
1) Naming
2) Synchronization
3) Performance: Latency and Bandwidth

(covered earlier)

3/1/05 CS252 s05 smp 4

Fundamental Issue #1: Naming

• Naming:
– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a
compiler; via load where just remember
address or keep track of processor number
and local virtual address for msg. passing

• Choice of naming affects replication of data;
via load in cache memory hierarchy or via SW
replication and consistency

3/1/05 CS252 s05 smp 5

Fundamental Issue #1: Naming

• Global physical address space:
any processor can generate, address and
access it in a single operation

– memory can be anywhere:
virtual addr. translation handles it

• Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

• Segmented shared address space:
locations are named
<process number, address>
uniformly for all processes of the parallel
program

3/1/05 CS252 s05 smp 6

Fundamental Issue #2:
Synchronization
• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address

=> additional operations to explicitly coordinate:
e.g., write a flag, awaken a thread, interrupt a
processor

CS258 S99 2

NOW Handout Page 2

3/1/05 CS252 s05 smp 7

Parallel Architecture Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS
Interconnection HW

3/1/05 CS252 s05 smp 8

Scalable Machines

• What are the design trade-offs for the spectrum
of machines between?

– specialize or commodity nodes?
– capability of node-to-network interface
– supporting programming models?

• What does scalability mean?
– avoids inherent design limits on resources
– bandwidth increases with P
– latency does not
– cost increases slowly with P

3/1/05 CS252 s05 smp 9

Bandwidth Scalability

• What fundamentally limits bandwidth?
– single set of wires

• Must have many independent wires
• Connect modules through switches
• Bus vs Network Switch?

P M M P M M P M M P M M

S S S S

Typical switches

Bus

Multiplexers

Crossbar

3/1/05 CS252 s05 smp 10

Dancehall MP Organization

• Network bandwidth?
• Bandwidth demand?

– independent processes?
– communicating processes?

• Latency?

° ° °

Scalable network

P

$

Switch

M

P

$

P

$

P

$

M M° ° °

Switch Switch

3/1/05 CS252 s05 smp 11

Generic Distributed Memory Org.

• Network bandwidth?
• Bandwidth demand?

– independent processes?
– communicating processes?

• Latency?

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

3/1/05 CS252 s05 smp 12

Key Property

• Large number of independent communication
paths between nodes

=> allow a large number of concurrent transactions
using different wires

• initiated independently
• no global arbitration
• effect of a transaction only visible to the nodes

involved
– effects propagated through additional transactions

CS258 S99 3

NOW Handout Page 3

3/1/05 CS252 s05 smp 13

Programming Models Realized by
Protocols

CAD

Multiprogramming Shared
address

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware

Physical communication medium

Hardware/software boundary

Network Transactions

3/1/05 CS252 s05 smp 14

Network Transaction

• Key Design Issue:
• How much interpretation of the message?
• How much dedicated processing in the Comm.

Assist?

PM

CA

PM

CA
° ° °

Scalable Network

Node Architecture

Communication Assist

Message

Output Processing
– checks
– translation
– formating
– scheduling

Input Processing
– checks
– translation
– buffering
– action

3/1/05 CS252 s05 smp 15

Shared Address Space Abstraction

• Fundamentally a two-way request/response protocol
– writes have an acknowledgement

• Issues
– fixed or variable length (bulk) transfers
– remote virtual or physical address, where is action performed?
– deadlock avoidance and input buffer full

• coherent? consistent?

Source Destination

Time

Load r ← [Global address]

Read request

Read request

Memory access

Read response

(1) Initiate memory access
(2) Address translation
(3) Local /remote check

(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

Wait

Read response

3/1/05 CS252 s05 smp 16

Key Properties of Shared Address
Abstraction
• Source and destination data addresses are

specified by the source of the request
– a degree of logical coupling and trust

• no storage logically “outside the address space”
» may employ temporary buffers for transport

• Operations are fundamentally request response
• Remote operation can be performed on remote

memory
– logically does not require intervention of the remote

processor

3/1/05 CS252 s05 smp 17

Consistency

• write-atomicity violated without caching

Memory

P1 P2 P3

Memory Memory

A=1;
flag=1;

while (flag==0);
print A;

A:0 flag:0->1

Interconnection network

1: A=1

2: flag=1

3: load A
Delay

P1

P3P2

(b)

(a)

Congested path

3/1/05 CS252 s05 smp 18

Message passing

• Bulk transfers
• Complex synchronization semantics

– more complex protocols
– More complex action

• Synchronous
– Send completes after matching recv and source data sent
– Receive completes after data transfer complete from

matching send

• Asynchronous
– Send completes after send buffer may be reused

CS258 S99 4

NOW Handout Page 4

3/1/05 CS252 s05 smp 19

Synchronous Message Passing

• Constrained programming model.
• Deterministic! What happens when threads added?
• Destination contention very limited.
• User/System boundary?

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send

(2) Address translation on Psrc

(4) Send-ready request

(6) Reply transaction

Wait

Recv Psrc, local VA, len

Recv-rdy reply

Data-xfer req

(5) Remote check for
posted receive
(assume success)

(7) Bulk data transfer
Source VA ⌫ Dest VA or ID

(3) Local/remote check

Processor
Action?

3/1/05 CS252 s05 smp 20

Asynch. Message Passing: Optimistic

• More powerful programming model
• Wildcard receive => non-deterministic
• Storage required within msg layer?

Source Destination

Time

Send (Pdest, local VA, len)

(1) Initiate send
(2) Address translation

(4) Send data

Recv Psrc, local VA, len

Data-xfer req
Tag match

Allocate buffer

(3) Local /remote check

(5) Remote check for
posted receive; on fail,
allocate data buffer

3/1/05 CS252 s05 smp 21

Asynch. Msg Passing: Conservative

• Where is the buffering?
• Contention control? Receiver initiated protocol?
• Short message optimizations

Source Destination

Time

Send Pdest, local VA, len

Send-rdy req

Tag check

(1) Initiate send
(2) Address translation on Pdest

(4) Send-ready request

(6) Receive-ready request

Return and compute

Recv Psrc, local VA, len

Recv-rdy req

Data-xfer reply

(3) Local /remote check

(5) Remote check for posted
receive (assume fail);
record send-ready

(7) Bulk data reply
Source VA ⌫ Dest VA or ID

3/1/05 CS252 s05 smp 22

Key Features of Msg Passing
Abstraction
• Source knows send data address, dest. knows

receive data address
– after handshake they both know both

• Arbitrary storage “outside the local address
spaces”

– may post many sends before any receives
– non-blocking asynchronous sends reduces the requirement

to an arbitrary number of descriptors
» fine print says these are limited too

• Fundamentally a 3-phase transaction
– includes a request / response
– can use optimisitic 1-phase in limited “Safe” cases

» credit scheme

3/1/05 CS252 s05 smp 23

Active Messages

• User-level analog of network transaction
– transfer data packet and invoke handler to extract it from the

network and integrate with on-going computation

• Request/Reply
• Event notification: interrupts, polling, events?
• May also perform memory-to-memory transfer

Request

handler

handler
Reply

3/1/05 CS252 s05 smp 24

Common Challenges

• Input buffer overflow
– N-1 queue over-commitment => must slow sources
– reserve space per source (credit)

» when available for reuse?
• Ack or Higher level

– Refuse input when full
» backpressure in reliable network
» tree saturation
» deadlock free
» what happens to traffic not bound for congested dest?

– Reserve ack back channel
– drop packets
– Utilize higher-level semantics of programming model

CS258 S99 5

NOW Handout Page 5

3/1/05 CS252 s05 smp 25

Challenges (cont)

• Fetch Deadlock
– For network to remain deadlock free, nodes must continue

accepting messages, even when cannot source msgs
– what if incoming transaction is a request?

» Each may generate a response, which cannot be sent!
» What happens when internal buffering is full?

• logically independent request/reply networks
– physical networks
– virtual channels with separate input/output queues

• bound requests and reserve input buffer space
– K(P-1) requests + K responses per node
– service discipline to avoid fetch deadlock?

• NACK on input buffer full
– NACK delivery?

3/1/05 CS252 s05 smp 26

Challenges in Realizing Prog. Models
in the Large
• One-way transfer of information
• No global knowledge, nor global control

– barriers, scans, reduce, global-OR give fuzzy global state

• Very large number of concurrent transactions
• Management of input buffer resources

– many sources can issue a request and over-commit
destination before any see the effect

• Latency is large enough that you are tempted to
“take risks”

– optimistic protocols
– large transfers
– dynamic allocation

• Many many more degrees of freedom in design
and engineering of these system

3/1/05 CS252 s05 smp 27

Network Transaction Processing

• Key Design Issue:
• How much interpretation of the message?
• How much dedicated processing in the Comm.

Assist?

PM

CA

PM

CA
° ° °

Scalable Network

Node Architecture

Communication Assist

Message

Output Processing
– checks
– translation
– formating
– scheduling

Input Processing
– checks
– translation
– buffering
– action

3/1/05 CS252 s05 smp 28

Spectrum of Designs

• None: Physical bit stream
– blind, physical DMA nCUBE, iPSC, . . .

• User/System
– User-level port CM-5, *T
– User-level handler J-Machine, Monsoon, .

. .

• Remote virtual address
– Processing, translation Paragon, Meiko CS-2

• Global physical address
– Proc + Memory controller RP3, BBN, T3D

• Cache-to-cache
– Cache controller Dash, KSR, Flash

Increasing HW Support, Specialization, Intrusiveness, Performance (???)

3/1/05 CS252 s05 smp 29

Shared Physical Address Space

• NI emulates memory controller at source
• NI emulates processor at dest

– must be deadlock free

Scalable network

P
$

Memory management unit

Data
Ld R Addr

Pseudo
memory

Pseudo-
processor

DestReadAddrSrcTag

DataTagRrspSrc

Output processing
 · Mem access
 · Response

Commmunication
 Input processing

 · Parse
 · Complete read

P
$

MMU

Mem

Pseudo-
memory

Pseudo-
processor

Mem

assist

3/1/05 CS252 s05 smp 30

Case Study: Cray T3D

• Build up info in ‘shell’
• Remote memory operations encoded in address

DRAM

Req
out

P
$

MMU

150-MHz DEC Alpha (64 bit)

8-KB instruction + 8-KB data

43-bit virtual address

Prefetch

Load-lock, store-conditional

32-bit

DTB

Prefetch queue
· 16 × 64

Message queue
· 4,080 × 4 × 64

Special registers
 · swaperand
 · fetch&add
 · barrier

PE# + FC

DMA

Resp
in 3D torus of pairs of PEs

· share net and BLT
· up to 2,048
· 64 MB each

Req
in

Resp
out

Block transfer

32- and 64-bit memory
and byte operations

Nonblocking stores
and memory barrier

engine

physical address

CS258 S99 6

NOW Handout Page 6

3/1/05 CS252 s05 smp 31

Case Study: NOW

• General purpose processor embedded in NIC

L2 $

° ° °

Bus adapter
SBUS (25 MHz)Mem

UltraSparc

s DMA

Host DMA

SRAM

Myrinet

X-bar

r DMA

Bus interface

Main
processor

Link
Interface

160-MB/s
bidirectional
links

Myricom
Lanai NIC
(37.5-MHz processor,
256-MB SRAM
3 DMA units)

Eight-port
wormhole
switches

3/1/05 CS252 s05 smp 32

Context for Scalable Cache Coherence

° ° °

Scalable network

CA

P

$

Switch

M

Switch Switch

Realizing Pgm Models
through net transaction
protocols
- efficient node-to-net interface
- interprets transactions

Caches naturally replicate
data
- coherence through bus

snooping protocols
- consistency

Scalable Networks
- many simultaneous

transactions

Scalable
distributed
memory

Need cache coherence protocols that scale!
- no broadcast or single point of order

3/1/05 CS252 s05 smp 33

Generic Solution: Directories

• Maintain state vector explicitly
– associate with memory block
– records state of block in each cache

• On miss, communicate with directory
– determine location of cached copies
– determine action to take
– conduct protocol to maintain coherence

P1

Cache

Memory

Scalable Interconnection Network

Comm.
Assist

P1

Cache

Comm
Assist

Directory MemoryDirectory

3/1/05 CS252 s05 smp 34

Adminstrative Break

• Project Descriptions due today
• Properties of a good project

– There is an idea
– There is a body of background work
– There is something that differentiates the idea
– There is a reasonable way to evaluate the idea

3/1/05 CS252 s05 smp 35

A Cache Coherent System Must:

• Provide set of states, state transition diagram,
and actions

• Manage coherence protocol
– (0) Determine when to invoke coherence protocol
– (a) Find info about state of block in other caches to

determine action
» whether need to communicate with other cached copies

– (b) Locate the other copies
– (c) Communicate with those copies (inval/update)

• (0) is done the same way on all systems
– state of the line is maintained in the cache
– protocol is invoked if an “access fault” occurs on the line

• Different approaches distinguished by (a) to (c)

3/1/05 CS252 s05 smp 36

Bus-based Coherence

• All of (a), (b), (c) done through broadcast on bus
– faulting processor sends out a “search”
– others respond to the search probe and take necessary

action

• Could do it in scalable network too
– broadcast to all processors, and let them respond

• Conceptually simple, but broadcast doesn’t
scale with p

– on bus, bus bandwidth doesn’t scale
– on scalable network, every fault leads to at least p network

transactions

• Scalable coherence:
– can have same cache states and state transition diagram
– different mechanisms to manage protocol

CS258 S99 7

NOW Handout Page 7

3/1/05 CS252 s05 smp 37

One Approach: Hierarchical Snooping
• Extend snooping approach: hierarchy of broadcast media

– tree of buses or rings (KSR-1)
– processors are in the bus- or ring-based multiprocessors at the

leaves
– parents and children connected by two-way snoopy interfaces

» snoop both buses and propagate relevant transactions
– main memory may be centralized at root or distributed among leaves

• Issues (a) - (c) handled similarly to bus, but not full
broadcast

– faulting processor sends out “search” bus transaction on its bus
– propagates up and down hiearchy based on snoop results

• Problems:
– high latency: multiple levels, and snoop/lookup at every level
– bandwidth bottleneck at root

• Not popular today

3/1/05 CS252 s05 smp 38

Scalable Approach: Directories

• Every memory block has associated directory
information

– keeps track of copies of cached blocks and their states
– on a miss, find directory entry, look it up, and communicate

only with the nodes that have copies if necessary
– in scalable networks, communication with directory and

copies is through network transactions

• Many alternatives for organizing directory
information

3/1/05 CS252 s05 smp 39

Basic Operation of Directory

• k processors.
• With each cache-block in memory: k

presence-bits, 1 dirty-bit
• With each cache-block in cache: 1

valid bit, and 1 dirty (owner) bit• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• Read from main memory by processor i:
• If dirty-bit OFF then { read from main memory; turn p[i] ON; }
• if dirty-bit ON then { recall line from dirty proc (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON;
supply recalled data to i;}

• Write to main memory by processor i:
• If dirty-bit OFF then { supply data to i; send invalidations to all

caches that have the block; turn dirty-bit ON; turn p[i] ON; ... }
• ... 3/1/05 CS252 s05 smp 40

Basic Directory Transactions

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack

Inval. ack

3a. 3b.

4a. 4b.

Requestor

Node with
dirty copy

Directory node
for block

Requestor

Directory node

Sharer Sharer

(a) Read miss to a block in dirty state (b) Write miss to a block with two sharers

3/1/05 CS252 s05 smp 41

Example Directory Protocol (1st Read)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

Read pA

R/reply

R/req

P1: pA

S

S

3/1/05 CS252 s05 smp 42

Example Directory Protocol (Read Share)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

ld vA -> rd pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req
R/_

R/_

R/_S

S

S

CS258 S99 8

NOW Handout Page 8

3/1/05 CS252 s05 smp 43

Example Directory Protocol (Wr to shared)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrl

st vA -> wr pA

R/reply

R/req

P1: pA

ld vA -> rd pA

P2: pA

R/req

W/req E

R/_

R/_

R/_

Invalidate pARead_to_update pA

Inv ACK

RX/invalidate&reply

S

S

S

D

E

reply xD(pA)

W/req E
W/_

Inv/_ Inv/_

EX

3/1/05 CS252 s05 smp 44

Example Directory Protocol (Wr to Ex)

E

S

I

P1$

E

S

I

P2$

D

S

U

MDir
ctrlR/reply

R/req

P1: pA

st vA -> wr pA

R/req

W/req E

R/_

R/_

R/_

Reply xD(pA)Write_back pA

Read_toUpdate pA

RX/invalidate&reply

D

E

Inv pA

W/req E
W/_

Inv/_ Inv/_

W/req EW/_

I

E

W/req E

RU/_

3/1/05 CS252 s05 smp 45

Directory Protocol (other transitions)

E

S

I

P1$ P2$

D

S

U

MDir
ctrlR/reply

R/req

W/req E

R/_

R/_

RX/invalidate&reply

W/req E
W/_

Inv/_

RU/_

RX/reply

Inv/write_back

Evict/?

Evict/write_back

Write_back

3/1/05 CS252 s05 smp 46

A Popular Middle Ground

• Two-level “hierarchy”
• Individual nodes are multiprocessors, connected non-

hiearchically
– e.g. mesh of SMPs

• Coherence across nodes is directory-based
– directory keeps track of nodes, not individual processors

• Coherence within nodes is snooping or directory
– orthogonal, but needs a good interface of functionality

• Examples:
– Convex Exemplar: directory-directory
– Sequent, Data General, HAL: directory-snoopy

• SMP on a chip?

3/1/05 CS252 s05 smp 47

Example Two-level Hierarchies

P

C

Snooping

B1

B2

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Adapter
Snooping
Adapter

P

C
B1

Bus (or Ring)

P

C

P

C
B1

P

C

Main
Mem

Main
Mem

Network

Assist Assist

Network2

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Directory adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

P

C

AM/D

Network1

P

C

AM/D

Dir/Snoopy adapter

(a) Snooping-snooping (b) Snooping-directory

Dir. Dir.

(c) Directory-directory (d) Directory-snooping

3/1/05 CS252 s05 smp 48

Latency Scaling

• T(n) = Overhead + Channel Time + Routing Delay
• Overhead?
• Channel Time(n) = n/B --- BW at bottleneck
• RoutingDelay(h,n)

CS258 S99 9

NOW Handout Page 9

3/1/05 CS252 s05 smp 49

Typical example

• max distance: log n
• number of switches: α n log n
• overhead = 1 us, BW = 64 MB/s, 200 ns per hop
• Pipelined
T64(128) = 1.0 us + 2.0 us + 6 hops * 0.2 us/hop = 4.2 us
T1024(128) = 1.0 us + 2.0 us + 10 hops * 0.2 us/hop = 5.0 us

• Store and Forward
T64

sf(128) = 1.0 us + 6 hops * (2.0 + 0.2) us/hop = 14.2 us
T64

sf(1024) = 1.0 us + 10 hops * (2.0 + 0.2) us/hop = 23 us

3/1/05 CS252 s05 smp 50

Cost Scaling

• cost(p,m) = fixed cost + incremental cost (p,m)
• Bus Based SMP?
• Ratio of processors : memory : network : I/O ?

• Parallel efficiency(p) = Speedup(P) / P

• Costup(p) = Cost(p) / Cost(1)

• Cost-effective: speedup(p) > costup(p)
• Is super-linear speedup possible?

