
1

NOW Handout Page 1

EECS 252 Graduate Computer
Architecture

Lec 12 - Caches

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://www-inst.eecs.berkeley.edu/~cs252

1/28/2004 CS252-S05 L12 Caches 2

Review: Who Cares About the Memory
Hierarchy?

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

• Processor Only Thus Far in Course:
– CPU cost/performance, ISA, Pipelined Execution

CPU-DRAM Gap

• 1980: no cache in µproc; 1995 2-level cache on chip
(1989 first Intel µproc with a cache on chip)

“Less’ Law?”

1/28/2004 CS252-S05 L12 Caches 3

Review: What is a cache?
• Small, fast storage used to improve average access time

to slow memory.
• Exploits spacial and temporal locality
• In computer architecture, almost everything is a cache!

– Registers a cache on variables
– First-level cache a cache on second-level cache
– Second-level cache a cache on memory
– Memory a cache on disk (virtual memory)
– TLB a cache on page table
– Branch-prediction a cache on prediction information?

Proc/Regs

L1-Cache
L2-Cache

Memory

Disk, Tape, etc.

Bigger Faster

1/28/2004 CS252-S05 L12 Caches 4

Review: Terminology
• Hit: data appears in some block in the upper level

(example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the
lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y

1/28/2004 CS252-S05 L12 Caches 5

Why it works

• Exploit the statistical properties of
programs

• Locality of reference
– Temporal
– Spatial

• Simple hardware structure that
observes program behavior and
reacts to improve future
performance

• Is the cache visible in the ISA?

yMissPenaltMissRateHitTimeAMAT ×+=
()
()DataDataData

InstInstInst

yMissPenaltMissRateHitTime
yMissPenaltMissRateHitTime

×+

+×+=

address

P(access,t)

Average Memory Access Time

1/28/2004 CS252-S05 L12 Caches 6

Block Placement
• Q1: Where can a block be placed in the upper

level?
– Fully Associative,
– Set Associative,
– Direct Mapped

2

NOW Handout Page 2

1/28/2004 CS252-S05 L12 Caches 7

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9

1/28/2004 CS252-S05 L12 Caches 8

Review: Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel
– How big is the tag?

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared to the input in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

1/28/2004 CS252-S05 L12 Caches 9

Q2: How is a block found if it is in the
upper level?

• Index identifies set of possibilities
• Tag on each block

– No need to check index or block offset

• Increasing associativity shrinks index, expands
tag

Block
Offset

Block Address

IndexTag

Cache size = Associativity * 2index_size * 2offest_size

1/28/2004 CS252-S05 L12 Caches 10

Q3: Which block should be replaced on a
miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

1/28/2004 CS252-S05 L12 Caches 11

Q4: What happens on a write?
• Write through—The information is written to both

the block in the cache and to the block in the lower-
level memory.

• Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so that
don’t wait for lower level memory

• What about on a miss?
– Write_no_allocate vs write_allocate

1/28/2004 CS252-S05 L12 Caches 12

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

Processor
Cache

Write Buffer

DRAM

3

NOW Handout Page 3

1/28/2004 CS252-S05 L12 Caches 13

Review: Cache performance

CycleTimeyMissPenaltMissRate
Inst

MemAccessCPIICCPUtime Execution ×

 ××+×=

• Miss-oriented Approach to Memory Access:

• Separating out Memory component entirely
– AMAT = Average Memory Access Time

– Effective CPI = CPIideal_mem + Pmem * AMAT

CycleTimeAMAT
Inst

MemAccessCPIICCPUtime AluOps ×

 ×+×=

1/28/2004 CS252-S05 L12 Caches 14

Impact on Performance

• Suppose a processor executes at
– Clock Rate = 200 MHz (5 ns per cycle), Ideal (no misses) CPI = 1.1
– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss
penalty

• Suppose that 1% of instructions get same miss penalty
• CPI = ideal CPI + average stalls per instruction

1.1(cycles/ins) +
[0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)

x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

• 58% of the time the proc is stalled waiting for memory!
• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.1x50]=2.54

1/28/2004 CS252-S05 L12 Caches 15

Example: Harvard Architecture

• Unified vs Separate I&D (Harvard)

• Statistics (given in H&P):
– 16KB I&D: Inst miss rate=0.64%, Data miss rate=6.47%
– 32KB unified: Aggregate miss rate=1.99%

• Which is better (ignore L2 cache)?
– Assume 33% data ops ⇒ 75% accesses from instructions (1.0/1.33)
– hit time=1, miss time=50
– Note that data hit has 1 stall for unified cache (only one port)

AMATHarvard=75%x(1+0.64%x50)+25%x(1+6.47%x50) = 2.05
AMATUnified=75%x(1+1.99%x50)+25%x(1+1+1.99%x50)= 2.24

ProcI-Cache-1
Proc

Unified
Cache-1

Unified
Cache-2

D-Cache-1
Proc

Unified
Cache-2

1/28/2004 CS252-S05 L12 Caches 16

The Cache Design Space
• Several interacting dimensions

– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

1/28/2004 CS252-S05 L12 Caches 17

Review: Improving Cache
Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CPUtime = IC × CPIExecution +
Memory accesses
Instruction

× Miss rate × Miss penalty

 ×Clock cycle time

1/28/2004 CS252-S05 L12 Caches 18

Reducing Misses
• Classifying Misses: 3 Cs

– Compulsory—The first access to a block is not in the cache,
so the block must be brought into the cache. Also called cold start
misses or first reference misses.
(Misses in even an Infinite Cache)

– Capacity—If the cache cannot contain all the blocks needed
during execution of a program, capacity misses will occur due to
blocks being discarded and later retrieved.
(Misses in Fully Associative Size X Cache)

– Conflict—If block-placement strategy is set associative or direct
mapped, conflict misses (in addition to compulsory & capacity
misses) will occur because a block can be discarded and later
retrieved if too many blocks map to its set. Also called collision
misses or interference misses.
(Misses in N-way Associative, Size X Cache)

• More recent, 4th “C”:
– Coherence - Misses caused by cache coherence.

4

NOW Handout Page 4

1/28/2004 CS252-S05 L12 Caches 19

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

3Cs Absolute Miss Rate (SPEC92)

Conflict

Compulsory vanishingly
small

1/28/2004 CS252-S05 L12 Caches 20

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

2:1 Cache Rule

Conflict

miss rate 1-way associative cache size X
~= miss rate 2-way associative cache size X/2

1/28/2004 CS252-S05 L12 Caches 21

3Cs Relative Miss Rate

Cache Size (KB)

0%

20%

40%

60%

80%

100%

1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

Caveat: fixed block size
1/28/2004 CS252-S05 L12 Caches 22

How Can Reduce Misses?

• 3 Cs: Compulsory, Capacity, Conflict
• In all cases, assume total cache size not changed:
• What happens if:
1) Change Block Size:

Which of 3Cs is obviously affected?

2) Change Associativity:
Which of 3Cs is obviously affected?

3) Change Algorithm / Compiler:
Which of 3Cs is obviously affected?

1/28/2004 CS252-S05 L12 Caches 23

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block
Size

1/28/2004 CS252-S05 L12 Caches 24

2. Reduce Misses via Higher
Associativity
• 2:1 Cache Rule:

– Miss Rate DM cache size N ~ Miss Rate 2-way cache size N/2

• Beware: Execution time is only final measure!
– Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

5

NOW Handout Page 5

1/28/2004 CS252-S05 L12 Caches 25

Example: Avg. Memory Access Time
vs. Miss Rate

• assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for
8-way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

1/28/2004 CS252-S05 L12 Caches 26

3. Reducing Misses via a “Victim Cache”

• How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct mapped
data cache

• Used in Alpha, HP
machines

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

1/28/2004 CS252-S05 L12 Caches 27

4. Reducing Misses via “Pseudo-Associativity”

• How to combine fast hit time of Direct Mapped and have
the lower conflict misses of 2-way SA cache?

• Divide cache: on a miss, check other half of cache to see
if there, if so have a pseudo-hit (slow hit)

• Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles
– Better for caches not tied directly to processor (L2)
– Used in MIPS R1000 L2 cache, similar in UltraSPARC

Hit Time

Pseudo Hit Time Miss Penalty

Time

1/28/2004 CS252-S05 L12 Caches 28

5. Reducing Misses by Hardware
Prefetching of Instructions & Data

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8

streams got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty

1/28/2004 CS252-S05 L12 Caches 29

6. Reducing Misses by
Software Prefetching Data

• Data Prefetch
– Load data into register (HP PA-RISC loads)
– Cache Prefetch: load into cache

(MIPS IV, PowerPC, SPARC v. 9)
– Special prefetching instructions cannot cause faults;

a form of speculative execution

• Issuing Prefetch Instructions takes time
– Is cost of prefetch issues < savings in reduced misses?
– Higher superscalar reduces difficulty of issue bandwidth

1/28/2004 CS252-S05 L12 Caches 30

7. Reducing Misses by Compiler
Optimizations

• McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts(using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order

stored in memory
– Loop Fusion: Combine 2 independent loops that have same looping

and some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down whole columns or rows

6

NOW Handout Page 6

1/28/2004 CS252-S05 L12 Caches 31

Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

1/28/2004 CS252-S05 L12 Caches 32

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)
for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];
/* After */
for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)
for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through
memory every 100 words; improved spatial
locality

1/28/2004 CS252-S05 L12 Caches 33

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];
/* After */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access;
improve spatial locality

1/28/2004 CS252-S05 L12 Caches 34

Blocking Example
/* Before */
for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[i][k]*z[k][j];};

x[i][j] = r;
};

• Two Inner Loops:
– Read all NxN elements of z[]
– Read N elements of 1 row of y[] repeatedly
– Write N elements of 1 row of x[]

• Capacity Misses a function of N & Cache Size:
– 2N3 + N2 => (assuming no conflict; otherwise …)

• Idea: compute on BxB submatrix that fits

1/28/2004 CS252-S05 L12 Caches 35

Blocking Example

/* After */
for (jj = 0; jj < N; jj = jj+B)
for (kk = 0; kk < N; kk = kk+B)
for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)
{r = 0;
for (k = kk; k < min(kk+B-1,N); k = k+1) {
r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;
};

• B called Blocking Factor
• Capacity Misses from 2N3 + N2 to 2N3/B +N2

• Conflict Misses Too?
1/28/2004 CS252-S05 L12 Caches 36

Reducing Conflict Misses by Blocking

• Conflict misses in caches not FA vs. Blocking size
– Lam et al [1991] a blocking factor of 24 had a fifth the misses vs.

48 despite both fit in cache

Blocking Factor

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

7

NOW Handout Page 7

1/28/2004 CS252-S05 L12 Caches 37

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice

mxm (nasa7)

btrix (nasa7)

tomcatv

gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

1/28/2004 CS252-S05 L12 Caches 38

Impact of Memory Hierarchy on
Algorithms

• Today CPU time is a function of (ops, cache misses) vs. just f(ops):
What does this mean to Compilers, Data structures, Algorithms?

• “The Influence of Caches on the Performance of Sorting” by A.
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting algorithm when all
keys fit in memory

• Radix sort: also called “linear time” sort because for keys of fixed
length and fixed radix a constant number of passes over the data is
sufficient independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache,
8 byte keys, from 4000 to 4000000

1/28/2004 CS252-S05 L12 Caches 39

Quicksort vs. Radix as vary number
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort

1/28/2004 CS252-S05 L12 Caches 40

Quicksort vs. Radix as vary number keys:
Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort

1/28/2004 CS252-S05 L12 Caches 41

Quicksort vs. Radix as vary number keys:
Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 10000000

Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?
1/28/2004 CS252-S05 L12 Caches 42

Review: What happens on Cache miss?
• For in-order pipeline, 2 options:

– Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall Ex Mem Wr

» Stall, Load cache line, Restart mem stage
» This is why cost on CM = Penalty + Hit Time

– Use Full/Empty bits in registers + MSHR queue
» MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

• Per cache-line: keep info about memory address.
• For each word: register (if any) that is waiting for result.
• Used to “merge” multiple requests to one memory line

» New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from pipeline.

» Attempt to use register before result returns causes instruction to
block in decode stage.

» Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

• Out-of-order pipelines already have this functionality built
in… (load queues, etc).

8

NOW Handout Page 8

1/28/2004 CS252-S05 L12 Caches 43

Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

– Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit 1/28/2004 CS252-S05 L12 Caches 44

Review: Four Questions for Memory
Hierarchy Designers

• Q1: Where can a block be placed in the upper level?
(Block placement)

– Fully Associative, Set Associative, Direct Mapped

• Q2: How is a block found if it is in the upper level?
(Block identification)
– Tag/Block

• Q3: Which block should be replaced on a miss?
(Block replacement)

– Random, LRU

• Q4: What happens on a write?
(Write strategy)

– Write Back or Write Through (with Write Buffer)

1/28/2004 CS252-S05 L12 Caches 45

Summary

• 3 Cs: Compulsory, Capacity, Conflict
1. Reduce Misses via Larger Block Size
2. Reduce Misses via Higher Associativity
3. Reducing Misses via Victim Cache
4. Reducing Misses via Pseudo-Associativity
5. Reducing Misses by HW Prefetching Instr, Data
6. Reducing Misses by SW Prefetching Data
7. Reducing Misses by Compiler Optimizations

• Remember danger of concentrating on just one
parameter when evaluating performance

CPUtime = IC × CPIExecution +
Memory accesses
Instruction

× Miss rate ×Miss penalty

 ×Clock cycle time

