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Review Exercise
• The 1+X “accumulator” based ISA never seems to go away 

because of its “minimal” processor state – witness the 
longevity of the 8051

• You are given the task of designing a “high performance 
8051”.  Having learned about the separation of architected 
state and microarchitecture, you are ready to attack the 
problem.  A simple analysis suggests that 8051 code has 
very strong sequential dependences.  You will need to use 
serious instruction lookahead, branch prediction, and 
register renaming to get at the ILP.

• Assume a MIPS 10K-like data path with multiple function 
units, lots of physical registers.  You need to design the 
instruction issue and register mapping logic to get ILP out 
of this beast.

• When is a physical register available for reuse?
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Solution Framework
• ISA?
• Typical 

sequence
• Dependences
• Names?
• Mapping
• Free

Physical
Registers

Instruction
queue

ROB

* * *

Inst
Issue
and reg
mapping

fwd
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Review of Memory Hierarchy that 
we skipped
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Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr
)

DRAM
9%/yr.
(2X/10 
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Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.
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Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level 

(example: Block X) 
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y
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Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)
• Miss penalty: time to replace a block from 

lower level, including time to replace in CPU
– access time: time to lower level 

= f(latency to lower level)
– transfer time: time to transfer block 

=f(BW between upper & lower levels)
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Simplest Cache: Direct  Mapped
Memory

4  Byte Direct Mapped Cache

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

• Location 0 can be occupied by 
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0>  => cache index

• Which one should we place in 
the cache?

• How can we tell which one is in 
the cache?
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1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9
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Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

– Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit 2/22/2005 CS252 L11-review 14

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in 
the upper level? 
• Block 12 placed in 8 block cache:

– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

111111111122222222223301234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0
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Q2: How is a block found if it is in the 
upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands 
tag

Block
Offset

Block Address

IndexTag
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Q3: Which block should be replaced on a 
miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way
Size LRU     Ran    LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?

• Write through—The information is written to 
both the block in the cache and to the block in 
the lower-level memory.

• Write back—The information is written only to 
the block in the cache. The modified cache 
block is written to main memory only when it 
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so 
that don’t wait for lower level memory
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Write Buffer for Write Through

• A Write Buffer is needed between the Cache and 
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM
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Impact of Memory Hierarchy on 
Algorithms

• Today CPU time is a function  of (ops, cache misses) vs. just f(ops):
What does this mean to Compilers, Data structures, Algorithms?

• “The Influence of Caches on the Performance of Sorting” by A. 
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting algorithm when all 
keys fit in memory

• Radix sort: also called “linear time” sort because for keys of fixed 
length and fixed radix a constant number of passes over the data is 
sufficient independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 
8 byte keys, from 4000 to 4000000
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Key topics firehose…
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Instruction Set Architecture
... the attributes of a [computing] system as seen by 
the programmer, i.e.  the conceptual structure and 
functional behavior, as distinct from the organization 
of the data flows and controls the logic design, and 
the physical implementation.    

– Amdahl, Blaaw, and Brooks,  1964
SOFTWARESOFTWARE

-- Organization of Programmable 
Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions
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Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based (Stack) Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000, 1987)iX86?
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Components of Performance

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time
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Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5
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The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 30 years, HW  relied on locality for speed

P MEM$
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System Organization: 
It’s all about communication

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium III Chipset
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Amdahl’s Law

( )
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction  Fraction 

1  
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

( )enhanced
maximum Fraction - 1

1  Speedup =

( ) 







+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime  ExTime 1
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Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count 
=  Cycles / Instruction Count    

“Average Cycles per Instruction”

j
n

j
j I CPI   TimeCycle  time CPU ×∑×=

=1

Count nInstructio
I

 F where     F CPI  CPI j
j

n

j
jj =∑ ×=

=1
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Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the 
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data 
path

– Based on desired function and signals

Datapath Controller

Control Points

signals
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Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps).
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Data Hazard Even with Forwarding
Figure 3.13, Page 154

Time (clock cycles)

or   r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch A
LU DMemBubble Reg

How is this detected?
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Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Ordering Properties of basic inst. pipeline

• Instructions issued in order
• Operand fetch is stage 2 => operand fetched in order
• Write back in stage 5 => no WAW, no WAR hazards
• Common pipeline flow => operands complete in order
• Stage changes only at “end of instruction”

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Issue Complete

Execution window
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aop

Ra
Rb
Rr

dcd
mop
wop

Control Pipeline

M
EM

-res

A
-res

A
LU

m
ux

m
ux

Registers

O
p A

O
p B B-byp

PC

IR
nPC

N
ext PC

I-fetch

D
-M

em

op

im
ed

+4

brch

nPC

mop

Rr
kill
?

wop
wop
Rr
kill
?

PC
1

PC
2

PC
3

fwd ctrl
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Typical “simple” Pipeline
• Example: MIPS R4000

IF ID MEM WB

integer unit

FP/int Multiply

FP adder

FP/int divider

ex

m1 m2 m3 m4 m5 m6 m7

a1 a2 a3 a4

Div (lat = 25, 
Init inv=25)
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• 2-bit scheme where change prediction only if get 
misprediction twice:

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process
• Generalize to n-bit saturating counter

2-bit Dynamic Branch Prediction 
(J. Smith, 1981)

T

T

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT

T

NT

NT
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Correlating Branches

Idea: taken/not taken 
of recently executed 
branches is related to 
behavior of next 
branch (as well as the 
history of that branch 
behavior)

– Then behavior of recent 
branches selects 
between, say, 4 
predictions of next 
branch, updating just that 
prediction 

• (2,2) predictor: 2-bit 
global, 2-bit local

Branch address (4 bits)

2-bits per branch 
local predictors

PredictionPrediction

2-bit recent global 
branch history

(01 = not taken then taken)

2/22/2005 CS252 L11-review 39

Need Address 
at Same Time as Prediction
• Branch Target Buffer (BTB): Address of branch index to get 

prediction AND branch address (if taken)
– Note: must check for branch match now, since can’t use wrong branch address 

(Figure 3.19, 3.20)

Branch PC Predicted PC

=?

PC of instruction
FET

CH

Extra 
prediction state

bits
Yes: instruction is 
branch and use 
predicted PC as 
next PC

No: branch not 
predicted, proceed normally

(Next PC = PC+4) 2/22/2005 CS252 L11-review 40

Pipelining with Reg. Reservations
• Assumptions

1. Multiple pipelined function units of different latency
» able to accept operations at issue rate
» may be exceptions (e.g., divide)

2. Issue instructions in order
3. Operand fetch in order
4. Completion out of order

» short ops may bypass long ones
5. Some shared resources (e.g., reg write port)

• Implications
– WAR hazard still resolved by pipeline flow (2 & 3)
– RAW, WAW, and structural still present

• Design philosophy (ala Cray)
– Resolve hazards as instruction is issued into pipeline
– Pipeline is non-blocking
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Hazard Resolution
• Structural

– Op code => resource usage
– Check resource resv
– Set on issue

• Data
– Add reservation bit one each 

register
– Check RegRsv for 

source and destination 
registers

– Hold issue till clear
– Set bit on destination register
– Clear bit on dest reg. Write

• Questions:
– Forwarding?

Instr. Fetch

Op Fetch 
& Issue

Motorola 88000 “scoreboard” [sic]

rDvalA valBop
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Scoreboard Operation
• Issue

– Hold while FU unavailable or 
destination register reserved 
(by FU f )

• Read operands
– SB informs FU with all sources 

available to fetch & go
– Limited by read ports

• Write back
– SB schedules one FU to write
– Waits no FU waiting to fetch 

(old version) of reg

Instr. Fetch

Issue & 
Resolve

ex

rDrA rBop

rDvalA valBop

op fetch

Sc
or

eb
oa

rd

op fetch

FU
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Register Renaming (less Conceptual)

• Separate the functions of the register
• Reg identifier in instruction is mapped to 

“physical register” id for current 
instance of the register

– Physical reg set may be larger than allocated
• What are the rules for allocating / 

deallocating physical registers?

rd rs

architected reg’s
physical data reg

value
op rs rt rd

ifetch

op R[rs] R[rt] ?

renam

opfetch

op Vs Vt ?
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Reg renaming
• Source Reg s:

– physical reg P=R[s]

• Destination reg d:
– Old physical register R[d] 

“terminates”
– R[d] :=get_free

• Free physical register when
– No longer referenced by any 

architected register (terminated)
– No incomplete instructions waiting to 

read it
» Easy with in-order
» Out of order?

op rs rt rd

ifetch

op R[rs] R[rt] ?

renam

opfetch

op Vs Vt ?
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Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation 
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store 
Buffers

Load1
Load2
Load3
Load4
Load5
Load6
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Three Stages of Tomasulo Algorithm
1.Issue—get instruction from FP Op Queue

If reservation station free (no structural hazard), 
control issues instr & sends operands (renames registers).

2.Execution—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units; 
mark reservation station available

• Normal data bus: data + destination (“go to” bus)
• Common data bus: data + source (“come from” bus)

– 64 bits of data + 4 bits of Functional Unit  source address
– Write if matches expected Functional Unit (produces result)
– Does the broadcast
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Explicit register renaming:
R10000 Freelist Management

----

----

F2F2

F10F10

F0F0

P2P2

P10P10

P0P0

BNE P36,<…>BNE P36,<…> NN

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

NN

NN

Done?

Oldest

Newest

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction
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Explicit register renaming:
R10000 Freelist Management

----

F0F0

F4F4

----

F2F2

F10F10

F0F0

P32P32

P4P4

P2P2

P10P10

P0P0

ST 0(R3),P40ST 0(R3),P40

ADDD P40,P38,P6ADDD P40,P38,P6
YY

YY

LD P38,0(R3)LD P38,0(R3) YY

BNE P36,<…>BNE P36,<…> NN

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

yy

yy

Done?

Oldest

Newest

P40P40 P36P36 P38P38 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P42P42 P44P44 P48P48 P50P50 … P0P0 P10P10

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction
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Explicit register renaming:
R10000 Freelist Management

F2F2

F10F10

F0F0

P2P2

P10P10

P0P0

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

yy

yy

Done?

Oldest

Newest

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62

Speculation error fixed by restoring map table and freelist
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Problems with scalar approach to 
ILP extraction
• Limits to conventional exploitation of ILP:

– pipelined clock rate: at some point, each increase in clock rate has 
corresponding CPI increase (branches, other hazards)

– branch prediction: branches get in the way of wide issue.  They are 
too unpredictable.

– instruction fetch and decode: at some point, its hard to fetch and 
decode more instructions per clock cycle

– register renaming: Rename logic gets really complicate for many 
instructions

– cache hit rate: some long-running (scientific) programs have very 
large data sets accessed with poor locality; others have continuous 
data streams (multimedia) and hence poor locality
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Exception classifications

• Traps: relevant to the current process
– Faults, arithmetic traps, and system “calls”
– Invoke software on behalf of the currently executing process

• Interrupts: caused by asynchronous, outside events
– I/O devices requiring service (DISK, network)
– Clock interrupts (real time scheduling)

• Machine Checks: caused by serious hardware failure
– Not always restartable
– Indicate that bad things have happened.  

» Non-recoverable ECC error
» Machine room fire
» Power outage
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Precise Interrupts/Exceptions

• An interrupt or exception is considered precise if there 
is a single instruction (or interrupt point) for which:

– All instructions before that have committed their state
– No following instructions (including the interrupting instruction) 

have modified any state.
• This means, that you can restart execution at the 

interrupt point and “get the right answer”
– Implicit in our previous example of a device interrupt:

» Interrupt point is at first lw instruction

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Ex
te

rn
al

In
te

rr
up

t PC saved

Disab
le All Ints

Supervis
or Mode

Restore PC
User Mode

Int
handler
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Precise interrupt point 
may require multiple PCs

• On SPARC, interrupt hardware produces “pc” and 
“npc” (next pc)

• On MIPS, only “pc” – must fix point in software

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts> 

PC:
PC+4:

Interrupt point described as <PC,PC+4>

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts> 

Interrupt point described as:        

<PC+4,there> (branch was taken)
or

<PC+4,PC+8> (branch was not taken)

PC:
PC+4:
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Reorder Buffer + Forwarding + 
Speculation
• Idea: 

– Issue branch into ROB
– Mark with prediction
– Fetch and issue predicted 

instructions speculatively
– Branch must resolve 

before leaving ROB
– Resolve correct

» Commit following 
instr

– Resolve incorrect
» Mark following instr

in ROB as invalid
» Let them clear

IFetch

Opfetch/Dcd

Write Back

Reg
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History File
• Maintain issue order, like 

ROB
• Each entry records dest reg

and old value of dest. 
Register

– What if old value not available 
when instruction issues?

• FUs write results into 
register file

– Forward into correct entry in 
history file

• When exception reaches 
head

– Restore architected registers from 
tail to head

IFetch

Opfetch/Dcd

Write Back

Reg
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Future file
• Idea

– Arch registers reflect 
state at commit point

– Future register reflect 
whatever instructions 
have completed

– On WB update future
– On commit update 

arch
– On exception

» Discard future
» Replace with arch

• Dest w/I ROB

IFetch

Opfetch/Dcd

Write Back

FutureReg
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Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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Alternative Model:Vector Processing

+

r1 r2

r3

add r3, r1, r2

SCALAR
(1 operation)

v1 v2

v3

+

vector
length

add.vv v3, v1, v2

VECTOR
(N operations)

• Vector processors have high-level operations that work 
on linear arrays of numbers: "vectors"
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What needs to be specified in a Vector 
Instruction Set Architecture?
• ISA in general

– Operations, Data types, Format, Accessible Storage, 
Addressing Modes, Exceptional Conditions

• Vectors
– Operations
– Data types (Float, int, V op V, S op V)
– Format
– Source and Destination Operands

» Memory?, register?
– Length
– Successor (consecutive, stride, indexed, gather/scatter, …)
– Conditional operations
– Exceptions
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“DLXV” Vector Instructions
Instr. Operands Operation Comment

• ADDV V1,V2,V3 V1=V2+V3 vector + vector
• ADDSV V1,F0,V2 V1=F0+V2 scalar + vector
• MULTV V1,V2,V3 V1=V2xV3 vector x vector
• MULSV V1,F0,V2 V1=F0xV2 scalar x vector
• LV V1,R1 V1=M[R1..R1+63] load, stride=1
• LVWS V1,R1,R2 V1=M[R1..R1+63*R2] load, stride=R2
• LVI V1,R1,V2 V1=M[R1+V2i,i=0..63] indir.("gather")
• CeqV VM,V1,V2 VMASKi = (V1i=V2i)? comp. setmask
• MOV VLR,R1 Vec. Len. Reg. = R1 set vector length
• MOV VM,R1 Vec. Mask = R1 set vector mask
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Vector Execution Time
• Time = f(vector length, data dependicies, struct. hazards) 
• Initiation rate: rate that FU consumes vector elements 

(= number of lanes; usually 1 or  2 on Cray T-90)
• Convoy: set of vector instructions that can begin 

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead; good approximization for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result 2/22/2005 CS252 L11-review 62

Strip Mining

• Suppose Vector Length > Max. Vector Length (MVL)?
• Strip mining: generation of code such that each vector 

operation is done for a size Š to the MVL
• 1st loop do short piece (n mod MVL), rest VL = MVL

low = 1
VL = (n mod MVL)  /*find the odd size piece*/
do 1 j = 0,(n / MVL)  /*outer loop*/

do 10 i = low,low+VL-1  /*runs for length VL*/
Y(i) = a*X(i) + Y(i)  /*main operation*/

10 continue
low = low+VL  /*start of next vector*/
VL = MVL  /*reset the length to max*/

1 continue
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Vector Opt #1: Chaining
• Suppose:

MULV V1,V2,V3
ADDV V4,V1,V5 ; separate convoy?

• chaining: vector register (V1) is not as a single entity but 
as a group of individual registers, then pipeline 
forwarding can work on individual elements of a vector

• Flexible chaining: allow vector to chain to any other 
active vector operation => more read/write ports

• As long as enough HW, increases convoy size

MULTV ADDV

MULTV

ADDV

Total=141

Total=77

7 64

646

7 64 646Unchained

Chained
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Interleaved Memory Layout

• Great for unit stride: 
– Contiguous elements in different DRAMs
– Startup time for vector operation is latency of single read

• What about non-unit stride?
– Above good for strides that are relatively prime to 8
– Bad for: 2, 4
– Better: prime number of banks…!

Vector Processor
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