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Exception
• Unprogrammed change of control flow
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Example 1: Device Interrupt
(Say, arrival of network message)

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Save registers
Reenable All Ints

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Disable All Ints
Restore registers
Clear current Int
Restore priority
RTE
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Example 2: Page Fault

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Save registers
Reenable All Ints

…
Service Page 
Fault
Update Page Table
…

Restore registers
Disable All Ints
RTE
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Exception classifications

• Traps: relevant to the current process
– Faults, arithmetic traps, and system “calls”
– Invoke software on behalf of the currently executing process

• Interrupts: caused by asynchronous, outside events
– I/O devices requiring service (DISK, network)
– Clock interrupts (real time scheduling)

• Machine Checks: caused by serious hardware failure
– Not always restartable
– Indicate that bad things have happened.  

» Non-recoverable ECC error
» Machine room fire
» Power outage
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A related classification: 
Synchronous vs. Asynchronous

• Synchronous: means related to the instruction stream, 
i.e. during the execution of an instruction

– Must stop an instruction that is currently executing
– Page fault on load or store instruction
– Arithmetic exception
– Software Trap Instructions

• Asynchronous: means unrelated to the instruction 
stream, i.e. caused by an outside event.

– Does not have to disrupt instructions that are already executing
– Interrupts are asynchronous
– Machine checks are asynchronous

• SemiSynchronous (or high-availability interrupts): 
– Caused by external event but may have to disrupt current instructions 

in order to guarantee service
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Can we have fast interrupts?

• Pipeline Drain: Can be very Expensive 
• Priority Manipulations
• Register Save/Restore

– 128 registers + cache misses + etc.

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Reenable All Ints
Save registers

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTE
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SPARC (and RISC I) had register 
windows

• On interrupt or procedure call, simply switch to a 
different set of registers

• Really saves on interrupt overhead
– Interrupts can happen at any point in the execution, so compiler

cannot help with knowledge of live registers.
– Conservative handlers must save all registers
– Short handlers might be able to save only a few, but this analysis 

is compilcated

• Not as big a deal with procedure calls
– Original statement by Patterson was that Berkeley didn’t have a 

compiler team, so they used a hardware solution
– Good compilers can allocate registers across procedure 

boundaries
– Good compilers know what registers are live at any one time

• However, register windows have returned!
– IA64 has them
– Many other processors have shadow registers for interrupts
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Supervisor State
• Typically, processors have some amount of state that 

user programs are not allowed to touch.
– Page mapping hardware/TLB

» TLB prevents one user from accessing memory of another
» TLB protection prevents user from modifying mappings

– Interrupt controllers -- User code prevented from crashing machine 
by disabling interrupts.  Ignoring device interrupts, etc.

– Real-time clock interrupts ensure that users cannot lockup/crash 
machine even if they run code that goes into a loop:

» “Preemptive Multitasking” vs “non-preemptive multitasking”

• Access to hardware devices restricted
– Prevents malicious user from stealing network packets 
– Prevents user from writing over disk blocks

• Distinction made with at least two-levels: 
USER/SYSTEM (one hardware mode-bit)

– x86 architectures actually provide 4 different levels, only two 
usually used by OS (or only 1 in older Microsoft OSs)
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Entry into Supervisor Mode
• Entry into supervisor mode typically happens on 

interrupts, exceptions, and special trap instructions.
• Entry goes through kernel instructions:

– interrupts, exceptions, and trap instructions change to supervisor 
mode, then jump (indirectly) through table of instructions in kernel

intvec:  j handle_int0
j handle_int1

…
j handle_fp_except0

…
j handle_trap0
j handle_trap1

– OS “System Calls” are just trap instructions:
read(fd,buffer,count) => st 20(r0),r1

st 24(r0),r2
st 28(r0),r3
trap $READ

• OS overhead can be serious concern for achieving fast 
interrupt behavior.
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Precise Interrupts/Exceptions

• An interrupt or exception is considered precise if there 
is a single instruction (or interrupt point) for which:

– All instructions before that have committed their state
– No following instructions (including the interrupting instruction) 

have modified any state.
• This means, that you can restart execution at the 

interrupt point and “get the right answer”
– Implicit in our previous example of a device interrupt:

» Interrupt point is at first lw instruction

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…
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or Mode

Restore PC
User Mode

Int
handler
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Precise interrupt point 
may require multiple PCs

• On SPARC, interrupt hardware produces “pc” and 
“npc” (next pc)

• On MIPS, only “pc” – must fix point in software

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts> 

PC:
PC+4:

Interrupt point described as <PC,PC+4>

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts> 

Interrupt point described as:        

<PC+4,there> (branch was taken)
or

<PC+4,PC+8> (branch was not taken)

PC:
PC+4:
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Why are precise interrupts desirable?

• Restartability doesn’t require preciseness.  However, 
preciseness makes it a lot easier to restart.

• Simplify the task of the operating system a lot
– Less state needs to be saved away if unloading process.
– Quick to restart (making for fast interrupts)

• Many types of interrupts/exceptions need to be 
restartable.  Easier to figure out what actually 
happened:

– I.e. TLB faults.  Need to fix translation, then restart load/store
– IEEE gradual underflow, illegal operation, etc:

e.g. Suppose you are computing:
Then, for        , 

Want to take exception, replace NaN with 1, then restart.

0→x
operationillegalNaNf _

0
0)0( +⇒=

x
xxf )sin()( =
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Approximations to precise interrupts
• Hardware has imprecise state at time of interrupt 
• Exception handler must figure out how to find a precise PC 

at which to restart program.
– Emulate instructions that may remain in pipeline
– Example: SPARC allows limited parallelism between FP and integer

core:
» possible that integer instructions #1 - #4

have already executed at time that
the first floating instruction gets a
recoverable exception

» Interrupt handler code must fixup <float 1>,
then emulate both <float 1> and <float 2>

» At that point, precise interrupt point is
integer instruction #5.

<float 1>
<int 1>
<int 2>
<int 3>
<float 2>
<int 4>
<int 5>

• Vax had string move instructions that could be in 
middle at time that page-fault occurred.

• Could be arbitrary processor state that needs to be 
restored to restart execution.
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Precise Exceptions in simple 
5-stage pipeline:

• Exceptions may occur at different stages in pipeline 
(I.e. out of order):

– Arithmetic exceptions occur in execution stage
– TLB faults can occur in instruction fetch or memory stage

• What about interrupts?  The doctor’s mandate of “do 
no harm” applies here: try to interrupt the pipeline as 
little as possible

• All of this solved by tagging instructions in pipeline as 
“cause exception or not” and wait until end of 
memory stage to flag exception

– Interrupts become marked NOPs (like bubbles) that are placed into 
pipeline instead of an instruction.

– Assume that interrupt condition persists in case NOP flushed
– Clever instruction fetch might start fetching instructions from 

interrupt vector, but this is complicated by need for
supervisor mode switch, saving of one or more PCs, etc 2/15/2005 CS252S05 L9 Execptions 16

Another look at the exception problem

• Use pipeline to sort this out!
– Pass exception status along with instruction.
– Keep track of PCs for every instruction in pipeline.
– Don’t act on exception until it reache WB stage

• Handle interrupts through “faulting noop” in IF stage
• When instruction reaches WB stage:

– Save PC ⇒ EPC, Interrupt vector addr ⇒ PC
– Turn all instructions in earlier stages into noops!

Pr
og

ra
m

 F
lo

w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow
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How to achieve precise interrupts
when instructions executing in arbitrary 
order?

• Jim Smith’s classic paper discusses several methods 
for getting precise interrupts:

– In-order instruction completion
– Reorder buffer
– History buffer
– Future buffer
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Problem: “Fetch” unit

Instruction Fetch
with 

Branch Prediction

Out-Of-Order
Execution

Unit

Correctness Feedback
On Branch Results

Stream of Instructions
To Execute

• Instruction fetch decoupled from execution
• Often issue logic (+ rename) included with Fetch
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Branches must be resolved quickly for 
loop overlap!

• In our loop-unrolling example, we relied on the fact that branches 
were under control of “fast” integer unit in order to get overlap!  

Loop: LD F0 0 R1
MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

• What happens if branch depends on result of multd??
– We completely lose all of our advantages!
– Need to be able to “predict” branch outcome.
– If we were to predict that branch was taken, this would be right

most of the time.  
• Problem much worse for superscalar machines!
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• Prediction has become essential to getting good 
performance from scalar instruction streams.

• We will discuss predicting branches.  However, 
architects are now predicting everything: 
data dependencies, actual data, and results of groups 
of instructions:

– At what point does computation become a probabilistic operation + 
verification?

– We are pretty close with control hazards already…
• Why does prediction work?

– Underlying algorithm has regularities.
– Data that is being operated on has regularities.
– Instruction sequence has redundancies that are artifacts of way that 

humans/compilers think about problems.
• Prediction ⇒ Compressible information streams?

Prediction: 
Branches, Dependencies, Data
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What about Precise 
Exceptions/Interrupts?

• Both Scoreboard and Tomasulo have:
– In-order issue, out-of-order execution, out-of-order completion

• Recall: An interrupt or exception is precise if there is 
a single instruction for which:

– All instructions before that have committed their state
– No following instructions (including the interrupting 

instruction) have modified any state.

• Need way to resynchronize execution with instruction 
stream (I.e. with issue-order)

– Easiest way is with in-order completion (i.e. reorder buffer)
– Other Techniques (Smith paper): Future File, History Buffer
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Reorder Buffer
• Idea: 

– record instruction issue 
order

– Allow them to execute out of 
order

– Reorder them so that they 
commit in-order

• On issue:
– Reserve slot at tail of ROB
– Record dest reg, PC
– Tag u-op with ROB slot

• Done execute
– Deposit result in ROB slot
– Mark exception state

• WB head of ROB
– Check exception, handle
– Write register value, or
– Commit the store

IFetch

Opfetch/Dcd

Write Back

RF
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Reorder Buffer + Forwarding
• Idea: 

– Forward uncommitted 
results to later 
uncommitted operations

• Trap
– Discard remainder of ROB

• Opfetch / Exec
– Match source reg against 

all dest regs in ROB
– Forward last (once 

available)

IFetch

Opfetch/Dcd

Write Back

Reg
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Reorder Buffer + Forwarding + 
Speculation
• Idea: 

– Issue branch into ROB
– Mark with prediction
– Fetch and issue predicted 

instructions speculatively
– Branch must resolve 

before leaving ROB
– Resolve correct

» Commit following 
instr

– Resolve incorrect
» Mark following instr

in ROB as invalid
» Let them clear

IFetch

Opfetch/Dcd

Write Back

Reg
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History File
• Maintain issue order, like 

ROB
• Each entry records dest reg

and old value of dest. 
Register

– What if old value not available 
when instruction issues?

• FUs write results into 
register file

– Forward into correct entry in 
history file

• When exception reaches 
head

– Restore architected registers from 
tail to head

IFetch

Opfetch/Dcd

Write Back

Reg
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Future file
• Idea

– Arch registers reflect 
state at commit point

– Future register reflect 
whatever instructions 
have completed

– On WB update future
– On commit update 

arch
– On exception

» Discard future
» Replace with arch

• Dest w/I ROB

IFetch

Opfetch/Dcd

Write Back

FutureReg
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HW support for precise interrupts
• Concept of Reorder Buffer (ROB):

– Holds instructions in FIFO order, exactly as they were issued
» Each ROB entry contains PC, dest reg, result, exception status

– When instructions complete, results placed into ROB
» Supplies operands to other instruction between execution 

complete & commit ⇒ more registers like RS
» Tag results with ROB buffer number instead of reservation station

– Instructions commit ⇒values at head of ROB placed in registers
– As a result, easy to undo 

speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder
Res Stations Res Stations

FP Regs

Commit path
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Recall: Four Steps of Speculative 
Tomasulo Algorithm
1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send 
operands & reorder buffer no. for destination (this stage sometimes 
called “dispatch”)

2. Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch CDB for 
result; when both in reservation station, execute; checks RAW 
(sometimes called “issue”)

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update register 
with result (or store to memory) and remove instr from reorder buffer. 
Mispredicted branch flushes reorder buffer (sometimes called 
“graduation”)
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What are the hardware complexities with 
reorder buffer (ROB)?

Reorder
Buffer

FP
Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Com
par

network

• How do you find the latest version of a register?
– As specified by Smith paper, need associative comparison network
– Could use future file or just use the register result status buffer to track which 

specific reorder buffer has received the value
• Need as many ports on ROB as register file

Reorder Table

D
es

t
Re

g
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lt

Ex
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?

Va
lid

Pr
og

ra
m
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er
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Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1
F10F10

F0F0
ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)
NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0F0 ADDD F0,F4,F6ADDD F0,F4,F6 NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5 0+R35 0+R3
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3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
ROB5ROB5 ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
NN

NN

F4F4 LD F4,0(R3)LD F4,0(R3) NN

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

Dest

Reorder Buffer

Registers

1 10+R21 10+R2
5 0+R35 0+R3
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3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10] ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

NN

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)6 ADDD M[10],R(F6)
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3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers
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----

F0F0
M[10]M[10]

<val2><val2>
ST 0(R3),F4ST 0(R3),F4

ADDD F0,F4,F6ADDD F0,F4,F6
YY

ExEx

F4F4 M[10]M[10] LD F4,0(R3)LD F4,0(R3) YY

---- BNE F2,<…>BNE F2,<…> NN

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F10F10

F0F0

DIVD F2,F10,F6DIVD F2,F10,F6

ADDD F10,F4,F0ADDD F10,F4,F0

LD F0,10(R2)LD F0,10(R2)

NN

NN

NN

Done?

Dest Dest

Oldest

Newest

from 
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

What about memory
hazards???
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Memory Disambiguation:
Sorting out RAW Hazards in memory

• Question: Given a load that follows a store in program 
order, are the two related?

– (Alternatively: is there a RAW hazard between the store and the load)?

Eg: st 0(R2),R5
ld R6,0(R3)

• Can we go ahead and start the load early?  
– Store address could be delayed for a long time by some calculation that 

leads to R2 (divide?).  
– We might want to issue/begin execution of both operations in same cycle.
– Today: Answer is that we are not allowed to start load until we know that 

address 0(R2) ≠ 0(R3)
– Later: We might guess at whether or not they are dependent (called 

“dependence speculation”) and use reorder buffer to fixup if we are wrong.
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Hardware Support for Memory 
Disambiguation

• Need buffer to keep track of all outstanding stores to 
memory, in program order.

– Keep track of address (when becomes available) and value (when becomes 
available)

– FIFO ordering: will retire stores from this buffer in program order
• When issuing a load, record current head of store queue 

(know which stores are ahead of you).
• When have address for load, check store queue:

– If any store prior to load is waiting for its address, stall load.
– If load address matches earlier store address (associative lookup), then we 

have a memory-induced RAW hazard:
» store value available ⇒ return value
» store value not available ⇒ return ROB number of source 

– Otherwise, send out request to memory
• Actual stores commit in order, so no worry about 

WAR/WAW hazards through memory.
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---- LD F4, 10(R3)LD F4, 10(R3) NN

Memory Disambiguation:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2F2

F0F0

----

R[F5]R[F5]

<val 1><val 1>

ST 10(R3), F5 ST 10(R3), F5 

LD F0,32(R2)LD F0,32(R2)

ST 0(R3), F4ST 0(R3), F4

NN

NN

YY

Done?

Dest Dest

Oldest

Newest

from 
Memory

2 32+R22 32+R2
4 ROB34 ROB3

Dest

Reorder Buffer

Registers
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Relationship between precise 
interrupts and speculation:

• Speculation is a form of guessing
– Branch prediction, data prediction
– If we speculate and are wrong, need to back up and restart execution to 

point at which we predicted incorrectly
– This is exactly same as precise exceptions!

• Branch prediction is a very important!
– Need to “take our best shot” at predicting branch direction.
– If we issue multiple instructions per cycle, lose lots of potential 

instructions otherwise:
» Consider 4 instructions per cycle
» If take single cycle to decide on branch, waste from 4 - 7 instruction 

slots!
• Technique for both precise interrupts/exceptions and 

speculation: in-order completion or commit
– This is why reorder buffers in all new processors
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Explicit register renaming:
R10000 Freelist Management

F10F10

F0F0
P10P10

P0P0
ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)
NN

NN

Done?

Oldest

Newest

P32P32 P2P2 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P36P36 P38P38 P40P40 P42P42 … P60P60 P62P62

Current Map Table

Freelist
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Explicit register renaming:
R10000 Freelist Management

----

----

F2F2

F10F10

F0F0

P2P2

P10P10

P0P0

BNE P36,<…>BNE P36,<…> NN

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

NN

NN

Done?

Oldest

Newest

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction
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Explicit register renaming:
R10000 Freelist Management

----

F0F0

F4F4

----

F2F2

F10F10

F0F0

P32P32

P4P4

P2P2

P10P10

P0P0

ST 0(R3),P40ST 0(R3),P40

ADDD P40,P38,P6ADDD P40,P38,P6
YY

YY

LD P38,0(R3)LD P38,0(R3) YY

BNE P36,<…>BNE P36,<…> NN

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

yy

yy

Done?

Oldest

Newest

P40P40 P36P36 P38P38 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P42P42 P44P44 P48P48 P50P50 … P0P0 P10P10

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction
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Explicit register renaming:
R10000 Freelist Management

F2F2

F10F10

F0F0

P2P2

P10P10

P0P0

DIVD P36,P34,P6DIVD P36,P34,P6

ADDD P34,P4,P32ADDD P34,P4,P32

LD P32,10(R2)LD P32,10(R2)

NN

yy

yy

Done?

Oldest

Newest

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62 Checkpoint at BNE instruction

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48 … P60P60 P62P62

Speculation error fixed by restoring map table and freelist
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Summary
• Control flow causes lots of trouble with pipelining

– Other hazards can be “fixed” with more transistors or forwarding
– We will spend a lot of time on branch prediction techniques

• Some pre-decode techniques can transform dynamic 
decisions into static ones (VLIW-like)

– Beginnings of dynamic compilation techniques

• Interrupts and Exceptions either interrupt the current 
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single 
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed 

• Hardware techniques exist for precise exceptions even 
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution
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Disable Network Intr
…

subi r4,r1,#4
slli r4,r4,#2
lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2
lw r1,12(r0)
beq r1,no_mess
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3
Clear Network Intr

…

Alternative: Polling
(again, for arrival of network message)

Ex
te

rn
al
 I

nt
er

ru
pt

“Handler”

no_mess:

Polling Point
(check device register)
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Interrupt Priorities Must be Handled

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Reenable All Ints
Save registers

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTE

N
et

wo
rk

 I
nt

er
ru

pt

PC sa
ved

Disa
ble A

ll I
nts

Supe
rvi

sor
 M

ode

Restore PC

User Mode

Could be interrupted by disk

Note that priority must be raised to avoid recursive interrupts!
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Interrupt controller hardware and 
mask levels

• Operating system constructs a hierarchy of masks 
that reflects some form of interrupt priority.

• For instance:

– This reflects the an order of urgency to interrupts
– For instance, this ordering says that disk events can interrupt the 

interrupt handlers for network interrupts. 

Priority Examples 
0 Software interrupts 
2 Network Interrupts 
4 Sound card 
5 Disk Interrupt 
6  Real Time clock 
 Non-Maskable Ints (power) 
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Polling is faster/slower than 
Interrupts.

• Polling is faster than interrupts because
– Compiler knows which registers in use at polling point.  Hence, do not 

need to save and restore registers (or not as many).
– Other interrupt overhead avoided (pipeline flush, trap priorities, etc).

• Polling is slower than interrupts because
– Overhead of polling instructions is incurred regardless of whether or not 

handler is run.  This could add to inner-loop delay.
– Device may have to wait for service for a long time.

• When to use one or the other?
– Multi-axis tradeoff

» Frequent/regular events good for polling, as long as device can be 
controlled at user level.

» Interrupts good for infrequent/irregular events
» Interrupts good for ensuring regular/predictable service of events. 


