
1

NOW Handout Page 1

EECS 252 Graduate Computer
Architecture

Lec 5 – Out-of-Order Completion

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://www-inst.eecs.berkeley.edu/~cs252

2/1/2005 CS252 SP05, Lec 5 OOC 2

Review
• Data stationary pipeline control

– Micro-instruction & PC track down the pipe
– Accumulate state

• Implementing bubbles, stalls, forwarding,
multicycle operations

• Branch prediction
– Static vs dynamic
– N-bit saturating counters
– Local and global history
– Correlated predictors, Tournament, GSHARE
– Branch target buffers, return address predictors

2/1/2005 CS252 SP05, Lec 5 OOC 3

Outline
• Relax pipeline design to allow out-of-order

completions
– Cray-1: register reservations

• Relax pipeline to allow out-of-order issue
– CDC 6600: Scoreboard

• Compiler optimizations for ILP
• Superscalar issue
• Maybe Go back and finish exceptions

2/1/2005 CS252 SP05, Lec 5 OOC 4

Pipelining with Reg. Reservations
• Assumptions

1. Multiple pipelined function units of different latency
» able to accept operations at issue rate
» may be exceptions (e.g., divide)

2. Issue instructions in order
3. Operand fetch in order
4. Completion out of order

» short ops may bypass long ones
5. Some shared resources (e.g., reg write port)

• Implications
– WAR hazard still resolved by pipeline flow (2 & 3)
– RAW, WAW, and structural still present

• Design philosophy (ala Cray)
– Resolve hazards as instruction is issued into pipeline
– Pipeline is non-blocking

2/1/2005 CS252 SP05, Lec 5 OOC 5

Resolving Structural Hazards
• With static pipeline flow, resource usage is known in

advance
• Instruction requires X at t ticks after issue
• If reservationX[t] is clear, issue inst and set bit
• Otherwise, delay till clear
• At each tick the reservationX[] shifts by one, so will

eventually clear
• Multiple resources? Range of delays?

“shift reg.” for resource X

NOW
Delay till
resource
is used

required
resource

2/1/2005 CS252 SP05, Lec 5 OOC 6

Basic Issue Model
• Issue unit checks for all

hazards
– Structural RAW, WAW

• Holds issue while hazards
exist

• Upon issue, register values
provided to F.U

• Executes to completion
without blocking

Instr. Fetch

Op Fetch
& Issue

rDvalA valBop

2

NOW Handout Page 2

2/1/2005 CS252 SP05, Lec 5 OOC 7

Hazard Resolution
• Structural

– Op code => resource usage
– Check resource resv
– Set on issue

• Data
– Add reservation bit one each

register
– Check RegRsv for

source and destination
registers

– Hold issue till clear
– Set bit on destination register
– Clear bit on dest reg. Write

• Questions:
– Forwarding?

Instr. Fetch

Op Fetch
& Issue

Motorola 88000 “scoreboard” [sic]

rDvalA valBop

2/1/2005 CS252 SP05, Lec 5 OOC 8

Example
Add r1 := r2 + r3
Add r2 := r2 + 4
Lod r5 := mem[r1+16]
Lod r6 := mem[r1+32]
Mul r7 := r5 * r6
Bnz r1, foo
Sub r7 := r0 – r0

Instr. Fetch

Op Fetch
& Issue

rDvalA valBop

2/1/2005 CS252 SP05, Lec 5 OOC 9

Cray-1 Discussion
• Technological Assumptions
• Why no forwarding?
• Longevity of the ISA?
• Instruction cache?

– Four blocks (RR) of 16x4 “parcels”
– Issue delayed on miss

» 2 CP for change of block

• Branch delays?
– Brach op code delayed till second parcel is obtained
– 5 clocks (reg zero, nz, pos, neg)

• I/O system?

2/1/2005 CS252 SP05, Lec 5 OOC 10

Pipelining with Scoreboarding
• Assumptions

1. Multiple function units of different latency
– Especially non-pipelined units

2. Issue instructions whenever FU available, unless would
cause multiple outstanding writes to same regsiter
– Operand fetch out of order
– Completion out of order

3. Some shared resources (e.g., reg write port)
• Implications

– Need to resolve RAW, WAR, WAW and structural
• Design philosophy (ala CDC 6600)

– Issue unit tracks all outstanding dependences
– Holds issue if structural or WAW hazard
– Informs FUs when hazards resolved
– FUs fetch operands from register file and proceed

2/1/2005 CS252 SP05, Lec 5 OOC 11

Scoreboard Operation
• Issue

– Hold while FU unavailable or
destination register reserved
(by FU f)

• Read operands
– SB informs FU with all sources

available to fetch & go
– Limited by read ports

• Write back
– SB schedules one FU to write
– Waits no FU waiting to fetch

(old version) of reg

Instr. Fetch

Issue &
Resolve

ex

rDrA rBop

rDvalA valBop

op fetch

Sc
or

eb
oa

rd

op fetch

FU

2/1/2005 CS252 SP05, Lec 5 OOC 12

Example

Instr. Fetch

Issue &
Resolve

ex

op fetch

Sc
or

eb
oa

rd

op fetch

FU

Add r1 := r2 + r3
Add r2 := r2 + 4
Lod r5 := mem[r1+16]
Lod r6 := mem[r1+32]
Mul r7 := r5 * r6
Bnz r1, foo
Sub r7 := r0 – r0

3

NOW Handout Page 3

2/1/2005 CS252 SP05, Lec 5 OOC 13

Discussion
• Technological Assumptions
• Extend to allow forwarding?
• How do loads and stores work?
• Instruction cache?
• I/O system?

2/1/2005 CS252 SP05, Lec 5 OOC 14

Case Study: MIPS R4000 (200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here as

well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and also

instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU

operation, and branch target computation and condition evaluation.
– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: What is impact on Load delay? Branch delay?
Why?

instr mem data memreg A
LU reg

IF IS RF EX DF DS TC WB

2/1/2005 CS252 SP05, Lec 5 OOC 15

Case Study: MIPS R4000

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

TWO Cycle
Load Latency

IF IS
IF

RF
IS
IF

EX
RF
IS
IF

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

THREE Cycle
Branch Latency
(conditions evaluated
during EX phase)
Delay slot plus two stalls
Branch likely cancels delay slot if not taken

2/1/2005 CS252 SP05, Lec 5 OOC 16

MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW
• 8 kinds of stages in FP units:

Stage Functional unit Description
A FP adder Mantissa ADD stage
D FP divider Divide pipeline stage
E FP multiplier Exception test stage
M FP multiplier First stage of multiplier
N FP multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers

2/1/2005 CS252 SP05, Lec 5 OOC 17

MIPS FP Pipe Stages

FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage
D Divide pipeline stage
E Exception test stage

2/1/2005 CS252 SP05, Lec 5 OOC 18

R4000 Performance
• Not ideal CPI of 1:

– Load stalls (1 or 2 clock cycles)
– Branch stalls (2 cycles + unfilled slots)
– FP result stalls: RAW data hazard (latency)
– FP structural stalls: Not enough FP hardware (parallelism)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

eq
nt

ot
t

es
pr

es
so gc

c li

do
du

c

na
sa

7

or
a

sp
ic

e2
g6

su
2c

or

to
m

ca
tv

Base Load stalls Branch stalls FP result stalls FP structural
stalls

4

NOW Handout Page 4

2/1/2005 CS252 SP05, Lec 5 OOC 19

Advanced Pipelining and Instruction
Level Parallelism (ILP)

• ILP: Overlap execution of unrelated instructions
• gcc 17% control transfer

– 5 instructions + 1 branch
– Beyond single block to get more instruction level parallelism

• Loop level parallelism one opportunity
– First SW, then HW approaches

• DLX Floating Point as example
– Measurements suggests R4000 performance FP execution has room

for improvement

2/1/2005 CS252 SP05, Lec 5 OOC 20

Can we make CPI closer to 1?
• Let’s assume full pipelining:

– If we have a 4-cycle latency, then we need 3 instructions
between a producing instruction and its use:

multf $F0,$F2,$F4
delay-1
delay-2
delay-3
addf $F6,$F10,$F0

Fetch Decode Ex1 Ex2 Ex3 Ex4 WB

multfdelay1delay2delay3addf

Earliest forwarding for
4-cycle instructions

Earliest forwarding for
1-cycle instructions

2/1/2005 CS252 SP05, Lec 5 OOC 21

FP Loop: Where are the Hazards?
Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar from F2
SD 0(R1),F4 ;store result
SUBI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero
NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

• Where are the stalls?
2/1/2005 CS252 SP05, Lec 5 OOC 22

FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: LD F0,0(R1) ;F0=vector element
2 stall
3 ADDD F4,F0,F2 ;add scalar in F2
4 stall
5 stall
6 SD 0(R1),F4 ;store result
7 SUBI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch R1!=zero
9 stall ;delayed branch slot

2/1/2005 CS252 SP05, Lec 5 OOC 23

Revised FP Loop Minimizing Stalls

6 clocks: Unroll loop 4 times code to make faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

1 Loop: LD F0,0(R1)
2 stall
3 ADDD F4,F0,F2
4 SUBI R1,R1,8
5 BNEZ R1,Loop ;delayed branch
6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

2/1/2005 CS252 SP05, Lec 5 OOC 24

Unroll Loop Four Times
(straightforward way)

Rewrite loop to
minimize stalls?

1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4

1 cycle stall
2 cycles stall

5

NOW Handout Page 5

2/1/2005 CS252 SP05, Lec 5 OOC 25

Unrolled Loop That
Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
SUBI even though changes
register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop:LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

2/1/2005 CS252 SP05, Lec 5 OOC 26

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

2/1/2005 CS252 SP05, Lec 5 OOC 27

SuperScalar Issue Rules
• Datapath has specific kinds of functional

parallelism
• Fetch packet of instructions
• “Issue rules”: constraints over and beyond

dependencies
– Ex: one arithmetic or branch, one load/store, one FP

2/1/2005 CS252 SP05, Lec 5 OOC 28

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration (1.5X)

2/1/2005 CS252 SP05, Lec 5 OOC 29

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In EPIC, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)
– In 1976 (same year as Cray-1) Floating Point Systems AP120B

» “poor mans Cray”, 2 MFLOPS for 50k vs 20 MFLOPS for 12M

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

2/1/2005 CS252 SP05, Lec 5 OOC 30

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

6

NOW Handout Page 6

2/1/2005 CS252 SP05, Lec 5 OOC 31

Summary
• Increasingly powerful (and complex) dynamic

mechanism for detecting and resolving hazards
– In-order pipeline, in-order op-fetch with register reservations,

in-order issue with scoreboard
– Weaken the timing and flow assumptions
– Allow later instructions to proceed around ones that are

stalled
– Facilitate multiple issue
– Not quite powerful enough to unroll loops dynamically

» Stop when attempt to rebind a new value to a reg.

• Compiler techniques make it easier for HW to find
the ILP

– Reduces the impact of more sophisticated organization
– Requires a larger architected namespace
– Easier for more structured code

