

Several of	the SPEC	benchmarl	s have less
than a doz	en branche iches:	es respons	ible for 90%
program	branch %	static	# = 90%
compress	14%	236	13
egntott	25%	494	5
gcc	15%	9531	2020
mpeg	10%	5598	532
real gcc	13%	17361	3214
Real prog	rams + OS	more like g	icc
Small ben	efits hevon	d benchm	, arks for
	2 problem	e with bra	ach aliaeae2

Interrupt controller hardware and mask levels Operating system constructs a hierarchy of masks that reflects some form of interrupt priority.					
For instance:	Priority	Examples			
	0	Software interrupts			
	2	Network Interrupts			
	4	Sound card			
	5	Disk Interrupt			
	6	Real Time clock			
	Q	Non-Maskable Ints (power)			
 This reflects the For instance, this interrupt handler 	an order of urg s ordering says rs for network i	ency to interrupts that disk events can interrupt the nterrupts.			
1/27/2005	CS252S05 L4 Pipe Issues				

SPARC (and RISC I) had register windows

- On interrupt or procedure call, simply switch to a different set of registers
- Really saves on interrupt overhead
 - Interrupts can happen at any point in the execution, so compiler cannot help with knowledge of live registers.
 - Conservative handlers must save all registers
 - Short handlers might be able to save only a few, but this analysis is compilcated
- · Not as big a deal with procedure calls
 - Original statement by Patterson was that Berkeley didn't have a compiler team, so they used a hardware solution
 - Good compilers can allocate registers across procedure boundaries
 - Good compilers know what registers are live at any one time
- However, register windows have returned!
 IA64 has them
- ^{1/27/2005} Many other processors have shadow registers for interrupts

45

Summary

Control flow causes lots of trouble with pipelining
 Other hazards can be "fixed" with more transistors or forwarding

(0)

55

- Other hazards can be fixed with more transitions or forwards
 We will spend a lot of time on branch prediction techniques
- Some pre-decode techniques can transform dynamic decisions into static ones (VLIW-like)
 Beginnings of dynamic compilation techniques
- Interrupts and Exceptions either interrupt the current instruction or happen between instructions
- Possibly large quantities of state must be saved before interrupting
 Machines with precise exceptions provide one single point in the program to restart execution
 - All instructions before that point have completed
 - No instructions after or including that point have completed
- Hardware techniques exist for precise exceptions even in the face of out-of-order execution!
 - 172 https://www.secution