
1

NOW Handout Page 1

EECS 252 Graduate Computer
Architecture

Lec 4 – Issues in Basic Pipelines (stalls,
exceptions, branch prediction)

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://www-inst.eecs.berkeley.edu/~cs252

1/27/2005 CS252S05 L4 Pipe Issues 2

Debate Review: ISA -a Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher

levels
– Permits an efficient implementation at lower

levels

Prog. Lang. Compiler Operating Systems

• Extremely well defined
abstraction

• Huge, quantitative base of
usage data for real applications
filtered through SOA compiler
technology

• Huge quantitative base of
implementation costs and
performance

• Convergence trend – enable
optimizations, support HLL, OS
support, contain complexity

• Lots of marketing (ignores,
misuses, or selective use of
established data)

• Worse when we get beyond
scalar operations

• Translation / Interpretation
boundary becoming less sharp

1/27/2005 CS252S05 L4 Pipe Issues 3

Discussion Exercise
• In terms of the ‘iron triangle” what are the

performance implications of condition-codes?

1/27/2005 CS252S05 L4 Pipe Issues 4

Ordering Properties of basic inst. pipeline

• Instructions issued in order
• Operand fetch is stage 2 => operand fetched in order
• Write back in stage 5 => no WAW, no WAR hazards
• Common pipeline flow => operands complete in order
• Stage changes only at “end of instruction”

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Issue Complete

Execution window

1/27/2005 CS252S05 L4 Pipe Issues 5

What does forwarding do?
Time (clock cycles)

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

• Destination register is a name for instr’s result
• Source registers are names for sources
• Forwarding logic builds data dependence

(flow) graph for instructions in the execution
window

+

-

x

&|

1/27/2005 CS252S05 L4 Pipe Issues 6

aop

Ra
Rb
Rr

dcd
mop
wop

Control Pipeline

M
EM

-res

A
-res

A
LU

m
ux

m
ux

Registers

O
p A

O
p B B-byp

PC

IR
nPC

N
ext PC

I-fetch

D
-M

em

op

im
ed

+4

brch

nPC

mop

Rr
kill
?

wop
wop
Rr
kill
?

PC
1

PC
2

PC
3

fwd ctrl

2

NOW Handout Page 2

1/27/2005 CS252S05 L4 Pipe Issues 7

Historical Perspective: Microprogramming

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

one of these is
mapped into a
sequence of these

Supported complex instructions a sequence of simple micro-inst (RTs)
Pipelined micro-instruction processing, but very limited view.
Could not reorganize macroinstructions to enable pipelining

Micro-sequencer control

Datapath control

“macro-instructions”

Writable-control store?

1/27/2005 CS252S05 L4 Pipe Issues 8

Multicycle stages

• Stage microsequencer spits micro-ops into the pipe

Pipeline C
ontrol R

eg

Datapath Stage
N

xtPipeline C
ontrR

eg

Stall

1/27/2005 CS252S05 L4 Pipe Issues 9

Typical “simple” Pipeline
• Example: MIPS R4000

IF ID MEM WB

integer unit

FP/int Multiply

FP adder

FP/int divider

ex

m1 m2 m3 m4 m5 m6 m7

a1 a2 a3 a4

Div (lat = 25,
Init inv=25)

1/27/2005 CS252S05 L4 Pipe Issues 10

Branch prediction

• Datapath parallelism only useful if you can keep
it fed.

• Easy to fetch multiple (consecutive) instructions
per cycle

– essentially speculating on sequential flow

• Jump: unconditional change of control flow
– Always taken

• Branch: conditional change of control flow
– Taken about 50% of the time
– Backward: 30% x 80% taken
– Forward: 70% x 40% taken

1/27/2005 CS252S05 L4 Pipe Issues 11

A Big Idea for Today
• Reactive: past actions cause system to adapt use

– do what you did before better
– ex: caches
– TCP windows
– URL completion, ...

• Proactive: uses past actions to predict future
actions

– optimize speculatively, anticipate what you are about to do
– branch prediction
– long cache blocks
– ???

1/27/2005 CS252S05 L4 Pipe Issues 12

Case for Branch Prediction when
Issue N instructions per clock cycle
1. Branches will arrive up to n times faster in an n-

issue processor
2. Amdahl’s Law => relative impact of the control

stalls will be larger with the lower potential CPI
in an n-issue processor

conversely, need branch prediction to ‘see’
potential parallelism

3

NOW Handout Page 3

1/27/2005 CS252S05 L4 Pipe Issues 13

Branch Prediction Schemes
0. Static Branch Prediction
• 1-bit Branch-Prediction Buffer
• 2-bit Branch-Prediction Buffer
• Correlating Branch Prediction Buffer
• Tournament Branch Predictor
• Branch Target Buffer
• Integrated Instruction Fetch Units
• Return Address Predictors

1/27/2005 CS252S05 L4 Pipe Issues 14

Dynamic Branch Prediction
• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address index table of

1-bit values
– Says whether or not branch taken last time
– No address check

» saves HW, but may not be right branch
– If inst == BR, update table with outcome

• Problem: in a loop, 1-bit BHT will cause 2 mispredictions
– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it predicts exit

instead of looping
– avg is 9 iterations before exit
– Only 80% accuracy even if loop 90% of the time

• Local history
– This particular branch inst

» Or one that maps into same lost

PC

1/27/2005 CS252S05 L4 Pipe Issues 15

• 2-bit scheme where change prediction only if get
misprediction twice:

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process
• Generalize to n-bit saturating counter

2-bit Dynamic Branch Prediction
(J. Smith, 1981)

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT

T

NT

NT

1/27/2005 CS252S05 L4 Pipe Issues 16

Consider 3 Scenarios
• Branch for loop test
• Check for error or exception
• Alternating taken / not-taken

– example?

• Your worst-case prediction scenario

• How could HW predict “this loop will execute 3
times” using a simple mechanism?

taken

predictors

Global history

1/27/2005 CS252S05 L4 Pipe Issues 17

Correlating Branches

Idea: taken/not taken
of recently executed
branches is related to
behavior of next
branch (as well as the
history of that branch
behavior)

– Then behavior of recent
branches selects
between, say, 4
predictions of next
branch, updating just that
prediction

• (2,2) predictor: 2-bit
global, 2-bit local

Branch address (4 bits)

2-bits per branch
local predictors

PredictionPrediction

2-bit recent global
branch history

(01 = not taken then taken)
1/27/2005 CS252S05 L4 Pipe Issues 18

0%

1%

5%

6% 6%

11%

4%

6%

5%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

nasa7 matrix300 tomcatv doducd spice fpppp gcc espresso eqntott li

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes
(Figure 3.15, p. 206)

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

What’s missing in this picture?

4

NOW Handout Page 4

1/27/2005 CS252S05 L4 Pipe Issues 19

Re-evaluating Correlation

• Several of the SPEC benchmarks have less
than a dozen branches responsible for 90% of
taken branches:
program branch % static # = 90%
compress 14% 236 13
eqntott 25% 494 5
gcc 15% 9531 2020
mpeg 10% 5598 532
real gcc 13% 17361 3214

• Real programs + OS more like gcc
• Small benefits beyond benchmarks for

correlation? problems with branch aliases?

1/27/2005 CS252S05 L4 Pipe Issues 20

BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table programs vary from 1%
misprediction (nasa7, tomcatv) to 18% (eqntott),
with spice at 9% and gcc at 12%

• For SPEC92,
4096 about as good as infinite table

1/27/2005 CS252S05 L4 Pipe Issues 21

Dynamically finding structure in
Spaghetti

?

1/27/2005 CS252S05 L4 Pipe Issues 22

Tournament Predictors
• Motivation for correlating branch predictors is 2-

bit predictor failed on important branches; by
adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Use the predictor that tends to guess correctly
addr history

Predictor A Predictor B

1/27/2005 CS252S05 L4 Pipe Issues 23

Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global

predictor and a local predictor
• Global predictor also has 4K entries and is indexed by the

history of the last 12 branches; each entry in the global
predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent 10
branch outcomes for the entry. 10-bit history allows patterns
10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is used
to index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

1/27/2005 CS252S05 L4 Pipe Issues 24

% of predictions from local
predictor in Tournament Prediction
Scheme

98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

5

NOW Handout Page 5

1/27/2005 CS252S05 L4 Pipe Issues 25

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

fig 3.40

1/27/2005 CS252S05 L4 Pipe Issues 26

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament

1/27/2005 CS252S05 L4 Pipe Issues 27

GSHARE
• A good simple predictor
• Sprays predictions for a given address across a

large table for different histories

address

xor

history

n

1/27/2005 CS252S05 L4 Pipe Issues 28

Need Address
at Same Time as Prediction
• Branch Target Buffer (BTB): Address of branch index to get

prediction AND branch address (if taken)
– Note: must check for branch match now, since can’t use wrong branch address

(Figure 3.19, 3.20)

Branch PC Predicted PC

=?

PC of instruction
FET

CH

Extra
prediction state

bits
Yes: instruction is
branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)

1/27/2005 CS252S05 L4 Pipe Issues 29

• Avoid branch prediction by turning branches
into conditionally executed instructions:
if (x) then A = B op C else NOP

– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following instr.
– IA-64: 64 1-bit condition fields selected

so conditional execution of any instruction
– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

x

A =
B op C

Predicated Execution

1/27/2005 CS252S05 L4 Pipe Issues 30

Special Case Return Addresses
• Register Indirect branch hard to predict address
• SPEC89 85% such branches for procedure return
• Since stack discipline for procedures, save return

address in small buffer that acts like a stack: 8 to
16 entries has small miss rate

6

NOW Handout Page 6

1/27/2005 CS252S05 L4 Pipe Issues 31

Pitfall: Sometimes bigger and dumber is
better

• 21264 uses tournament predictor (29 Kbits)
• Earlier 21164 uses a simple 2-bit predictor

with 2K entries (or a total of 4 Kbits)
• SPEC95 benchmarks, 22264 outperforms

– 21264 avg. 11.5 mispredictions per 1000 instructions
– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for transaction processing (TP) !
– 21264 avg. 17 mispredictions per 1000 instructions
– 21164 avg. 15 mispredictions per 1000 instructions

• TP code much larger & 21164 hold 2X branch
predictions based on local behavior (2K vs.
1K local predictor in the 21264)

1/27/2005 CS252S05 L4 Pipe Issues 32

A“zero-cycle” jump
• What really has to be done at runtime?

– Once an instruction has been detected as a jump or JAL, we might
recode it in the internal cache.

– Very limited form of dynamic compilation?

• Use of “Pre-decoded” instruction cache
– Called “branch folding” in the Bell-Labs CRISP processor.
– Original CRISP cache had two addresses and could thus fold a

complete branch into the previous instruction
– Notice that JAL introduces a structural hazard on write

and r3,r1,r5
addi r2,r3,#4
sub r4,r2,r1
jal doit
subi r1,r1,#1

A:

sub r4,r2,r1 doit
addi r2,r3,#4 A+8N

sub r4,r2,r1 L

--- -----

and r3,r1,r5 A+4N

subi r1,r1,#1 A+20N

Internal Cache state:

1/27/2005 CS252S05 L4 Pipe Issues 33

reflect PREDICTIONS and remove delay
slots

• This causes the next instruction to be immediately
fetched from branch destination (predict taken)

• If branch ends up being not taking, then squash
destination instruction and restart pipeline at
address A+16

Internal Cache state:

and r3,r1,r5
addi r2,r3,#4
sub r4,r2,r1
bne r4,loop
subi r1,r1,#1

A:

sub r4,r2,r1
addi r2,r3,#4
sub r4,r2,r1
bne loop

and r3,r1,r5

subi r1,r1,#1

N

N

N

N

N

A+12
A+8

loop

A+4

A+20

Next

A+16:

1/27/2005 CS252S05 L4 Pipe Issues 34

Dynamic Branch Prediction
Summary
• Prediction becoming important part of scalar

execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to
competitive solutions and pick between them

• Branch Target Buffer: include branch address &
prediction

• Predicated Execution can reduce number of
branches, number of mispredicted branches

• Return address stack for prediction of indirect jump

1/27/2005 CS252S05 L4 Pipe Issues 35

Adminstrative Issues
• HW 1 posted, Due in a week. Work in Pairs
• Readings for Tuesday: Cray 1, CDC 6600

– Bring a question on each

1/27/2005 CS252S05 L4 Pipe Issues 36

Exceptions and Interrupts

(Hardware)

7

NOW Handout Page 7

1/27/2005 CS252S05 L4 Pipe Issues 37

Example: Device Interrupt
(Say, arrival of network message)

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Reenable All Ints
Save registers

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTE

Ex
te

rn
al
 I

nt
er

ru
pt

PC sa
ved

Disa
ble A

ll I
nts

Supe
rvi

sor
 M

ode

Restore PC

User Mode

“I
nt

er
ru

pt
 H

an
dl

er
”

1/27/2005 CS252S05 L4 Pipe Issues 38

Disable Network Intr
…

subi r4,r1,#4
slli r4,r4,#2
lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2
lw r1,12(r0)
beq r1,no_mess
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3
Clear Network Intr

…

Alternative: Polling
(again, for arrival of network message)

Ex
te

rn
al
 I

nt
er

ru
pt

“Handler”

no_mess:

Polling Point
(check device register)

1/27/2005 CS252S05 L4 Pipe Issues 39

Polling is faster/slower than
Interrupts.

• Polling is faster than interrupts because
– Compiler knows which registers in use at polling point. Hence, do not

need to save and restore registers (or not as many).
– Other interrupt overhead avoided (pipeline flush, trap priorities, etc).

• Polling is slower than interrupts because
– Overhead of polling instructions is incurred regardless of whether or not

handler is run. This could add to inner-loop delay.
– Device may have to wait for service for a long time.

• When to use one or the other?
– Multi-axis tradeoff

» Frequent/regular events good for polling, as long as device can be
controlled at user level.

» Interrupts good for infrequent/irregular events
» Interrupts good for ensuring regular/predictable service of events.

1/27/2005 CS252S05 L4 Pipe Issues 40

Exception/Interrupt classifications

• Exceptions: relevant to the current process
– Faults, arithmetic traps, and synchronous traps
– Invoke software on behalf of the currently executing process

• Interrupts: caused by asynchronous, outside events
– I/O devices requiring service (DISK, network)
– Clock interrupts (real time scheduling)

• Machine Checks: caused by serious hardware failure
– Not always restartable
– Indicate that bad things have happened.

» Non-recoverable ECC error
» Machine room fire
» Power outage

1/27/2005 CS252S05 L4 Pipe Issues 41

A related classification:
Synchronous vs. Asynchronous

• Synchronous: means related to the instruction stream,
i.e. during the execution of an instruction

– Must stop an instruction that is currently executing
– Page fault on load or store instruction
– Arithmetic exception
– Software Trap Instructions

• Asynchronous: means unrelated to the instruction
stream, i.e. caused by an outside event.

– Does not have to disrupt instructions that are already executing
– Interrupts are asynchronous
– Machine checks are asynchronous

• SemiSynchronous (or high-availability interrupts):
– Caused by external event but may have to disrupt current instructions

in order to guarantee service

1/27/2005 CS252S05 L4 Pipe Issues 42

Interrupt Priorities Must be Handled

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Reenable All Ints
Save registers

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTE

N
et

wo
rk

 I
nt

er
ru

pt

PC sa
ved

Disa
ble A

ll I
nts

Supe
rvi

sor
 M

ode

Restore PC

User Mode

Could be interrupted by disk

Note that priority must be raised to avoid recursive interrupts!

8

NOW Handout Page 8

1/27/2005 CS252S05 L4 Pipe Issues 43

Interrupt controller hardware and
mask levels

• Operating system constructs a hierarchy of masks
that reflects some form of interrupt priority.

• For instance:

– This reflects the an order of urgency to interrupts
– For instance, this ordering says that disk events can interrupt the

interrupt handlers for network interrupts.

Priority Examples
0 Software interrupts
2 Network Interrupts
4 Sound card
5 Disk Interrupt
6 Real Time clock
 Non-Maskable Ints (power)

1/27/2005 CS252S05 L4 Pipe Issues 44

Can we have fast interrupts?

• Pipeline Drain: Can be very Expensive
• Priority Manipulations
• Register Save/Restore

– 128 registers + cache misses + etc.

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

Hiccup(!)

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Raise priority
Reenable All Ints
Save registers

…
lw r1,20(r0)
lw r2,0(r1)
addi r3,r0,#5
sw 0(r1),r3

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTE

Fi
ne

 G
ra

in
 I

nt
er

ru
pt PC sa

ved

Disa
ble A

ll I
nts

Supe
rvi

sor
 M

ode

Restore PC

User Mode

Could be interrupted by disk

1/27/2005 CS252S05 L4 Pipe Issues 45

SPARC (and RISC I) had register
windows

• On interrupt or procedure call, simply switch to a
different set of registers

• Really saves on interrupt overhead
– Interrupts can happen at any point in the execution, so compiler

cannot help with knowledge of live registers.
– Conservative handlers must save all registers
– Short handlers might be able to save only a few, but this analysis

is compilcated

• Not as big a deal with procedure calls
– Original statement by Patterson was that Berkeley didn’t have a

compiler team, so they used a hardware solution
– Good compilers can allocate registers across procedure

boundaries
– Good compilers know what registers are live at any one time

• However, register windows have returned!
– IA64 has them
– Many other processors have shadow registers for interrupts 1/27/2005 CS252S05 L4 Pipe Issues 46

Supervisor State
• Typically, processors have some amount of state that

user programs are not allowed to touch.
– Page mapping hardware/TLB

» TLB prevents one user from accessing memory of another
» TLB protection prevents user from modifying mappings

– Interrupt controllers -- User code prevented from crashing machine
by disabling interrupts. Ignoring device interrupts, etc.

– Real-time clock interrupts ensure that users cannot lockup/crash
machine even if they run code that goes into a loop:

» “Preemptive Multitasking” vs “non-preemptive multitasking”

• Access to hardware devices restricted
– Prevents malicious user from stealing network packets
– Prevents user from writing over disk blocks

• Distinction made with at least two-levels:
USER/SYSTEM (one hardware mode-bit)

– x86 architectures actually provide 4 different levels, only two
usually used by OS (or only 1 in older Microsoft OSs)

1/27/2005 CS252S05 L4 Pipe Issues 47

Entry into Supervisor Mode
• Entry into supervisor mode typically happens on

interrupts, exceptions, and special trap instructions.
• Entry goes through kernel instructions:

– interrupts, exceptions, and trap instructions change to supervisor
mode, then jump (indirectly) through table of instructions in kernel

intvec: j handle_int0
j handle_int1

…
j handle_fp_except0

…
j handle_trap0
j handle_trap1

– OS “System Calls” are just trap instructions:
read(fd,buffer,count) => st 20(r0),r1

st 24(r0),r2
st 28(r0),r3
trap $READ

• OS overhead can be serious concern for achieving fast
interrupt behavior. 1/27/2005 CS252S05 L4 Pipe Issues 48

Precise Interrupts/Exceptions
• An interrupt or exception is considered precise if there

is a single instruction (or interrupt point) for which:
– All instructions before that have committed their state
– No following instructions (including the interrupting instruction)

have modified any state.
• This means, that you can restart execution at the

interrupt point and “get the right answer”
– Implicit in our previous example of a device interrupt:

» Interrupt point is at first lw instruction

…
add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

…

Ex
te

rn
al

In
te

rr
up

t PC saved

Disab
le All Ints

Supervis
or Mode

Restore PC
User Mode

Int
handler

9

NOW Handout Page 9

1/27/2005 CS252S05 L4 Pipe Issues 49

Precise interrupt point
may require multiple PCs

• On SPARC, interrupt hardware produces “pc” and
“npc” (next pc)

• On MIPS, only “pc” – must fix point in software

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts>

PC:
PC+4:

Interrupt point described as <PC,PC+4>

addi r4,r3,#4
sub r1,r2,r3
bne r1,there
and r2,r3,r5
<other insts>

Interrupt point described as:

<PC+4,there> (branch was taken)
or

<PC+4,PC+8> (branch was not taken)

PC:
PC+4:

1/27/2005 CS252S05 L4 Pipe Issues 50

Why are precise interrupts desirable?

• Restartability doesn’t require preciseness. However,
preciseness makes it a lot easier to restart.

• Simplify the task of the operating system a lot
– Less state needs to be saved away if unloading process.
– Quick to restart (making for fast interrupts)

• Many types of interrupts/exceptions need to be
restartable. Easier to figure out what actually
happened:

– I.e. TLB faults. Need to fix translation, then restart load/store
– IEEE gradual underflow, illegal operation, etc:

e.g. Suppose you are computing:
Then, for ,

Want to take exception, replace NaN with 1, then restart.

0→x
operationillegalNaNf _

0
0)0(+⇒=

x
xxf)sin()(=

1/27/2005 CS252S05 L4 Pipe Issues 51

Approximations to precise interrupts
• Hardware has imprecise state at time of interrupt
• Exception handler must figure out how to find a precise PC

at which to restart program.
– Emulate instructions that may remain in pipeline
– Example: SPARC allows limited parallelism between FP and integer

core:
» possible that integer instructions #1 - #4

have already executed at time that
the first floating instruction gets a
recoverable exception

» Interrupt handler code must fixup <float 1>,
then emulate both <float 1> and <float 2>

» At that point, precise interrupt point is
integer instruction #5.

<float 1>
<int 1>
<int 2>
<int 3>
<float 2>
<int 4>
<int 5>

• Vax had string move instructions that could be in
middle at time that page-fault occurred.

• Could be arbitrary processor state that needs to be
restored to restart execution. 1/27/2005 CS252S05 L4 Pipe Issues 52

Precise Exceptions in simple
5-stage pipeline:

• Exceptions may occur at different stages in pipeline
(I.e. out of order):

– Arithmetic exceptions occur in execution stage
– TLB faults can occur in instruction fetch or memory stage

• What about interrupts? The doctor’s mandate of “do
no harm” applies here: try to interrupt the pipeline as
little as possible

• All of this solved by tagging instructions in pipeline as
“cause exception or not” and wait until end of
memory stage to flag exception

– Interrupts become marked NOPs (like bubbles) that are placed into
pipeline instead of an instruction.

– Assume that interrupt condition persists in case NOP flushed
– Clever instruction fetch might start fetching instructions from

interrupt vector, but this is complicated by need for
supervisor mode switch, saving of one or more PCs, etc

1/27/2005 CS252S05 L4 Pipe Issues 53

Another look at the exception problem

• Use pipeline to sort this out!
– Pass exception status along with instruction.
– Keep track of PCs for every instruction in pipeline.
– Don’t act on exception until it reache WB stage

• Handle interrupts through “faulting noop” in IF stage
• When instruction reaches WB stage:

– Save PC ⇒ EPC, Interrupt vector addr ⇒ PC
– Turn all instructions in earlier stages into noops!

Pr
og

ra
m

 F
lo

w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow

1/27/2005 CS252S05 L4 Pipe Issues 54

How to achieve precise interrupts
when instructions executing in arbitrary
order?

• Jim Smith’s classic paper discusses several methods
for getting precise interrupts:

– In-order instruction completion
– Reorder buffer
– History buffer

• We will discuss these after we see the advantages of
out-of-order execution.

10

NOW Handout Page 10

1/27/2005 CS252S05 L4 Pipe Issues 55

Summary
• Control flow causes lots of trouble with pipelining

– Other hazards can be “fixed” with more transistors or forwarding
– We will spend a lot of time on branch prediction techniques

• Some pre-decode techniques can transform dynamic
decisions into static ones (VLIW-like)

– Beginnings of dynamic compilation techniques

• Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single
point in the program to restart execution

– All instructions before that point have completed
– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

