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Review, #1
• Technology is changing rapidly:

Capacity Speed
Logic 2x  in  3 years 2x  in 3 years
DRAM 4x  in  3 years 2x  in 10 years
Disk 4x  in  3 years 2x  in 10 years
Processor     ( n.a.) 2x in 1.5 years

• What was true five years ago is not 
necessarily true now.

• Execution time is the REAL measure of 
computer performance!
– Not clock rate, not CPI

• “X is n times faster than Y” means:

e(Y)Performanc
e(X)Performanc  

ExTime(X)
ExTime(y)

=
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Today: 
Quick review of everything you should 
have learned
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Computer Performance 

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time
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Cycles Per Instruction (Throughput)

“Instruction Frequency”

CPI = (CPU Time * Clock Rate) / Instruction Count 
=  Cycles / Instruction Count    

“Average Cycles per Instruction”

j
n

j
j I CPI   TimeCycle  time CPU ×∑×=

=1

Count nInstructio
I

 F where     F CPI  CPI j
j

n

j
jj =∑ ×=
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Example: Calculating CPI bottom up

Typical Mix of 
instruction types
in program

Base Machine (Reg / Reg)
Op Freq Cycles CPI(i) (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

Design guideline: Make the common case fast

MIPS 1% rule: only consider adding an instruction of it is shown to add 1% 
performance improvement on reasonable benchmarks.

Run benchmark and collect workload characterization (simulate, machine 
counters, or sampling)
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Example: Branch Stall Impact

• Assume CPI = 1.0 ignoring branches (ideal)
• Assume solution was stalling for 3 cycles
• If 30% branch, Stall 3 cycles on 30% 

Op Freq Cycles CPI(i) (% Time)
Other 70% 1 .7 (37%)
Branch 30% 4 1.2 (63%)

⇒ new CPI = 1.9

• New machine is 1/1.9 = 0.52 times faster (i.e. slow!)
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SPEC: System Performance Evaluation 
Cooperative

• First Round 1989
– 10 programs yielding a single number (“SPECmarks”)

• Second Round 1992
– SPECInt92 (6 integer programs) and SPECfp92 (14 floating point programs)

» Compiler Flags unlimited. March 93 of DEC 4000 Model 610:
spice: unix.c:/def=(sysv,has_bcopy,”bcopy(a,b,c)=
memcpy(b,a,c)”
wave5: /ali=(all,dcom=nat)/ag=a/ur=4/ur=200
nasa7: /norecu/ag=a/ur=4/ur2=200/lc=blas

• Third Round 1995
– new set of programs: SPECint95 (8 integer programs) and SPECfp95 (10 

floating point) 
– “benchmarks useful for 3 years”
– Single flag setting for all programs: SPECint_base95, SPECfp_base95 

• Fourth Round 2000: 26 apps
– analysis and simulation programs
– Compression: bzip2, gzip, 
– Integrated circuit layout, ray tracing, lots of others
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SPEC First Round
• One program: 99% of time in single line of code
• New front-end compiler could improve dramatically

Benchmark
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Integrated Circuits Costs

Die Cost goes roughly with die area4

 Test_Die 
Die_Area  2

Wafer_diam  
Die_Area

2m/2)(Wafer_dia  wafer per  Dies −
⋅
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−
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A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• 32 32-bit GPR (R0 contains zero, DP take pair)
• 3-address, reg-reg arithmetic instruction
• Single address mode for load/store: 

base + displacement
– no indirection

• Simple branch conditions
• Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS (- DLX)

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call
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Datapath vs Control

• Datapath: Storage, FU, interconnect sufficient to perform the 
desired functions

– Inputs are Control Points
– Outputs are signals

• Controller: State machine to orchestrate operation on the data 
path

– Based on desired function and signals

Datapath Controller

Control Points

signals
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Approaching an ISA
• Instruction Set Architecture

– Defines set of operations, instruction format, hardware supported 
data types, named storage, addressing modes, sequencing

• Meaning of each instruction is described by RTL on 
architected registers and memory

• Given technology constraints assemble adequate datapath
– Architected storage mapped to actual storage
– Function units to do all the required operations
– Possible additional storage (eg. MAR, MBR, …)
– Interconnect to move information among regs and FUs

• Map each instruction to sequence of RTLs
• Collate sequences into symbolic controller state transition 

diagram (STD)
• Lower symbolic STD to control points
• Implement controller
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5 Steps of DLX Datapath
Figure 3.1, Page 130
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1/20/05 CS252-S05 Lec2 17

5 Steps of DLX Datapath
Figure 3.4, Page 134
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IR <= mem[PC]; 
PC <= PC + 4
A <= Reg[IRrs]; 
B <= Reg[IRrt]rslt <= A opIRop B

Reg[IRrd] <= WB
WB <= rslt
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Inst. Set Processor Controller

IR <= mem[PC]; 
PC <= PC + 4

A <= Reg[IRrs]; 
B <= Reg[IRrt]

r <= A opIRop B

Reg[IRrd] <= WB

WB <= r

Ifetch

opFetch-DCD

PC <= IRjaddrif bop(A,b)
PC <= PC+IRim

br jmp
RR

r <= A opIRop IRim

Reg[IRrd] <= WB

WB <= r

RI
r <= A + IRim

WB <= Mem[r]

Reg[IRrd] <= WB

LD

ST
JSR JR
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5 Steps of DLX Datapath
Figure 3.4, Page 134
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Visualizing Pipelining
Figure 3.3, Page 133
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CS 252 Administrivia
• Review: Chapters 1-2, App A, 
• CS 152 home page, maybe  “Computer Organization 

and Design (COD)2/e” 
– If did take a class, be sure COD Chapters 2, 5, 6, 7 are familiar
– Copies in Bechtel Library on 2-hour reserve

• Resources for course on web site:
– Check out the ISCA (International Symposium on Computer 

Architecture) 25th year retrospective on web site.
Look for “Additional reading” below text-book description

– Pointers to previous CS152 exams and resources
– Lots of old CS252 material
– Interesting pointers at bottom.  Check out the:

WWW Computer Architecture Home Page

• Great ISA debate on tuesday
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Pipelining is not quite that easy!

• Limits to pipelining: Hazards prevent next instruction 
from executing during its designated clock cycle

– Structural hazards: HW cannot support this combination of 
instructions (single person to fold and put clothes away)

– Data hazards: Instruction depends on result of prior instruction still 
in the pipeline (missing sock)

– Control hazards: Caused by delay between the fetching of 
instructions and decisions about changes in control flow (branches 
and jumps).
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One Memory Port/Structural Hazards
Figure 3.6, Page 142
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One Memory Port/Structural Hazards
Figure 3.7, Page 143

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

How do you “bubble” the pipe?
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Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+
×

=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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Reg A
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Reg A
LU DMemIfetch Reg

Data Hazard on R1
Figure 3.9, page 147
Time (clock cycles)

IF ID/RF EX MEM WB
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in DLX 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in DLX 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Time (clock cycles)

Forwarding to Avoid Data Hazard
Figure 3.10, Page 149
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HW Change for Forwarding
Figure 3.20, Page 161
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Time (clock cycles)
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Data Hazard Even with Forwarding
Figure 3.12, Page 153
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Data Hazard Even with Forwarding
Figure 3.13, Page 154
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How is this detected?
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load 
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch

What do you do with the 3 instructions in between?

How do you do it?

Where is the “commit”?
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• DLX branch tests if register = 0 or ≠ 0
• DLX Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1sequential successor2........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– DLX uses this

Branch delay of length n
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Delayed Branch
• Where to get instructions to fill branch delay slot?

– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Canceling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful 

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, 
multiple instructions issued per clock (superscalar)
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Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Now, Review of Memory Hierarchy
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Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr
)

DRAM
9%/yr.
(2X/10 
yrs)

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

1/20/05 CS252-S05 Lec2 45

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
1-0.1 cents/bit

Main Memory
M Bytes
200ns- 500ns
$.0001-.00001 cents /bit
Disk
G Bytes, 10 ms 
(10,000,000 ns)

10   - 10  cents/bit-5 -6

Capacity
Access Time
Cost

Tape
infinite
sec-min
10 -8

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger
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The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straightline code, array access)

• Last 15 years, HW relied on locality for speed

It is a property of programs which is exploited in machine design.
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Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level 

(example: Block X) 
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the 
lower level (Block Y)

– Miss Rate  = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level  + 

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)
Lower Level

MemoryUpper Level
Memory

To Processor

From Processor
Blk X

Blk Y
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Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance, 

miss rate to average memory access time in memory 

• Average memory-access time 
= Hit time + Miss rate x Miss penalty 

(ns or clocks)
• Miss penalty: time to replace a block from 

lower level, including time to replace in CPU
– access time: time to lower level 

= f(latency to lower level)
– transfer time: time to transfer block 

=f(BW between upper & lower levels)
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Simplest Cache: Direct  Mapped
Memory

4  Byte Direct Mapped Cache

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

• Location 0 can be occupied by 
data from:

– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0>  => cache index

• Which one should we place in 
the cache?

• How can we tell which one is in 
the cache? 1/20/05 CS252-S05 Lec2 50

1 KB Direct Mapped Cache, 32B blocks

• For a 2 ** N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

Cache Data
Byte 0

0431

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Byte 992Byte 1023 :

Cache Tag

Byte Select
Ex: 0x00

9
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Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit 1/20/05 CS252-S05 Lec2 52

Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available 
BEFORE Hit/Miss:

– Possible to assume a hit and continue.  Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit
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4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)
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Q1: Where can a block be placed in 
the upper level? 
• Block 12 placed in 8 block cache:

– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

111111111122222222223301234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0
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Q2: How is a block found if it is in the 
upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands 
tag

Block
Offset

Block Address

IndexTag
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Q3: Which block should be replaced on a 
miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way
Size LRU     Ran    LRU Ran      LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Q4: What happens on a write?

• Write through—The information is written to 
both the block in the cache and to the block in 
the lower-level memory.

• Write back—The information is written only to 
the block in the cache. The modified cache 
block is written to main memory only when it 
is replaced.

– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so 
that don’t wait for lower level memory
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Write Buffer for Write Through

• A Write Buffer is needed between the Cache and 
Memory

– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

1/20/05 CS252-S05 Lec2 59

Impact of Memory Hierarchy on 
Algorithms

• Today CPU time is a function  of (ops, cache misses) vs. just f(ops):
What does this mean to Compilers, Data structures, Algorithms?

• “The Influence of Caches on the Performance of Sorting” by A. 
LaMarca and R.E. Ladner. Proceedings of the Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, January, 1997, 370-379.

• Quicksort: fastest comparison based sorting algorithm when all 
keys fit in memory

• Radix sort: also called “linear time” sort because for keys of fixed 
length and fixed radix a constant number of passes over the data is 
sufficient independent of the number of keys

• For Alphastation 250, 32 byte blocks, direct mapped L2 2MB cache, 
8 byte keys, from 4000 to 4000000
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Quicksort vs. Radix as vary number 
keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort
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Quicksort vs. Radix as vary number keys: 
Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort
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Quicksort vs. Radix as vary number keys: 
Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?
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A Modern Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the 
cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s
100s

Gs
Size (bytes):

Ks Ms

Tertiary
Storage

(Disk/Tape)

10,000,000,000s  
(10s sec)

Ts
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• Virtual memory => treat memory as a cache for the disk
• Terminology: blocks in this cache are called “Pages”

– Typical size of a page: 1K — 8K
• Page table maps virtual page numbers to physical frames

– “PTE” = Page Table Entry

Physical 
Address Space

Virtual 
Address Space

What is virtual memory?
Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset
10

Physical Address
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Three Advantages of Virtual Memory
• Translation:

– Program can be given consistent view of memory, even though physical 
memory is scrambled

– Makes multithreading reasonable (now used a lot!)
– Only the most important part of program (“Working Set”) must be in 

physical memory.
– Contiguous structures (like stacks) use only as much physical memory 

as necessary yet still grow later.
• Protection:

– Different threads (or processes) protected from each other.
– Different pages can be given special behavior

» (Read Only, Invisible to user programs, etc).
– Kernel data protected from User programs
– Very important for protection from malicious programs

=> Far more “viruses” under Microsoft Windows
• Sharing:

– Can map same physical page to multiple users
(“Shared memory”)

1/20/05 CS252-S05 Lec2 66

What is the size of information blocks that are transferred from secondary 
to main storage (M)? ⇒ page size
(Contrast with physical block size on disk, I.e. sector size)

Which region of M is to hold the new block ⇒ placement policy

How do we find a page when we look for it? ⇒ block identification 

Block of information brought into M, and M is full, then some region of M 
must be released to make room for the new block 
⇒ replacement policy

What do we do on a write? ⇒ write policy

Missing item fetched from secondary memory only on the occurrence of a 
fault ⇒ demand load policy

pages
reg

cache
mem disk

frame

Issues in Virtual Memory System Design



Page 12

1/20/05 CS252-S05 Lec2 67

Large Address Spaces

Two-level Page Tables

32-bit address:

P1 index P2 index page offest

4 bytes

4 bytes

4KB

10 10 12

1K
PTEs

° 2 GB virtual address space
° 4 MB of PTE2

– paged, holes
° 4 KB of PTE1

What about a 48-64 bit address space?
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Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,

set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
high end machines.  This permits fully associative
lookup on these machines.  Most mid-range machines use small
n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB
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Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN

access memory with the PA from the TLB
ELSE do standard VA translation
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Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to

index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example:  suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache 
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache
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Summary #1/5:  Control and Pipelining

• Control VIA State Machines and Microprogramming
• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=
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Summary #2/5: Caches

• The Principle of Locality:
– Program access a relatively small portion of the address space at any 

instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses:  increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!

• Write Policy:
– Write Through: needs a write buffer.  Nightmare: WB saturation
– Write Back: control can be complex
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Summary #3/5: 
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B
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Summary #4/5: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all understood by 

examining how they deal with 4 questions: 1) Where 
can block be placed? 2) How is block found? 3) What 
block is repalced on miss? 4) How are writes 
handled?

• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance

– funny times, as most systems can’t access all of 2nd level cache
without TLB misses!
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Summary #5/5: Memory Hierachy
• Virtual memory was controversial at the time: 

can SW automatically manage 64KB across many 
programs?

– 1000X DRAM growth removed the controversy

• Today VM allows many processes to share single 
memory without having to swap all processes to 
disk; today VM protection is more important than 
memory hierarchy

• Today CPU time is a function  of (ops, cache misses) 
vs. just f(ops):
What does this mean to Compilers, Data structures, 
Algorithms?


