
EECS 252 Graduate Computer
Architecture

Lec 1 - Introduction

David Culler
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~culler
http://www-inst.eecs.berkeley.edu/~cs252

1/18/2005 CS252-s05, Lec 01-intro 2

Outline
• What is Computer Architecture?
• Computer Instruction Sets – the fundamental

abstraction
– review and set up

• Dramatic Technology Advance
• Beneath the illusion – nothing is as it appears
• Computer Architecture Renaissance
• How would you like your CS252?

1/18/2005 CS252-s05, Lec 01-intro 3

What is “Computer Architecture”?

Applications

Instruction Set
Architecture

Compiler

Operating
System

Firmware

• Coordination of many levels of abstraction
• Under a rapidly changing set of forces
• Design, Measurement, and Evaluation

I/O systemInstr. Set Proc.

Digital Design
Circuit Design

Datapath & Control

Layout & fab

Semiconductor Materials Die photo

App photo

1/18/2005 CS252-s05, Lec 01-intro 4

Forces on Computer Architecture

Computer
Architecture

Technology Programming
Languages

Operating
Systems

History

Applications

(A = F / M)

1/18/2005 CS252-s05, Lec 01-intro 5

The Instruction Set: a Critical Interface

instruction set

software

hardware

• Properties of a good abstraction
– Lasts through many generations (portability)
– Used in many different ways (generality)
– Provides convenient functionality to higher levels
– Permits an efficient implementation at lower levels

1/18/2005 CS252-s05, Lec 01-intro 6

Instruction Set Architecture
... the attributes of a [computing] system as seen by
the programmer, i.e. the conceptual structure and
functional behavior, as distinct from the organization
of the data flows and controls the logic design, and
the physical implementation.

– Amdahl, Blaaw, and Brooks, 1964
SOFTWARESOFTWARE

-- Organization of Programmable
Storage

-- Data Types & Data Structures:
Encodings & Representations

-- Instruction Formats

-- Instruction (or Operation Code) Set

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions

1/18/2005 CS252-s05, Lec 01-intro 7

Computer Organization
Logic Designer's View

ISA Level

FUs & Interconnect

• Capabilities & Performance
Characteristics of Principal Functional
Units

– (e.g., Registers, ALU, Shifters, Logic Units, ...)

• Ways in which these components are
interconnected

• Information flows between
components

• Logic and means by which such
information flow is controlled.

• Choreography of FUs to realize the
ISA

• Register Transfer Level (RTL)
Description

1/18/2005 CS252-s05, Lec 01-intro 8

Fundamental Execution Cycle

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Obtain instruction
from program
storage

Determine required
actions and
instruction size

Locate and obtain
operand data

Compute result value
or status

Deposit results in
storage for later
use

Determine successor
instruction

Processor

regs

F.U.s

Memory

program

Data

von Neuman

bottleneck

1/18/2005 CS252-s05, Lec 01-intro 9

Elements of an ISA
• Set of machine-recognized data types

– bytes, words, integers, floating point, strings, . . .

• Operations performed on those data types
– Add, sub, mul, div, xor, move, ….

• Programmable storage
– regs, PC, memory

• Methods of identifying and obtaining data
referenced by instructions (addressing modes)

– Literal, reg., absolute, relative, reg + offset, …

• Format (encoding) of the instructions
– Op code, operand fields, …

Current Logical State

of the Machine

Next Logical State

of the Machine

1/18/2005 CS252-s05, Lec 01-intro 10

Example: MIPS R3000
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage
2^32 x bytes
31 x 32-bit GPRs (R0=0)
32 x 32-bit FP regs (paired DP)
HI, LO, PC

Data types ?
Format ?
Addressing Modes?

Arithmetic logical
Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,
AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI
SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access
LB, LBU, LH, LHU, LW, LWL,LWR
SB, SH, SW, SWL, SWR

Control
J, JAL, JR, JALR
BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

1/18/2005 CS252-s05, Lec 01-intro 11

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based (Stack) Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000, 1987)iX86?

1/18/2005 CS252-s05, Lec 01-intro 12

Dramatic Technology Advance
• Prehistory: Generations

– 1st Tubes
– 2nd Transistors
– 3rd Integrated Circuits
– 4th VLSI….

• Discrete advances in each generation
– Faster, smaller, more reliable, easier to utilize

• Modern computing: Moore’s Law
– Continuous advance, fairly homogeneous technology

1/18/2005 CS252-s05, Lec 01-intro 13

Moore’s Law

• “Cramming More Components onto Integrated Circuits”
– Gordon Moore, Electronics, 1965

• # on transistors on cost-effective integrated circuit double every 18 months

1/18/2005 CS252-s05, Lec 01-intro 14

Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends: Microprocessor
Capacity

CMOS improvements:
• Die size: 2X every 3 yrs
• Line width: halve / 7 yrs

Itanium II: 241 million
Pentium 4: 55 million
Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore’s Law

1/18/2005 CS252-s05, Lec 01-intro 15

size

Year

1000

10000

100000

1000000

10000000

100000000

1000000000

1970 1975 1980 1985 1990 1995 2000

Memory Capacity
(Single Chip DRAM)

year size(Mb) cyc time
1980 0.0625 250 ns
1983 0.25 220 ns
1986 1 190 ns
1989 4 165 ns
1992 16 145 ns
1996 64 120 ns
2000 256 100 ns
2003 1024 60 ns

1/18/2005 CS252-s05, Lec 01-intro 16

Technology Trends

• Clock Rate: ~30% per year
• Transistor Density: ~35%
• Chip Area: ~15%
• Transistors per chip: ~55%
• Total Performance Capability: ~100%
• by the time you graduate...

– 3x clock rate (~10 GHz)
– 10x transistor count (10 Billion transistors)
– 30x raw capability

• plus 16x dram density,
• 32x disk density (60% per year)
• Network bandwidth, …

1/18/2005 CS252-s05, Lec 01-intro 17

P
er

fo
rm

an
ce

0.1

1

10

100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

Performance Trends

1/18/2005 CS252-s05, Lec 01-intro 18

0

200

400

600

800

1000

1200

87 88 89 90 91 92 93 94 95 96 97

D
EC

 A
lp
ha

 2
11

64
/6

00

D
EC

 A
l p
ha

 5
/5

00

D
EC

 A
lp
ha

 5
/3

00

D
EC

 A
l p
ha

 4
/2

66

IB
M

 P
O
W

ER
 1

00

D
EC

 A
X
P/

50
0

H
P

90
00

/7
50

S
un

-4
/2

6 0

IB
M

 R
S
/6

00
0

M
IP

S
 M

/1
20

M
IP

S
 M

/2
00

0

Processor Performance
(1.35X before, 1.55X now)

1.54X/yr

1/18/2005 CS252-s05, Lec 01-intro 19

Performance(X) Execution_time(Y)
n = =

Performance(Y) Execution_time(Y)

Definition: Performance
• Performance is in units of things per sec

– bigger is better

• If we are primarily concerned with response time

performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

1/18/2005 CS252-s05, Lec 01-intro 20

Metrics of Performance

Compiler

Programming
Language

Application

Datapath
Control

Transistors WiresPins

ISA

Function Units

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Cycles per second (clock rate)

Megabytes per second

Answers per day/month

1/18/2005 CS252-s05, Lec 01-intro 21

Components of Performance

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

1/18/2005 CS252-s05, Lec 01-intro 22

What’s a Clock Cycle?

• Old days: 10 levels of gates
• Today: determined by numerous time-of-flight

issues + gate delays
– clock propagation, wire lengths, drivers

Latch
or

register

combinational
logic

1/18/2005 CS252-s05, Lec 01-intro 23

Integrated Approach

What really matters is the functioning of the complete
system, I.e. hardware, runtime system, compiler, and
operating system

In networking, this is called the “End to End argument”
• Computer architecture is not just about transistors,

individual instructions, or particular implementations
• Original RISC projects replaced complex instructions

with a compiler + simple instructions

1/18/2005 CS252-s05, Lec 01-intro 24

How do you turn more stuff into
more performance?

• Do more things at once
• Do the things that you do faster

• Beneath the ISA illusion….

1/18/2005 CS252-s05, Lec 01-intro 25

Pipelined Instruction Execution

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

1/18/2005 CS252-s05, Lec 01-intro 26

Limits to pipelining

• Maintain the von Neumann “illusion” of one
instruction at a time execution

• Hazards prevent next instruction from executing
during its designated clock cycle

– Structural hazards: attempt to use the same hardware to do
two different things at once

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).

1/18/2005 CS252-s05, Lec 01-intro 27

A take on Moore’s Law
Tr

an
si

st
or

s

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008
i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

1/18/2005 CS252-s05, Lec 01-intro 28

Progression of ILP
• 1st generation RISC - pipelined

– Full 32-bit processor fit on a chip => issue almost 1 IPC
» Need to access memory 1+x times per cycle

– Floating-Point unit on another chip
– Cache controller a third, off-chip cache
– 1 board per processor multiprocessor systems

• 2nd generation: superscalar
– Processor and floating point unit on chip (and some cache)
– Issuing only one instruction per cycle uses at most half
– Fetch multiple instructions, issue couple

» Grows from 2 to 4 to 8 …
– How to manage dependencies among all these instructions?
– Where does the parallelism come from?

• VLIW
– Expose some of the ILP to compiler, allow it to schedule

instructions to reduce dependences

1/18/2005 CS252-s05, Lec 01-intro 29

Modern ILP
• Dynamically scheduled, out-of-order execution
• Current microprocessor fetch 10s of instructions

per cycle
• Pipelines are 10s of cycles deep
=> many 10s of instructions in execution at once
• Grab a bunch of instructionsdetermine all their

dependences, eliminate dep’s wherever possible,
throw them all into the execution unit, let each
one move forward as its dependences are
resolved

• Appears as if executed sequentially
• On a trap or interrupt, capture the state of the

machine between instructions perfectly
• Huge complexity

1/18/2005 CS252-s05, Lec 01-intro 30

Have we reached the end of ILP?
• Multiple processor easily fit on a chip
• Every major microprocessor vendor

has gone to multithreading
– Thread: loci of control, execution context
– Fetch instructions from multiple threads at

once, throw them all into the execution unit
– Intel: hyperthreading, Sun:
– Concept has existed in high performance

computing for 20 years (or is it 40?
CDC6600)

• Vector processing
– Each instruction processes many distinct

data
– Ex: MMX

• Raise the level of architecture – many
processors per chip

Tensilica Configurable Proc

1/18/2005 CS252-s05, Lec 01-intro 31

When all else fails - guess
• Programs make decisions as they go

– Conditionals, loops, calls
– Translate into branches and jumps (1 of 5 instructions)

• How do you determine what instructions for fetch
when the ones before it haven’t executed?

– Branch prediction
– Lot’s of clever machine structures to predict future based on

history
– Machinery to back out of mis-predictions

• Execute all the possible branches
– Likely to hit additional branches, perform stores
⇒speculative threads
⇒What can hardware do to make programming

(with performance) easier?

1/18/2005 CS252-s05, Lec 01-intro 32

CS252: Adminstrivia
Instructor: Prof David Culler

Office: 627 Soda Hall, culler@cs
Office Hours: Wed 3:30 - 5:00 or by appt.
(Contact Willa Walker)

T. A: TBA
Class: Tu/Th, 11:00 - 12:30pm 310 Soda Hall
Text: Computer Architecture: A Quantitative Approach, Third
Edition (2002)
Web page: http://www.cs/~culler/courses/cs252-F03/

Lectures available online <9:00 AM day of lecture
Newsgroup: ucb.class.cs252

1/18/2005 CS252-s05, Lec 01-intro 33

Typical Class format (after week 2)

• Bring questions to class
• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture/Discussion
• 5-Minute Break (water, stretch)
• 25-Minute Discussion based on your questions

• I will come to class early & stay after to answer
questions

• Office hours

1/18/2005 CS252-s05, Lec 01-intro 34

Grading

• 15% Homeworks (work in pairs) and reading
writeups

• 35% Examinations (2 Midterms)
• 35% Research Project (work in pairs)

– Transition from undergrad to grad student
– Berkeley wants you to succeed, but you need to show initiative
– pick topic (more on this later)
– meet 3 times with faculty/TA to see progress
– give oral presentation or poster session
– written report like conference paper
– 3 weeks work full time for 2 people
– Opportunity to do “research in the small” to help make transition

from good student to research colleague

• 15% Class Participation (incl. Q’s)

1/18/2005 CS252-s05, Lec 01-intro 35

Quizes
• Preparation causes you to systematize your

understanding
• Reduce the pressure of taking exam

– 2 Graded quizes: Tentative: 2/23 and 4/13
– goal: test knowledge vs. speed writing

» 3 hrs to take 1.5-hr test (5:30-8:30 PM, TBA location)
– Both mid-terms can bring summary sheet

» Transfer ideas from book to paper
– Last chance Q&A: during class time day before exam

• Students/Staff meet over free pizza/drinks at La Vals:
Wed Feb 23 (8:30 PM) and Wed Apr 13 (8:30 PM)

1/18/2005 CS252-s05, Lec 01-intro 36

The Memory Abstraction

• Association of <name, value> pairs
– typically named as byte addresses
– often values aligned on multiples of size

• Sequence of Reads and Writes
• Write binds a value to an address
• Read of addr returns most recently written

value bound to that address

address (name)
command (R/W)

data (W)

data (R)

done

1/18/2005 CS252-s05, Lec 01-intro 37

µProc
60%/yr.
(2X/1.5yr
)

DRAM
9%/yr.
(2X/10
yrs)

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Joy’s Law”

Processor-DRAM Memory Gap (latency)

1/18/2005 CS252-s05, Lec 01-intro 38

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<< 1s ns

Cache
10s-100s K Bytes
~1 ns
$1s/ MByte

Main Memory
M Bytes
100ns- 300ns
$< 1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.001/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

circa 1995 numbers

1/18/2005 CS252-s05, Lec 01-intro 39

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

• Last 30 years, HW relied on locality for speed

P MEM$

1/18/2005 CS252-s05, Lec 01-intro 40

The Cache Design Space
• Several interacting dimensions

– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

1/18/2005 CS252-s05, Lec 01-intro 41

Is it all about memory system design?

• Modern microprocessors are almost all cache

1/18/2005 CS252-s05, Lec 01-intro 42

Memory Abstraction and Parallelism
• Maintaining the illusion of sequential access to

memory
• What happens when multiple processors access

the same memory at once?
– Do they see a consistent picture?

• Processing and processors embedded in the
memory?

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

1/18/2005 CS252-s05, Lec 01-intro 43

System Organization:
It’s all about communication

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium III Chipset

1/18/2005 CS252-s05, Lec 01-intro 44

Breaking the HW/Software Boundary
• Moore’s law (more and more trans) is all about

volume and regularity
• What if you could pour nano-acres of unspecific

digital logic “stuff” onto silicon
– Do anything with it. Very regular, large volume

• Field Programmable Gate Arrays
– Chip is covered with logic blocks w/ FFs, RAM blocks, and

interconnect
– All three are “programmable” by setting configuration bits
– These are huge?

• Can each program have its own instruction set?
• Do we compile the program entirely into

hardware?

1/18/2005 CS252-s05, Lec 01-intro 45

“Bell’s Law” – new class per decade

year

lo
g

(p
eo

pl
e

pe
r c

om
pu

te
r)

streaming
information
to/from physical
world

Number Crunching
Data Storage

productivity
interactive

• Enabled by technological opportunities

• Smaller, more numerous and more intimately connected

• Brings in a new kind of application

• Used in many ways not previously imagined

1/18/2005 CS252-s05, Lec 01-intro 46

It’s not just about bigger and faster!
• Complete computing systems can be tiny and cheap
• System on a chip
• Resource efficiency

– Real-estate, power, pins, …

1/18/2005 CS252-s05, Lec 01-intro 47

The Process of Design

Design

Analysis

Architecture is an iterative process:
• Searching the space of possible designs
• At all levels of computer systems

Creativity

Good IdeasGood Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

1/18/2005 CS252-s05, Lec 01-intro 48

Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==
1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

()

+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

1/18/2005 CS252-s05, Lec 01-intro 49

Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

1/18/2005 CS252-s05, Lec 01-intro 50

Computer Architecture Topics

M

Interconnection NetworkS

PMPMPMP ° ° °

Topologies,
Routing,
Bandwidth,
Latency,
Reliability

Network Interfaces

Shared Memory,
Message Passing,
Data Parallelism

Processor-Memory-Switch

Multiprocessors
Networks and Interconnections

1/18/2005 CS252-s05, Lec 01-intro 51

CS 252 Course Focus

Understanding the design techniques, machine
structures, technology factors, evaluation
methods that will determine the form of
computers in 21st Century

Technology Programming
Languages

Operating
Systems History

Applications Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer Architecture:
• Instruction Set Design
• Organization
• Hardware/Software Boundary Compilers

1/18/2005 CS252-s05, Lec 01-intro 52

Topic Coverage
Textbook: Hennessy and Patterson, Computer
Architecture: A Quantitative Approach, 3rd Ed., 2002.
Research Papers – on-line

• 1.5 weeks Review: Fundamentals of Computer Architecture (Ch. 1),
Instruction Set Architecture (Ch. 2), Pipelining (App A), Caches

• 2.5 weeks: Pipelining, Interrupts, and Instructional Level
Parallelism (Ch. 3, 4), Vector Proc. (Appendix G)

• 1 week: Memory Hierarchy (Chapter 5)
• 2 weeks: Multiprocessors,Memory Models, Multithreading,
• 1.5 weeks: Networks and Interconnection Technology (Ch. 7)
• 1 weeks: Input/Output and Storage (Ch. 6)
• 1.5 weeks: Embedded processors, network proc, low-power
• 3 week: Advanced topics

1/18/2005 CS252-s05, Lec 01-intro 53

Your CS252
• Computer architecture is at a crossroads

– Institutionalization and renaissance
– Ease of use, reliability, new domains vs. performance

• Mix of lecture vs discussion
– Depends on how well reading is done before class

• Goal is to learn how to do good systems research
– Learn a lot from looking at good work in the past
– New project model: reproduce old study in current context

» Will ask you do survey and select a couple
» Looking in detail at older study will surely generate new

ideas too
– At commit point, you may chose to pursue your own new idea

instead.

1/18/2005 CS252-s05, Lec 01-intro 54

Research Paper Reading

• As graduate students, you are now researchers.
• Most information of importance to you will be in

research papers.
• Ability to rapidly scan and understand research papers

is key to your success.

• So: you will read lots of papers in this course!
– Quick 1 paragraph summaries and question will be due in class
– Important supplement to book.
– Will discuss papers in class

• Papers will be scanned and on web page.

1/18/2005 CS252-s05, Lec 01-intro 55

Coping with CS 252
• Students with too varied background?

– In past, CS grad students took written prelim exams on
undergraduate material in hardware, software, and theory

– 1st 5 weeks reviewed background, helped 252, 262, 270
– Prelims were dropped => some unprepared for CS 252?

• Review: Chapters 1-3, CS 152 home page, maybe
“Computer Organization and Design (COD)2/e”

– Chapters 1 to 8 of COD if never took prerequisite
– If took a class, be sure COD Chapters 2, 6, 7 are familiar
– Copies in Bechtel Library on 2-hour reserve

• Not planning to do prelim exams
– Undergrads must have 152
– Grads without 152 equivalent will have to work hard

» Will schedule Friday remedial discussion section

1/18/2005 CS252-s05, Lec 01-intro 56

Related Courses

CS 152CS 152 CS 252CS 252 CS 258CS 258

CS 250CS 250

How to build it
Implementation details

Why, Analysis,
Evaluation

Parallel Architectures,
Languages, Systems

Integrated Circuit Technology
from a computer-organization viewpoint

Strong

Prerequisite

Basic knowledge of the
organization of a computer
is assumed!

