
CS252 S05 p. 1 of 9

CS252 – Graduate Computer
Architecture

University of California
Dept. of Electrical Engineering and Computer Sciences

David E. Culler Spring 2005

Last name: ____Solutions First name_______________________

I certify that my answers to this exam are my own work. If I am taking this exam early, I
certify that I shall not discuss the exam questions, the exam answers, or the content of the
exam with anyone until after the scheduled exam time. If I am taking this exam in
scheduled time, I certify that I have not discussed the exam with anyone who took it early.

Signature: ______________________________________

The exam has five problems, which range from concrete to conceptual. Please read the
problems and take your time in formulating an answer. The answers are not long.
Please show your work and your line of reasoning. There are a total of eight pages,
including space for your work. Feel free to write on the backs of sheets, if you need
more space.

The exam is open book. You may use your textbook, lecture slides, or a calculator.

Problem Points Score
1 10
2 15
3 15
4 25
5 35

CS252 S05 p. 2 of 9

Problem 1: State and define the hazards presented by instruction level parallelism.
For each one, indicate how it can be resolved.

1. Data Hazards

• RAW (Data dependence) cannot use a value before it is computed. Resolve
by forwarding or stalling

• WAW (Output dependence) cannot write a value if a logically preceding
instruction might overwrite it Resolve by pipeline design (in-order op-fetch
+ in-order WB), stalling on potential write to pending register, or renaming

• WAR (anti-dependence) cannot write a value before logically preceding
instruction reading the previous value have done so. Resolve by pipeline
design (in-order issue with in-order operand fetch), stalling or renaming.

2. Structural Hazards
 Attempt to use the same hardware resource for two different purposes at once.
 Resolve by adding hardware resources (as design time) or stalling

3. Control Hazards
 Cannot determine the control flow until the condition of the branch is resolved.
 Resolve by stalling. Mitigated by predicting and discarding miss-predicts.

Problem 2. Your current version of ZippyCAD runs through a benchmark design in 43
minutes on your ZIPS10 computer. ZIPS has a new model that they are offering to sell
to you. ZIPS30 is a scalar machine like ZIPS10, but 3 times faster. Or you can get the
ZIPS1010 vector upgrade that performs vectorized code at 10 times the performance of
ZIPS10. You know that ZippyCAD spends a lot of time in its numerical library, so
you are intrigued. How much of ZippyCAD would need to vectorize for the ZIPS1010
to beat the ZIPS30?

%7427/20

3
10/1

1
/)1(

1

≈≥

≥
+−

=
+−

==

f

ffxffTvector
TscalarSUvector

CS252 S05 p. 3 of 9

Problem 3: Diagram a correlating branch predictor that uses 3 bits of global
information, 5 bits of local information, 3-bit saturating counters. Include the
dimensions of all the machine data structures. Diagram the state machine. Give brief
pseudo code for how this operates.

Index a 256 x 3-bit RAM using the low 5 bits of the PC concatenated with 3 bits from
the branch history shift register. The shift register has as input the branch direction.
The book draws this as a two dimensional table. Same thing.

On decode, combine the 8 bits as above, index the prediction table, read the value and
predict based on the most significant bit.

Retain prediction table index into the execute stage. At that point, update the table
entry according to the saturating counter state-transition-diagram. Write the result to
the table. Shift the taken/not-taken bit into the shift history.

There are two reasonable state machine. Both have state encodings going from 000 at
the bottom to 111 at the top. The one on the right provides some hysteresis. You don’t
get stuck toggling between 011 and 100. Even a branch that alternates between taken
and not-taken will get predicted right about half the time.

 5
PC Taken

3

8

3

256

Take

Take
not

Take
takennot

Take
takennot

No
takennot

No
takennot

No
takennot

No
taken

taken

taken

not

not

Take

Take
not

Take
takennot

Take
takennot

No taken
not

No
takennot

No
takennot

No
taken

taken

taken

not

not

5
PC Taken

3

8

3

256

Take

Take
not

Take
takennot

Take
takennot

No
takennot

No
takennot

No
takennot

No
taken

taken

taken

not

not

Take

Take
not

Take
takennot

Take
takennot

No taken
not

No
takennot

No
takennot

No
taken

taken

taken

not

not

CS252 S05 p. 4 of 9

Problem 4. Having fallen in love with the IBM360 early in the course, you’ve
analyzed a dynamic instruction trace of the EGGSELL spreadsheet running your
Valentine’s Day order list on your MIPS machine in order to consider resurrecting
some aspects of the 360. You find that the benchmark executed 1,000,000 instructions
in 2,200,000 cycles and that instruction frequencies were:

Arithmetic 50%
Branch 20%
Load 20%
Store 10%

Under more careful analysis you find that 25% of the loads are used to add a value to a
single register. Putting these two important discoveries together, you have decided to
add a LADD instruction to your old flame MIPS machine. The instruction

LADD rt, rs, offset
has the RTL semantics

REG[rt] := REG[rt] + MEM[REG[rs] + offset]

Having also become an expert in micro-architecture, you believe that you can support
this instruction without increasing the clock cycle time of your MIPS.

Assuming you can pull this off, how low must be the CPI of the new machine for this
enhancement to improve performance of the application?

Give a couple of reasons why you expect the CPI to increase with this enhancement.

Give a brief sketch of how you might modify the microarchitecture of the basic MIPS
pipelined datapath to support this instruction without severely impacting the cycle time.

What changes are required to make hazard resolution work properly? What are likely
to be the aspects that make it difficult to maintain the cycle time?

Initial CPI = 2.2 LADD eliminates 5% of instructions.
At same CT, new CPI must be < 2.2/.95 ~ 2.3

In a general sense you might imagine that doing the same work in fewer instructions
might raise the CPI, but that doesn’t answer the question. They might pipeline just as
well as the old instructions, maintaining the same CPI and just improving execution
time. The reason that almost works is that instructions dependent on the LADD will
stall because you cannot forward the value till later. However, such an instruction
would otherwise be dependent on the ADD following the load. More accurate is that
the load and the add can no longer be separated by independent instructions. The new
stall is when the data operand of the LADD itself (not the address operand) is
dependent on a previous instruction. Now the LADD will stall even though the LOAD
portion could go forward. Also, data misses will be amortized over few instructions.

CS252 S05 p. 5 of 9

There are two good design solutions. The “Stanford MIPS style” option is to add a
sixth stage between MEM and writeback to do that ADD. The data operand, which is
carried to MEM for the STORE, must be carried to the ADD stage.
Note that adding a stage does not increase the CPI if no LADDs were used. It simply
means that more values will be forwarded, since WB is further delayed. The change
required is another level of forwarding. This requires an additional set of data wires
along the length of the datapath and widens the forwarding mux. The logic for
determining the mux selects is hardly any worse. LADDs cannot forward except from
the ADD stage. The increase in cycle time is due to widening each bit slice of the
datapath and the additional steering logic on the mux.

The “Berkeley/Sun RISC/Sparc style” would be to split the LADD at the decode stage
into three micro ops. The first is essentially a load, the second is a NOP, and the third
is the ADD. Observe that the third brings the data operand into the EX stage as the
loaded value is produced from the MEM stage. No new wiring is required. We simply
feed the loaded value back. Of course, this is no faster than issuing two instruction –
and it prevents the compiler from filling the load delay slot, but it does reduce code
size. It has no impact on the cycle time.

CS252 S05 p. 6 of 9

Problem 5: Now the wide open design problem. The haunting elegance of the stack
architecture has stayed in the back of your mind ever since the debate. Now that you
have seen superscalar execution, register renaming, forwarding, Tomasulo and all that,
you wonder “why can’t I apply these techniques to stack machines to find instruction
level parallelism there too?” You grab your favorite loop as a test case

for (i = 0; i < n; i++) A[i] = A[i] + alpha;

which, of course, compiles as

for (ptr = A; ptr < &A[n]; ptr++) *ptr += alpha;

On entry to this loop there are three values at the Top of Stack:
TOS-8: Alpha
TOS-4: ArrayEnd

TOS: Ptr

The stack code for the loop is as follows.

vscal:

push @0 ; push a copy of Ptr
load ; Load the array value (replacing Ptr)
push @12 ; push a copy of the scale value, alpha
fadd ; alpha + *ptr
push @4 ; push a copy of Ptr
store ; *ptr := alpha + *ptr
pushIm 4 ; pointer increment value
add ; ptr++ (update on the stack)
push @4 ; push ArrayEnd
push @4 ; push ptr
sub
blt vscal

The push @X instruction pushes the value at offset X from the top of stack. pushIM
X pushes immediate value X. All other operations pop their operands from the top of
stack, remove them, and push a result, if one is generated.

Your starting point for your design is based roughly on the MIPS R10000. It has
several function units with a reservation station per function unit and forwarding of
results to the function units, as indicated in the diagram below. A large collection of
physical registers are provided. They are not in the instruction set architecture. The
architected state is the stack and PC. You are to describe how to do the renaming such
that you could overlap the execution of multiple iterations of this loop. You will need
to invent the mechanism to perform the necessary renaming. You may assume there
are enough physical registers to perform one or more iterations of the loop, but not an

CS252 S05 p. 7 of 9

arbitrary number of overlapping iterations. You may assume there is a mechanism
ALLOC that will allocate a free register and provide that register number, if one is
available. If none are free, it will indicate a failure. You may, similarly, assume there
is an operation FREE(Reg) which frees the specified register.

How much stack space is required to execute this loop? Because of this, you don’t
need to worry about stack overflow/underflow. You do need to deal with limits on the
available physical registers and function units.

Describe the instruction issue and operand fetch process for different kinds of
instructions that appear in the example.

Under what conditions will the machine wait – holding the issue of an instruction?

Explain when a physical register can be freed.

Explain what limits the number of iterations of the loop that can potentially execute
concurrently.

Physical
Registers

Instruction
queue

ROB

* * *

Inst
Issue
and reg
mapping

fwd

Physical
Registers

Instruction
queue

ROB

* * *

Inst
Issue
and reg
mapping

fwd

CS252 S05 p. 8 of 9

The key idea is to introducing a “renaming stack” of physical register names. A
physical register may be freed when its name is popped off the renaming stack AND
the instruction that produces it enters the ROB. A single state bit will do. The latter of
the two events will free place the physical register back on the free list.
The key optimization is that PUSH just shares the previously allocated physical
register. PUSH, POP, and PUSH_IM don’t need to enter the execution section at all.
Here’s a nice student solution.

CS252 S05 p. 9 of 9

