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Smoothing Brascamp-Lieb Inequalities and Strong
Converses of Coding Theorems
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Abstract—The Brascamp-Lieb inequality in functional analysis
can be viewed as a measure of the “uncorrelatedness” of a
joint probability distribution. We define the smooth Brascamp-
Lieb (BL) divergence as the infimum of the best constant in
the Brascamp-Lieb inequality under a perturbation of the joint
probability distribution. An information spectrum upper bound
on the smooth BL divergence is proved, using properties of the
subgradient of a certain convex functional. In particular, in the
i.i.d. setting, such an infimum converges to the best constant
in a certain mutual information inequality. We then derive new
single-shot converse bounds for the omniscient helper common
randomness generation problem and the Gray-Wyner source
coding problem in terms of the smooth BL divergence, where
the proof relies on the functional formulation of the Brascamp-
Lieb inequality. Exact second-order rates are thus obtained in
the stationary memoryless and nonvanishing error setting. These
offer rare instances of strong converses/second-order converses
for continuous sources when the rate region involves auxiliary
random variables.

Index Terms—Shannon Theory, Coding Theorems, Strong
Converse, Finite Blocklength, Brascamp-Lieb Inequality, Hyper-
contractivity, Common Randomness, Gray-Wyner Network.

I. INTRODUCTION

In the last few years, information theory has witnessed
vibrant developments in the study of the non-vanishing error
probability regime, and in particular, the successes in applying
normal approximations to gauge the back-off from the asymp-
totic limits as a function of delay. Extending the achieve-
ments for point-to-point communication systems in [3][4][5]
to network information theory problems usually requires new
ideas for proving tight non-asymptotic bounds. For achievabil-
ity, single-shot covering lemmas and packing lemmas [6][7]
supply convenient tools for distilling single-shot achievability
bounds from the classical asymptotic achievability proofs.
While these single-shot bounds hold regardless of the finite-
ness of the alphabets or the memory, their asymptotics are easy
to evaluate in the stationary memoryless case by choosing the
auxiliary random variables to be i.i.d. and applying the law
of large numbers or the central limit theorem. Other single-
shot achievability proof techniques for network information
theory include stochastic likelihood encoder/decoder [8] and
approximation of output statistics [9].

In contrast, although the binary hypothesis testing approach
(and the related information spectrum approach) has been
successfully applied to the single-user settings [3][4][10],
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progress on its extensions to network information problems
has been modest. There are relatively few examples of single-
shot converse bounds in the network setting. Moreover, unlike
their achievability counterparts, it usually requires more effort
to single-letterize a single-shot converse to a strong converse
or a second-order converse, partly because it is not obvious
that a product auxiliary distribution is optimal in the evaluation
of the single-shot converse bounds (consider for example [4,
Theorem 48] for point-to-point channel coding, which relies on
the reduction to fixed composition). Several researchers have
also noted the dearth of methods for obtaining strong converses
for network information theory problems whose single-letter
solutions involve auxiliaries; see e.g. [11, Section 6.3][12,
Section 9.2]. Although the method of types has proven to
be applicable for the strong converses of some problems of
this type (including selected source and channel networks
[13], Gelfand-Pinsker coding [14], and Gray-Wyner coding
[15][16][17]), the method of types crucially relies on the
finite alphabet assumption. To our knowledge, no previous
methods exist for establishing a strong converse for nonfinite
distributions when the rate region involves an auxiliary (with
the exception of certain Gaussian cases where the converse
part can be reduced to a single-user problem, such as dirty
paper coding [18]).

In this paper, we demonstrate the power of a functional
inequality, the Brascamp-Lieb inequality [19][20][21][22], in
proving single-shot converses for problems involving multiple
sources and an “omniscient helper”. For recent discussions
on the connection between the Brascamp-Lieb inequality and
information measures, see [23][24][25][26]. For recent studies
of the computational aspects of the Brascamp-Lieb inequalities
or applications in computer science, see [27][28][29][30].

To be concrete, consider c1, . . . , cm P p0,8q, d P R, a
nonnegative finite measure µ on Ym

:“ Y1ˆ¨ ¨ ¨ˆY
m

, and �-
finite measures ⌫1, . . . , ⌫m on Y1, . . . ,Ym

. Then, an inequality
of the following form is sometimes referred to as a Brascamp-
Lieb type inequality (see e.g. [22])

ª
mπ
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j
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qdµpymq § exppdq
mπ
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j
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, @f1, . . . , fm • 0,
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where }f
j

} 1
cj

:“
´≥

f
1{cj
j

d⌫
j

¯
cj

. Traditionally, a Brascamp-
Lieb (BL) inequality refers to the special case of (1) where µ
and p⌫

j

q are Gaussian or Lebesgue measures. In that case, it
is known that (1) holds if and only if it holds for all Gaussian
functions pf

j

q [19][20]. In the present paper however, we do
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not focus on the Gaussian case, and the measures considered
are not necessarily Gaussian or Lebesgue.

If we define the Brascamp-Lieb (BL) divergence
dpµ, p⌫

j

q, cmq as the best (i.e. smallest possible) constant
d for (1) to hold, then several well-known information
measures can be recovered as special cases, such as the Rényi
divergence (taking m “ 1) or hypercontractivity (taking
m “ 2, µ “ Q

Y1Y2 , and ⌫
j

“ Q
Yj , j “ 1, 2). A key fact

that we invoke is the entropic representation of the BL
divergence: for any joint distribution Q

Y

m ,

dpQ
Y

m , pQ
Yj q, cmq

“ sup

PY m!QY m

#
mÿ

j“1

c
j

DpP
Yj }Q

Yj q ´ DpP
Y

m}Q
Y

mq
+
. (2)

which can be derived from (1) using convex duality theory
[22] or large deviation arguments [31]. Here DpP

Y

m}Q
Y

mq
denotes the relative entropy (we review the definitions of
various information theoretic quantities in Section II). While
similar objects such as hypercontractivity have recently seen
applications in various converse results [32][1][33], one ob-
stacle preventing them from becoming a canonical tool for
network information theory is that in general, (2) can be
strictly larger than

d

‹pQ
Y

m , pQ
Yj q, cmq “ sup

QU|Y m

#
mÿ

j“1

c
j

IpU ;Y
j

q ´ IpU ;Y mq
+
,

(3)

where IpU ;Y mq denotes mutual information, and the supre-
mum is understood as over standard probability Q

UY

m whose
Y m-marginal is the given Q

Y

m . More specifically, single-shot
converse bounds derived from (1) involve dpQ

Y

m , pQ
Yj q, cmq,

whereas single-letter rate regions involving mutual information
or conditional entropy have supporting hyperplane characteri-
zations in terms of d‹pQ

Y

m , pQ
Yj q, cmq. For example, [1][33]

derived single-shot converse bounds for common randomness
generation problems using hypercontractivity. These bounds
are only first-order tight in the regime of vanishing communi-
cation rate, which is essentially due to the fact (observed by
Anantharam et al. [34, Theorem 4]) that dpQ

Y

m , pQ
Yj q, cmq “

0 if and only if d‹pQ
Y

m , pQ
Yj q, cmq “ 0.

In order to bridge the gap between dpQ
Y

m , pQ
Yj q, cmq

and d

‹pQ
Y

m , pQ
Yj q, cmq, we draw insight from the notion

of smooth Rényi divergence in non-asymptotic information
theory, introduced by Renner and coauthors [35][36][37]. This
naturally leads us to introduce the smooth BL divergence: for
� P p0, 1q,

d

�

pQ
Y

m , pQ
Yj q, cmq :“ inf

µ :
≥ | dµ´dQY m |`§�

dpµ, pQ
Yj q, cmq

(4)

where the infimum is over nonnegative finite measures µ such
that the positive part of the measure µ ´ Q

Y

m is at most �.
Recall that when proving the strong converse using the smooth
Rényi divergence, we need to show that in the stationary
memoryless setting (i.e., Q

Y

– Qbn

Y

), the smooth Rényi
divergence grows linearly at the rate of the relative entropy
(regardless of the Rényi order). This can be done by simply

taking µ to be supported on the weakly typical set, hence
obviating the need for the finite alphabet assumption.

The asymptotic analysis of the smooth BL divergence, in
contrast, is more elusive. A classical strong converse technique
called image-size characterization [13] bounds the cardinali-
ties of subsets of the strongly typical set and their images. In
the setting of (1), the corresponding image-size inequality is
of the form

|A| § D
mπ

j“1

|A
j

|cj (5)

for any subset A of the strongly typical set (w.r.t. Q
Y

m ),
while A

j

denotes the projection of A to Y
j

. Inspired by this,
it is natural to try µ in (4) with the conditional measure
on the strongly typical set. The restriction to the strongly
typical set ensures that the empirical distribution is close to
Q

Y

m , which is reflected by the fact that Q
UY

m and Q
Y

m

are consistent in (3) and the mutual information terms arise
from single-letterizing the relative entropy between multi-letter
distributions. In the case of finite Ym, this successfully shows
that (see e.g. [38, Chapter 3])

d

�

pQbn

Y

m , pQbn

Yj
q, cmq “ n d

‹pQ
Y

m , pQ
Yj q, cmq ` Op?

nq.
(6)

However, the strong typicality approach has no hope of obtain-
ing the exact prefactor in the Op?

nq term, or even getting the
sign correct. Moreover, the strong typicality approach requires
an assumption of finite alphabets.

In the present paper, we adopt a different, typicality-free
approach. With a simple, yet non-obvious, argument capital-
izing on the property of the subgradient of a certain convex
functional, we show the following single-shot bound: for any
� P p0, 1q,

� § P
«

mÿ

j“1

c
j

ı
U ;Yj pu;Y

j

q ´ ı
U ;Y mpu;Y mq ° d

�

�
. (7)

Here d

�

:“ d

�

pQ
Y

m , pQ
Yj q, cmq, the information density is

defined as ı
U ;Y mpu; ymq :“ dQ‹

Y mU
dQUˆQY m

pu, ymq, with Q‹
UY

m

being any maximizer in (3) (assuming it exists), Y m „ Q
Y

m ,
and u is any element in U (we will show that the term to the
left of ° in (7) is independent of u almost surely). This indeed
recovers the exact prefactor in Op?

nq in (3), and does not
require finite alphabets. For example, if Q

Y

m is a Gaussian
distribution, then there exists an optimal Q‹

UY

m which is a
jointly Gaussian distribution [39].

We apply the smooth BL divergence to the converses of
two network information theory problems: omniscient helper
common randomness generation [40, Theorem 4.2][1], and
Gray-Wyner source coding (including the almost lossless case
with finite alphabets and squared distortion case with jointly
Gaussian sources). In both cases, we first prove new single-
shot converse bounds in terms of smooth BL divergence,
and then perform an asymptotic analysis to obtain the exact
second-order rate. The exact second-order rates for the Gray-
Wyner source coding in the discrete memoryless cases were
previously derived by Watanabe [16] and Zhou et al. [17] using
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the method of types and Fano’s inequality, relying crucially on
i.i.d. and finite-alphabet assumptions.

The proposed smooth BL divergence approach to non-
asymptotic converses has several advantages compared with
existing approaches such as the method of types, as nicely il-
lustrated by its applications to common randomness generation
and source coding:

1) In the discrete memoryless case, while the classical
image-size characterization (based on strong typicality)
shows that the second-order term scales as Op?

nq, there
is no hope of obtaining the exact prefactor. In fact, the
sign of the prefactor is invariably wrong when the error
probability is less than 1{2. In contrast, the smooth BL
approach recovers the exact prefactor.

2) While the method of types is capable of obtaining the
exact second-order prefactor in the discrete memoryless
case, it is incapable of handling infinite alphabets. In
contrast, our approach leads to rare instances of second-
order converses for continuous sources.

3) In the omniscient helper CR generation problem, our
approach has the desirable feature of allowing possibly
stochastic encoders and decoders.1 Stochastic encoders
and decoders are tricky to handle with the image-size
technique as it only concerns the cardinalities of the
encoding and decoding sets.

In addition, we discuss the converse2 part of smooth BL
divergence, which generally follows from the achievability of
CR generation problems. In fact, smooth BL divergence and
CR generation may be considered as dual problems where the
achievability of one implies the converse of the other.3 Such
converse proofs based on the achievability of another usually
have certain advantages, partly because the achievability is
constructive.

Let us remark that our application examples (common ran-
domness generation and source coding) concern the setting in
which one terminal observes the entire source realization Y m.
In other settings where such an omniscient terminal is absent
(e.g. the Wyner-Alhswede-Körner source problem [42][43]),
although the definition of d

�

extends and a counterpart of (7)
follows by the same proof, it requires additional efforts to
connect d

�

with operational quantities (e.g. error probability).
In [44] (see also [38] and [45]), this connection was achieved
through a novel reverse hypercontractivity approach. More-
over, a very different approach for handling auxiliary random
variables with Markov constraints (as in the Wyner-Alhswede-
Körner problem) by introducing soft constraints was recently
proposed by Tyagi and Watanabe [46].

1The (asymptotic) rate region with stochastic encoders can be strictly
larger than with deterministic encoders, since in the former case the CR
rate is unbounded whereas in the latter case it is bounded by the entropy
of the sources. Regarding the decoders, we argue in Remark 9 that allowing
stochasticity can strictly decrease the (single-shot) error, but within a constant
factor.

2Since the smooth BL divergence is defined as an infimum over an auxiliary
distribution, we take the liberty of referring to lower/upper bounds on the
smooth BL divergence as converse/achievability results.

3Another example of such “dual problems” in information theory is channel
resolvability and identification coding [41].

II. PRELIMINARIES

We start by introducing the notation and the formal def-
initions of quantities of interest. Probability measures and
random transformations are denoted by capital Latin letters,
such as P and P

Y |X . Unnormalized nonnegative measures are
denoted by lowercase Greek letters, and the Lebesgue measure
is denoted by �. Random variables are written in capital
letters. For finite alphabets we sometimes use the notation
of inner product in Euclidean space hf, P i :“ ≥

fdP to
denote an integral. A vector pa

m

, a
m`1, . . . , anq is sometimes

abbreviated as an
m

, or an in the case of m “ 1, or more simply,
the boldface letter a if the range of the indices is clear from
the context. The closure of a set A is denoted as clpAq.

The relative information between two nonnegative �-finite
measures µ ! ⌫ on the same measurable space pX ,F q is
defined as the logarithm of the Radon-Nikodym derivative:

ı
µ}⌫pxq :“ log

dµ

d ⌫
pxq, @x P X . (8)

The relative entropy and the conditional relative entropy are
defined as:

DpP
X

}µ
X

q :“ Erı
PX}µX

pXqs; (9)
DpP

Y |X}µ
Y

|P
X

q :“ DpP
Y |XP

X

}µ
Y

ˆ P
X

q. (10)

where X „ P
X

. Given P
XY

, the mutual information is
defined as

IpX;Y q :“ DpP
Y |X}P

Y

|P
X

q. (11)

We use � to denote the Lebesgue measure on a Euclidean
space. Then the differential entropy and the conditional dif-
ferential entropy are defined as

hpP
X

q :“ ´DpP
X

}�q; (12)
hpP

X|U |P
U

q :“ ´DpP
X|U }�|P

U

q. (13)

We now give formal definitions of the key quantities of
interest.

Definition 1. Given a finite measure µ on Ym, nonnegative �-
finite measures ⌫1, . . . , ⌫m on Y1, . . . ,Ym

, and c1, . . . , cm P
p0,8q, define the Brascamp-Lieb (BL) divergence

dpµ, p⌫
j

q, cmq :“ sup

PY m

#
mÿ

j“1

c
j

DpP
Yj }⌫

j

q ´ DpP
Y

m}µq
+
.

(14)

As a convention, the supremum in (14) is over P
Y

m ! µ such
that each term in (14) is finite, and the supremum is set to
´8 if there is no such P

Y

m .

We remark that the choice of the collection of measures
p⌫

j

q will depend on our applications: in converses of common
randomness generation problems, ⌫

j

will be the marginal
distribution at one terminal; in source coding problems, ⌫

j

will be the counting measure or the Lebesgue measure.
By convex duality [22] or large deviation arguments [31],

the following equivalent formulation of the smooth BL diver-
gence can be shown:
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Proposition 1.

dpµ, p⌫
j

q, cmq “ sup

f1,...,fm•0

#
log

ª
mπ

j“1

f
j

dµ ´
mÿ

j“1

log }f
j

} 1
cj

+
,

(15)

where }f
j

} 1
cj

:“
´≥

f
1{cj
j

d⌫
j

¯
cj

.

For nonnegative measures ⌫ and µ on the same measurable
space pX ,F q where ⌫pX q † 8, one can define the following
measure of their distance (see e.g. [47])

E
�

p⌫}µq :“ sup

APF
t⌫pAq ´ �µpAqu, (16)

for any choice of � P r1,8q. In the present paper, we will
always take � “ 1 and use E1 to measure the perturbation in
the definition of the smooth divergences. Note that E1pP }µq “≥ |dP ´dµ|` in general and is not equal to the total variation
1
2 |P´µ| if µ is not a probability measure. In fact, if we restrict
µ to be a probability measure and use the total variation in
the definition of the smooth divergence instead, we would not
be able to obtain the exact dispersion in the later applications
in converse proofs.

Definition 2. Given a probability measure Q
Y

m , nonnegative
�-finite measures p⌫

j

qm
j“1 on Y1, . . . ,Ym

, � P r0, 1s, and cm P
p0,8qm,

d

�

pQ
Y

m , p⌫
j

q, cmq :“ inf

µ : E1pQY m}µq§�

dpµ, p⌫
j

q, cmq. (17)

Remark 1. The Brascamp-Lieb divergence is a generalization
of several information measures, including the strong data
processing constant, hypercontractivity, and Rényi divergence;
see a summary in [23]. For example, for ↵ P p1,8q, the Rényi
divergence between two probability measures P and Q on the
same alphabet can be expressed in terms of the BL divergence:

D
↵

pP }Qq “ ↵

↵ ´ 1

d

ˆ
P,Q,

↵ ´ 1

↵

˙
. (18)

This can be seen either from (15) and the variational formula
of Rényi divergence (see e.g. [48][49, (7)]), or (14) and
the entropic representation of the Rényi divergence (see e.g.
[39][50]). Consequently, the smooth Rényi divergence [36] can
be expressed in terms of a smooth BL divergence:

D�

↵

pP }Qq :“ inf

µ : E1pP }µq§�

D
↵

pµ}Qq (19)

“ ↵

↵ ´ 1

d

�

ˆ
P,Q,

↵ ´ 1

↵

˙
(20)

for � P p0, 1q.
We now introduce a quantity which plays a central role in

the asymptotic characterizations of the smooth BL divergence.
We first give its definition in terms of auxiliary random
variables. It is well-known in information theory that auxiliary
random variables take the role of convexifying sets [51][52].
An equivalent concave envelope formulation will be given later
in Remark 5.

Definition 3. Given Q
Y

m , p⌫
j

q and cm as in Definition 2,

d

‹pQ
Y

m , p⌫
j

q, cmq

:“ sup

PUY m : PY m“QY m

#
mÿ

j“1

c
j

DpP
Yj |U }⌫

j

|P
U

q ´ IpU ;Y mq
+
,

(21)

where pU, Y mq „ P
UY

m .

Remark 2. In the supremum in (21), we do not need to
impose any cardinality constraint on U (we can assume that
pU ˆ Ym, P

UY

mq is any standard probability space such that
P
Y

m “ Q
Y

m ). On the other hand, the supremum does not
change if U is restricted to be finite. This follows from the
same reasoning in the proof of the proverbial fact that the
mutual information equals the supremum over finite parti-
tions: first by Gelfand-Yaglom-Perez (see [53, Theorem 2.1.2])
where the relative entropy is approximated by its conditional
over finite partitions consisting of subsets of U ˆYm; second
by Dobrushin (see [53, Theorem 2.1.1]), further approximation
is made by finite partitions consisting of rectangle sets in
U ˆ Ym.
Remark 3. In the special case of ⌫

j

“ Q
Yj , we have

d

‹pQ
Y

m , pQ
Yj q, cmq “ sup

PU|Y m

#
mÿ

j“1

c
j

IpU ;Y
j

q ´ IpU ;Y mq
+
.

(22)

Remark 4. Since

d

‹pQ
Y

m , p⌫
j

q, cmq

“ sup

PUY m :

PY m“QY m

«
mÿ

j“1

c
j

DpP
Yj |U }⌫

j

|P
U

q ´ DpP
Y

m|U }Q
Y

m |P
U

q
�

(23)

§ sup

PUY m

«
mÿ

j“1

c
j

DpP
Yj |U }⌫

j

|P
U

q ´ DpP
Y

m|U }Q
Y

m |P
U

q
�

(24)

§ sup

PUY m

«
sup

u

«
mÿ

j“1

c
j

DpP
Yj |U“u

}⌫
j

q ´ DpP
Y

m|U“u

}Q
Y

mq
��

(25)

“ sup

PY m

«
mÿ

j“1

c
j

DpP
Yj }⌫

j

q ´ DpP
Y

m}Q
Y

mq
�

(26)

“ dpQ
Y

m , p⌫
j

q, cmq, (27)

we see that, in general,

d

‹pQ
Y

m , p⌫
j

q, cmq § dpQ
Y

m , p⌫
j

q, cmq, (28)

and the inequality can be strict (e.g. consider examples of
Gaussian distributions). However, if dpQ

Y

m , pQ
Yj q, cmq ° 0,

then one can still show that d

‹pQ
Y

m , pQ
Yj q, cmq ° 0, by

taking U “ t0, 1u, P
U

p1q “ t, P
Y

m|U“1 “ P ‹
Y

m , P
Y

m|U“0 “
1

1´t

pQ
Y

m´tP ‹
Y

mq, and letting t Ó 0. Here P ‹
Y

m is chosen such
that

∞
m

j“1 cjDpP ‹
Yj

}Q
Yj q ´DpP ‹

Y

m}Q
Y

mq ° 0 and dP ‹
Y m

dQY m
is

bounded.
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We list a few basic tensorization properties and include the
short proofs.

Proposition 2 (Tensorization). Given Q
Y

m , p⌫
j

q and cm as
in Definition 3, and any n • 1, we have

1) dpQbn

Y

m , p⌫bn

j

q, cmq “ n dpQ
Y

m , p⌫
j

q, cmq.
2) d

‹pQbn

Y

m , p⌫bn

j

q, cmq “ n d

‹pQ
Y

m , p⌫
j

q, cmq.
3) If P

UY

m achieves the supremum in the definition of
d

‹pQ
Y

m , p⌫
j

q, cmq, then Pbn

UY

m achieves the supremum
in the definition of d‹pQbn

Y

m , p⌫bn

j

q, cmq.

Proof. The • parts of 1) and 2) are immediate from the def-
initions. For the § part, given any P

UY

mn , let I P t1, . . . , nu
be equiprobable and independent of pU, Y mnq under P . Then4

DpP
Yj

n|U }⌫bn

j

|P
U

q

“
nÿ

i“1

DpP
Yji|UYj

i´1}⌫
j

|P
UYj

i´1q (29)

§
nÿ

i“1

DpP
Yji|UY

m,i´1}⌫
j

|P
UY

m,i´1q (30)

“ nDpP
YjI |IUY

m,I´1}⌫
j

|P
IUY

m,I´1q, (31)

and

DpP
Y

mn|U }Qbn

Y

m |P
U

q

“
nÿ

i“1

DpP
Y

m
i|UY

m,i´1}Q
Y

m |P
UY

m,i´1q (32)

“ nDpP
Y

m
I |IUY

m,I´1}Q
Y

m |P
IUY

m,I´1q. (33)

Identifying pI, U, Y m,I´1q as U and Y m

I

as Y m,
the claim of 1) (resp. 2)) follows noting that
sup

PUY m t∞
m

j“1 cjDpP
Yj |U }⌫

j

|P
U

q ´ DpP
Y

m|U }Q
Y

m |P
U

qu
where the supremum is without (resp. with) the
constraint P

Y

m “ Q
Y

m equals dpQ
Y

m , p⌫
j

q, cmq (resp.
d

‹pQ
Y

m , p⌫
j

q, cmq). Claim 3) follows from Claim 2).

III. A SINGLE-SHOT UPPER BOUND ON THE SMOOTH BL
DIVERGENCE

A principal goal of this paper is to upper-bound the smooth
BL divergence in terms of d

‹. Then by proving single-shot
converses in terms of the smooth BL divergence for common
randomness generation and the Gray-Wyner source coding, we
obtain sharp second-order converses.

In this section we prove an estimate of the smooth BL
divergence mentioned in (7). This relies crucially on the
properties of a convex functional �, defined below in (34).

Proposition 3. Given a probability measure Q
Y

m , nonnega-
tive �-finite measures p⌫

j

qm
j“1 on Y1, . . . ,Ym

, and pc
j

qm
j“1 P

p0,8qm, define the function of joint probability measures
P
Y

m ! Q
Y

m ,

�pP
Y

mq

:“ sup

PU|Y m

#
mÿ

j“1

c
j

DpP
Yj |U }⌫

j

|P
U

q ´ DpP
Y

m|U }Q
Y

m |P
U

q
+
,

(34)

4Note that Yj
i :“ pYj1, . . . , Yjiq which is note to be confused with Y i

j :“
pYj , Yj`1, . . . , Yiq.

where the supremum is understood as over standard probabil-
ity space P

UY

m with the given marginal P
Y

m . Then
1) � is concave.
2) Suppose that P ‹

UY

m achieves the supremum in (34),
and

∞
m

j“1 cjıP ‹
UYj

}P ‹
Uˆ⌫j

´ı
P

‹
UY m}P ‹

UˆQY m is absolutely
integrable with respect to P ‹

UY

m . Then5

r�|
PY m pymq

:“
mÿ

j“1

c
j

ı
P

‹
UYj

}P ‹
Uˆ⌫j

pu, y
j

q ´ ı
P

‹
UY m}P ‹

UˆQY m pu, ymq,

(35)

where the right side is independent of u, P ‹
UY

m -a.s.,
defines a subgradient6 of � at P

Y

m .
3) If Ym is finite, then r

PY m d

‹pP
Y

m , p⌫
j

q, cmq|
QY m

“
r�|

QY m , where the left side denotes the conventional
gradient over a finite dimensional space (assuming that
it exists at Q

Y

m ).

Remark 5. The relation between d

‹p¨q and �p¨q may be a
bit confusing; let us clarify as follows: fix any Q

Y

m , p⌫
j

q
and cm P p0,8qm. In Remark 2 we commented that the
supremums in the definitions of d

‹p¨q (and also �p¨q, for the
same reason) can be restricted to finite. Thus upon defining the
functional ' : P

Y

m fiÑ ∞
m

j“1 cjDpP
Yj }⌫

j

q ´ DpP
Y

m}Q
Y

mq,
we can write

dpQ
Y

m , pQ
Yj q, cmq “ sup

PY m!QY m

'pP
Y

mq, (36)

d

‹pQ
Y

m , pQ
Yj q, cmq “ pconc'qpQ

Y

mq, (37)
�pP

Y

mq “ pconc'qpP
Y

mq, @P
Y

m ! Q
Y

m ,
(38)

where conc denotes the concave envelope operator.

Proof of Proposition 3. 1) Consider arbitrary P piq
Y

m , i “
0, 1. Suppose that P piq

U |Y m achieves the supremum in
(34) when P

Y

m “ P piq
Y

m (if the supremum is not
achieved, the claim still holds by an approximation
argument). Then for any ↵ P p0, 1q, and P p↵q

Y

m “
p1 ´ ↵qP p0q

Y

m ` ↵P p1q
Y

m , let U p↵q be the disjoint union of
U p0q and U p1q, and set P p↵q

UY

m as the convex combination
of P p0q

UY

m and P p1q
UY

m . This induces a P p↵q
U |Y m for which

∞
m

j“1 cjDpP p↵q
Yj |U }⌫

j

|P
U

q´DpP p↵q
Y

m|U }Q
Y

m |P
U

q “ p1´
↵q�pP p0q

Y

mq ` ↵�pP p1q
Y

mq. This shows that �pP p↵q
Y

mq •
p1 ´ ↵q�pP p0q

Y

mq ` ↵�pP p1q
Y

mq.
2) Let fpu, ymq be the right side of (35). We first argue

that the right side of (35) equals a function only of ym,
P ‹
UY

m -a.s. The intuition is easy to obtain in the case
of finite U ˆ Ym: Suppose that pu, ymq ‰ pu1, ymq are
both on the support of P

UY

m and fpu, ymq ° fpu1, ymq.
We can define P t

UY

m :“ P ‹
UY

m ` t ¨ �
u,y

m ´ t ¨ �
u

1
,y

m ,

5Note that the right side of (35) may be written as∞m
j“1 cj ıP‹

Yj |U“u
}⌫j pyjq ´ ıP‹

Y m|U“u
}QY m pymq. Though on the

first sight this only depends on P ‹
Y m|U , it is actually dependent on PY m

since P ‹
Y m|U is computed from PY m .

6We do not say the “sup-gradient” of a concave function since it is
unconventional.
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where �
u,y

m denotes a point mass at pu, ymq. Then as
t Ñ 0 we have �pP t

UY

mq “ �pP
UY

mq ` tpfpu, ymq ´
fpu1, ymqq ` optq, which contradicts the assumption
that P ‹

UY

m achieves the supremum. Next we give a
measure theoretic proof for the general case; this is
usually done using the hyperplane separation theorems.
By assumption, f belongs to L1pP

UY

mq. Let V be
the set of L1pP

Y

mq functions, viewed a subspace of
L1pP

UY

mq. Define its dual

V˚
:“

"
g P L8pP

UY

mq :
ª
hg dP

UY

m “ 0, @h P V
*
.

(39)

Now for any g P V˚, define P t

UY

m by

dP t

UY

m

dP ‹
UY

m

“ 1 ` tg (40)

which is well-defined probability measure for |t| small
enough, and has marginal P

Y

m in view of the definition
of V˚. Using the dominated convergence theorem to
bring the differentiation inside the integrals in computing
the relative entropy terms in the definition of �, we find

�pP t

UY

mq “ �pP ‹
UY

mq ` t

ª
gfdP ‹

UY

m ` optq (41)

as t Ñ 0. Then
ª
fg dP ‹

UY

m “ 0 (42)

since P ‹
UY

m is a maximizer. It remains to show that
f P V (i.e., the “double dual” of V is itself). Suppose
that f R V . Since V is closed in L1pP

UY

mq and the
singleton tfu is compact, by the Hahn-Banach theorem
(see [54, P106]), there exists g P L8pP

UY

mq such that
ª
fg dP ‹

UY

m † inf

hPV

ª
hg dP

UY

m . (43)

Since V is a linear subspace, we see that the right side
of (43) can either be 0 or ´8. The latter case is ruled
out because of the strict inequality of (43), hence the
right side of (43) is 0 and h P V˚. But then the left
side of (43) must also be 0 as we have shown in (42),
a contradiction. Hence we proved that the right side of
(35) must lie in L1pP

Y

mq.
Next we show that r�|

PY m as defined in (35) is a
subgradient, that is, for any probability measure S

Y

m !
P
Y

m ,

�pS
Y

mq ´ �pP
Y

mq §
ª
r�|

PY m dpS
Y

m ´ P
Y

mq.
(44)

It suffices to prove (44) when dSY m

dQY m
is bounded, as the

general claim will then follow with an approximation
argument. In that case,

St

Y

m :“ p1 ` tqP
Y

m ´ tS
Y

m (45)

is a probability measure when t P p0, t0q for some t0 °
0. Then P

Y

m “ 1
1`t

St

Y

m ` t

1`t

S
Y

m . By the concavity

of � we have �pP
Y

mq • 1
1`t

�pSt

Y

mq ` t

1`t

�pS
Y

mq,
and upon rearrangement,

�pSt

Y

mq ´ �pP
Y

mq § t p�pP
Y

mq ´ �pS
Y

mqq . (46)

Hence we establish (44) by

�pP
Y

mq ´ �pS
Y

mq

• lim

tÓ0
�pSt

Y

mq ´ �pP
Y

mq
t

• lim

tÓ0

 pSt

Y

m , P ‹
U |Y mq ´  pP

Y

m , P ‹
U |Y mq

t
(47)

“
ª
r�|

PY m dpP
Y

m ´ S
Y

mq (48)

where
‚ In (47), we defined  : pP

Y

m , P
U |Y mq fiÑ∞

m

j“1 cjDpP
Yj |U }⌫

j

|P
U

q ´ DpP
Y

m|U }Q
Y

m |P
U

q,
and defined P ‹

U |Y m as the regular conditional prob-
ability induced by the maximizer P ‹

UY

m . Note that
equality does not necessarily hold in (47) because
P ‹
U |Y m maximizes  pP

Y

m , ¨q but not necessarily
 pSt

Y

m , ¨q.
‚ (48) follows by using the dominated convergence

theorem to bring the derivative into the integrals in
the definition of the relative entropies.

3) From the definitions we have

d

‹pQ
Y

m , p⌫
j

q, cmq “ �pQ
Y

mq. (49)

On the other hand since DpP
Y

m|U }Q
Y

m |P
U

q “
DpP

Y

m|U }P
Y

m |P
U

q ` DpP
Y

m}Q
Y

mq, we also have

d

‹pP
Y

m , p⌫
j

q, cmq “ �pP
Y

mq ` DpP
Y

m}Q
Y

mq (50)
“ �pP

Y

mq ` op|P
Y

m ´ Q
Y

m |q
(51)

when P
Y

m and Q
Y

m are close. From (49) and (51)
we see that the gradients of d‹p¨, p⌫

j

q, cmq and �p¨q are
equal.

Remark 6. Note that by the definition (44), the subgradient
r�|

PY m can be thought of as a measurable function on Ym

modulo an additive constant. However, it is convenient to
normalize it so that

ª
r�|

QY mdQ
Y

m “ d

‹pQ
Y

m , p⌫
j

q, cmq (52)

which is consistent with (35) and will also be convenient later.
The main result of this section is the following upper bound

on the smooth BL divergence.

Theorem 4. Let Q
Y

m be a probability measure on Ym and
⌫
j

be a nonnegative �-finite measure on Y
j

, j “ 1, . . . ,m.
Suppose that P ‹

U |Y m achieves the supremum in the definition
of d‹pQ

Y

m , p⌫
j

q, cmq, and define r� by (35). Then for any
� P p0, 1q and cm P p0,8qm, we have

� § Prr�|
QY m pY mq ° d

�

pQ
Y

m , p⌫
j

q, cmqs. (53)
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Alternatively, for any � P R,

dPrr�|QY m pY mq°�s § �. (54)

Proof. Let � :“ d

�

pQ
Y

m , p⌫
j

q, cmq ´ d

‹pQ
Y

m , p⌫
j

q, cmq.
Define

C :“ tym : r�|
QY m pymq § d

‹pQ
Y

m , p⌫
j

q, cmq ` �u, (55)

then our goal is to show that Q
Y

mpCq • 1´�, or equivalently,

d1´QY m pCqpQ
Y

m , p⌫
j

q, cmq § d

�

pQ
Y

m , p⌫
j

q, cmq. (56)

In the definition of d1´QY m pCqpQ
Y

m , p⌫
j

q, cmq, take µ to
be the restriction of Q

Y

m on C, i.e., dµ

dQY m
pymq “ 1tym P

Cu. Then obviously E1pQ
Y

m}µq § 1 ´ Q
Y

mpCq. Supposing
that P

Y

m ! µ achieves the supremum in the definition of
dpµ, p⌫

j

q, cmq (if the supremum is not achievable we apply
an approximation argument and the proof carries through),
we have

dpµ, p⌫
j

q, cmq “
mÿ

j“1

c
j

DpP
Yj }⌫

j

q ´ DpP
Y

m}Q
Y

mq (57)

§ �pP
Y

mq (58)

§ �pQ
Y

mq `
ª

r�|
QY m

dpP
Y

m ´ Q
Y

mq
(59)

§ �pQ
Y

mq ` � (60)
“ d

�

pQ
Y

m , p⌫
j

q, cmq. (61)

where
‚ (57) is because DpP

Y

m}µq “ DpP
Y

m}Q
Y

mq, by the
definition of µ.

‚ (59) follows from the definition of the subgradient.
‚ (60) follows since P

Y

m ! µ implies that P
Y

m is
supported on C, which in turn implies that

ª
r�|

QY m
dP

Y

m § �pQ
Y

mq ` � (62)

“
ª

r�|
QY m

dQ
Y

m ` �. (63)

Thus we have established (56). The proof of (54) is similar.

Of particular interest is the case of the Gaussian or Lebesgue
measures, where we are able to express r�|

QY m in more
explicit forms. Define the following function of any for any
positive semidefinite matrix ⌃:

 p⌃q :“ sup

RY m“N p0,⌃Rq,⌃R®⌃

#
´

mÿ

j“1

c
j

hpY
j

q ` hpY mqs
+

` TrrM
Q

⌃s (64)

“ sup

⌃R®⌃

#
´

mÿ

j“1

c
j

2

logp2⇡er⌃
R

s
ii

q ` m

2

logp2⇡e|⌃
R

|q
+

` TrrM
Q

⌃s (65)

where M
Q

is the symmetric matrix such that ymJM
Q

ym “∞
m

j“1 cj log
d�
d⌫j

py
j

q ´ log

d�m

dQY m
pymq, @ym, Y m „ R

Y

m ,
and ⌃

R

® ⌃ means that ⌃ ´ ⌃
R

is a positive-semidefinite
matrix. Note that the computation of  p⌃q is simply a matrix

optimization problem. The next proposition shows how the
computation of � and its subgradient is reduced to that of  .

Proposition 5. Let Q
Y

m “ N p0,⌃
Q

q be a centered Gaussian
distribution, and let ⌫1, . . . , ⌫m each be either a centered
Gaussian or the Lebesgue measure. Let cm P p0,8qm. Then

1) �pP
Y

mq “  p⌃
P

q, for any centered Gaussian distribu-
tion P

Y

m “ N p0,⌃
P

q.
2) Let r�|

QY m be defined by (35). Then

r�|
QY m pymq “ ymJpr |⌃Qqym, ym P Rm, (66)

where r |⌃Q is a subgradient of the concave function
 .

Proof. 1) From the definition we can deduce that

�pP
Y

mq

:“ sup

RUY m : RY m“PY m

#
´

mÿ

j“1

c
j

hpY
j

|Uq ` hpY m|Uqs
+

` TrrM
Q

⌃
P

s (67)

§ sup

RUY m : ERrY mJ
Y

ms®⌃P

#
´

mÿ

j“1

c
j

hpY
j

|Uq ` hpY m|Uqs
+

` TrrM
Q

⌃
P

s (68)
“  p⌃

P

q. (69)

The last step used the fact that the Gaussian measure
achieved the supremum in (68), which is shown in the
exact form in [23, Theorem 14]; see also the refer-
ences therein. To show the reverse direction �pP

Y

mq •
 p⌃

P

q, for any ⌃
R

in the definition of  p⌃
P

q, con-
struct the P

UY

m in the definition of �pP
Y

mq by letting
U „ N p0,⌃

P

´ ⌃
R

q and pY m ´ Uq „ N p0,⌃
R

q be
independent.

2) First we observe that  is indeed a concave function:
for any ⌃0

P

, ⌃1
P

and p P p0, 1q,

p1 ´ pq p⌃0
P

q ` p p⌃1
P

q

§ sup

RUY m : ERrY mJ
Y

ms®⌃P

#
´

mÿ

j“1

c
j

hpY
j

|Uq ` hpY m|Uqs
+

` TrrM
Q

⌃
P

s (70)
“  p⌃

P

q (71)

where ⌃
P

:“ p1 ´ pq⌃0
P

` p⌃1
P

and (70) is shown by
choosing U to be binary. Next, consider any P

Y

m “
N p0,⌃

P

q. From the proof of [23, Theorem 14] we
know that the supremum in (67) can be achieved (im-
portantly, this relies on the bounded second moment
constraint in the supremum in (67)) by some constant
U and centered Gaussian R

Y

m . Then by choosing
U „ N p0,⌃

P

´ ⌃
R

q and pY m ´ Uq „ N p0,⌃
R

q
to be independent, we see that there exists a centered
Gaussian distribution P ‹

UY

m achieving the supremum in
the definition of �pP

Y

mq. In particular, there exists some
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A P Rmˆm and c0 P R such that r�|
QY m pymq “

ymJAym ` c0 for any ym P Rm, and hence
ª
r�|

QY m dpP
Y

m ´ Q
Y

mq “ TrrAp⌃
P

´ ⌃
Q

qs.
(72)

We remark that from the proof of [23, Theorem 14],
P ‹
UY

m is unique up to a transformation of U , so
r�|

QY m defined in (35) is also unique. The subgradient
property gives

�pP
Y

mq § �pQ
Y

mq `
ª
r�|

QY m dpP
Y

m ´ Q
Y

mq.
(73)

These combined with the first part of the proposition
show that

 p⌃
P

q §  p⌃
Q

q ` TrrAp⌃
P

´ ⌃
Q

qs. (74)

By the definition of the subgradient of  , we see that
A is a subgradient r |⌃Q . The constant c0 is not
important if we view the subgradient as the equivalent
class modulo an additive constant. Alternatively, under
the normalization
ª
r�|

QY mdQ “ �pQ
Y

mq “  p⌃
Q

q “ Trrr |⌃Q⌃Q

s

we can argue that c0 “ 0.

IV. APPLICATION: OMNISCIENT-HELPER COMMON
RANDOMNESS GENERATION

In this section we prove a single-shot converse bound for
the omniscient helper common randomness (CR) generation
problem [40, Theorem 4.2] in terms of the smooth BL di-
vergence. This allows us to prove not only the exact second-
order converse for common randomness generation, but also
asymptotic lower bounds on the smooth BL divergence.

A. A Single-Shot Converse for Common Randomness Gener-
ation

Figure 1 shows the setup of the common randomness
generation problem, in the single-shot version. Let Q

Y

m be
the joint distribution of sources Y1, . . . , Y

m

, observed by
terminals T1, . . . , T

m

. Terminal T0 which observes Y m is
called an omniscient helper. Terminal T0 computes the integers
W1pY mq, . . . , W

m

pY mq and sends them to T1, . . . , T
m

,
respectively. Then, terminals T0, . . . , T

m

compute integers
KpY mq, K1pY1,W1q,. . . , K

m

pY
m

,W
m

q. The goal is to make
K “ K1 “ ¨ ¨ ¨ “ K

m

with high probability and K almost
equiprobable. In this paper we primarily focus on the case
where the computation at the terminals can be stochastic (i.e.,
there exists infinite private randomness at each terminal); we
will clarify when there is potential confusion.

T1 T2 . . . T
m

T0Y m

K1 K2 K
m

K

Y1 Y2 Y
m

W1 W2 W
m

Figure 1: Common randomness generation with an omniscient
helper

Let us recall previous results on this problem. In the
stationary memoryless case where the sources have the per-
letter distribution Q

Y

m , take Y
j

– Y
j

n in the above single-
shot formulation. Define

R “ lim inf

nÑ8
1

n
log |K|; (75)

R
j

“ lim sup

nÑ8
1

n
log |W

j

|, j “ 1, . . . ,m. (76)

In [40], Ahlswede and Csiszár used the entropy charac-
terization method [13] to obtain a single-letter expression
of the achievable rate region for CR generation under the
performance constraints

lim inf

nÑ8
1

n
HpKq • R; (77)

lim

nÑ8
PrK “ K1 “ K2 “ ¨ ¨ ¨ “ K

m

s “ 1. (78)

However, it is known that the achievable region does not
change when some other performance metrics are adopted
[40]. Let us also remark that the corresponding key generation
problem, which places the additional constraint that W

j

K K
asymptotically for each j, in fact has the same achievable
region as the common randomness generation problem without
a secrecy constraint [1, Theorem 9].7 However, the present
paper is not concerned with the secrecy constraint.

Let us recall the single-letter region characterized by
Ahlswede and Csiszár [40, Theorem 4.2]. If T0 has no private
randomness (i.e., pW

j

qm
j“1 cannot be computed stochastically),

then the achievable region is the closure of

R0 :“
§

PU|Y m

$
’’&

’’%

pR,R1, . . . , Rm

q P r0,8qm`1
:

R § IpU ;Y mq,
R

j

• IpU ;Y mq ´ IpU ;Y
j

q,
j “ 1, . . . ,m.

,
//.

//-
. (79)

If T0 has private randomness, the achievable region is obtained
by replacing the inequalities in (79) with

R § IpU ;V Y mq, (80)
R

j

• IpU ;V Y mq ´ IpU ;Y
j

q, (81)

7In general, the secrecy constraint can strictly decrease the region when the
transmitter does not see all other terminals [1, Theorem 2].



0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2953151, IEEE
Transactions on Information Theory

9

and union over all V independent of Y m and P
U |V Y

m .8 We
now present an equivalent, more compact representation of the
region in (80) and (81).

Proposition 6. If T0 has private randomness,
pR,R1, . . . , Rm

q P r0,8qm`1 is achievable if any only
if

d

‹pQ
Y

m , pQ
Yj q, cmq `

mÿ

j“1

c
j

R
j

•
˜

mÿ

j“1

c
j

´ 1

¸
R (82)

for all cm P p0,8qm (equivalently, for all cm P p0,8qm such
that

∞
c
j

° 1, since (82) is trivially true otherwise, by the
fact that d‹pQ

Y

m , pQ
Yj q, cmq • 0).

Proof. We first show that when T0 has private randomness,
the achievable region is the closure of

R :“
§

PU|Y m

$
’’&

’’%

pR,R1, . . . , Rm

q :
R “ IpU ;Y mq ` r0,

R
j

“ IpU ;Y mq ´ IpU ;Y
j

q ` r
j

,
r0 • 0, r1, . . . , rm • r0.

,
//.

//-
. (83)

Of course, r1, . . . , rm can be interpreted as the additional
communication rates used for sending the private randomness
which can be added on top of the common randomness
generated by a deterministic protocol, thus (83) is obviously
an inner bounded of the region characterized (80) and (81).
On the other hand, if R and R

j

satisfies (80) and (81) then
applying the chain rule of conditional mutual information we
have

R § IpU ;V Y mq (84)
“ IpU ;Y mq ` IpU ;V |Y mq (85)

R
j

• IpU ;V Y mq ´ IpU ;Y
j

q (86)
“ IpU ;Y mq ´ IpU ;Y

j

q ` IpU ;V |Y mq. (87)

If R • IpU ;Y mq, set r0 :“ R ´ IpU ;Y mq and r
j

:“ R
j

´
rIpU ;Y mq ´ IpU ;Y

j

qs, we see 0 § r0 § IpU ;V |Y mq § r
j

so that pR,R1, . . . , Rm

q is in (83). If R † IpU ;Y mq, let p :“
R

IpU ;Y mq P r0, 1s and let B „ Bernoullippq be independent of
pU, Y mq. Let U 1 be the random variable which equals U when
B “ 1 and void when B “ 0. Then

IpU 1B;Y mq “ IpU 1
;Y m|Bq

“ pIpU 1
;Y m|B “ 1q

“ pIpU ;Y m|B “ 1q
“ pIpU ;Y mq; (88)

similarly

IpU 1B;Y
j

q “ pIpU ;Y
j

q. (89)

Now we treat pU 1, Bq as the auxiliary U in (83), and put r0 :“
R´IpU 1B;Y mq and r

j

:“ R
j

´rIpU 1B;Y mq´IpU 1B;Y
j

qs.
From (87), (88) and (89) we have 0 “ r0 § r

j

, j “ 1, . . . ,m,
so again pR,R1, . . . , Rm

q is in R, and we have proved that
the closure of R is the achievable region.

8In the statement of [40, Theorem 4.2] the region is presented in a less
transparent form, but from its proof it is clear that the region is given by (80),
where V takes the role of the private randomness.

Next, by applying a linear transform we see that
pR,R1, . . . , Rm

q P clpRq if and only if pR,R ´ R1, . . . , R ´
R

m

q P clpSq where

S :“
§

PU|Y m

$
’’&

’’%

pR,S1, . . . , Sm

q :
R “ IpU ;Y mq ` r0,
S
j

“ IpU ;Y
j

q ´ s
j

,
r0, s1, . . . , sm • 0.

,
//.

//-
. (90)

Since clpSq is a closed convex set, from convex analysis [55]
we know that it is the intersection of closed half spaces one
side of the supporting hyperplane. Moreover, since increasing
the first coordinate or decreasing any of the other coordinates
of a point in clpSq will leave it in clpSq, the outward
normal of at any boundary point of clpSq is of the form
pc0,´c1, . . . ,´c

m

q where c0, c1, . . . , cm P r0,8qm. Hence

clpSq “

£

pc0,c1,...,cmq
Pr0,8qm`1

$
’&

’%

pR,S1, . . . , Sm

q P Rm`1
:∞

m

j“1 cjSj

´ c0R §
sup

PU|Y m

!∞
m

j“1 cjIpU ;Y
j

q ´ c0IpU ;Y mq
)

,
/.

/-
.

(91)

By a limiting argument it suffices to take c
j

° 0, j “ 0, . . . ,m
in (91), and then by homogeneity it suffices to take c0 “ 1.
Substituting S

j

“ R ´ R
j

and the claim follows.

Note that the entropy characterization approach of
Ahlswede and Csiszár [40] is only sufficient for proving a
weak converse (i.e. assuming a vanishing error probability in
(78)). Our goal here is to prove sharp second-order converse
results. Previously in our conference paper [1], a single-shot
bound was derived via hypercontractivity which shows the
strong converse property of common randomness per unit cost.
More precisely, [1] showed that for any nonvanishing error
probability the achievable rates must satisfy

mÿ

j“1

c
j

R
j

•
˜

mÿ

j“1

c
j

´ 1

¸
R (92)

for any cm P p0,8qm such that d

‹pQ
Y

m , pQ
Yj q, cmq “ 0.

Note that (92) only characterizes the ratio of the CR to
communication rates, rather than the entire region. Extend-
ing the proof in [1] directly will show an outer bound
similar to (82) but with d

‹pQ
Y

m , pQ
Yj q, cmq replaced by

dpQ
Y

m , pQ
Yj q, cmq, hence it is strictly suboptimal even in

terms of the first-order region. A similar issue appeared in
the single-shot converse for another common randomness
generation problem between two terminals [33][2], and in fact,
more broadly in many other problems in network information
theory. Here we complete the picture by bridging d

‹p¨q and
dp¨q with the “smoothing” machinery.

Theorem 7 (Single-shot converse for omniscient helper CR
generation). Fix Q

Y

m , � P r0, 1q, and cm P p0,8qm such
that

∞
m

j“1 cj ° 1. Let Q
K

m be the actual CR distribution in
a coding scheme for omniscient helper CR generation, using
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stochastic encoders and deterministic decoders (or stochastic
decoders, if c

j

§ 1, j “ 1, . . . ,m). Then

1

2

|Q
K

m ´ T
K

m | •

1 ´ 1

|K| ´
±

m

j“1 |W
j

|
cj∞
ci

|K|1´ 1∞
ci

exp

ˆ
d

�

pQ
Y

m , pQ
Yj q, cmq∞

c
i

˙
´ �,

(93)

where

T
K

mpkmq :“ 1

|K|1tk1 “ ¨ ¨ ¨ “ k
m

u (94)

is the target CR distribution and K and pW
j

qm
j“1 denote the

CR and message alphabets.

Remark 7. The performance metric (93) takes into account
both the uniformity and the agreement of the common random-
ness generated. We remark that the use of the total variation
distance as a performance metric for common randomness or
key generation has previously appeared in other places, such
as [56][57].

Proof. Suppose µ achieves the infimum in the definition of
d

�

pQ
Y

m , pQ
Yj q, cmq. For any k P K,

µ

˜
m£

j“1

tK
j

“ ku
¸

“
ª

Ym

ÿ

w

m

mπ

j“1

P
Kj |YjWj“wj

pkqP
W

m|Y mpwmqdµ (95)

§
ª

Ym

max

w

m

mπ

j“1

P
Kj |YjWj“wj

pkqdµ (96)

“
ª

Ym

mπ

j“1

max

wj

P
Kj |YjWj“wj

pkqdµ (97)

§ exppdq
mπ

j“1

«ª

Yj

max

wj

P
1
cj

Kj |YjWj“wj
pkqdP

Yj

�
cj

(98)

§ exppdq
mπ

j“1

«ª

Yj

max

wj

P
Kj |YjWj“wj

pkqdP
Yj

�
cj

(99)

§ exppdq
mπ

j“1

«
ÿ

wj

ª

Yj

P
Kj |YjWj“wj

pkqdP
Yj

�
cj

(100)

where
‚ In (98) we defined d :“ dpµ, pQ

Yj q, cmq.
‚ (99) uses max

wj PKj“k|YjWj“wj
§ 1 and the assumption

of 0 † c
j

§ 1 or deterministic decoders.
Raising both sides of (100) to the power of 1∞m

i“1 ci
, we obtain

µ
1∞
i ci

˜
m£

j“1

tK
j

“ ku
¸

§ exp

ˆ
d∞

m

i“1 ci

˙
mπ

j“1

«
ÿ

wj

ª

Yj

P
Kj“k|YjWj“wj

dP
Yj

� cj∞
i ci

(101)

But the function tm fiÑ ±
m

j“1 t
cj∞
i ci

j

is a concave function on

r0,8qm; one way to see the concavity is that
±

m

j“1 t
cj∞
i ci

j

“
lim

pÓ0
´∞

j

cjt
p
j∞

i ci

¯ 1
p

which is the 0-norm of the random vari-
able t

J

where PrJ “ js “ cj∞
i ci

. Therefore by Jensen’s
inequality,

1

|K|
|K|ÿ

k“1

mπ

j“1

«
ÿ

wj

ª

Yj

P
Kj |YjWj“wj

pkqdP
Yj

� cj∞
i ci

(102)

§
mπ

j“1

»

–
ÿ

wj

ª

Yj

1

|K|
|K|ÿ

k“1

P
Kj |YjWj“wj

pkqdP
Yj

fi

fl

cj∞
i ci

(103)

“
mπ

j“1

«
ÿ

wj

ª

Yj

1

|K|dPYj

� cj∞
i ci

(104)

“
mπ

j“1

ˆ |W
j

|
|K|

˙ cj∞
i ci

(105)

Combining (101) and (105) we obtain

1

|K|
|K|ÿ

k“1

µ
1∞
i ci

˜
m£

j“1

tK
j

“ ku
¸

§ exp

ˆ
d∞

m

i“1 ci

˙
mπ

j“1

ˆ |W
j

|
|K|

˙ cj∞
i ci

.

(106)

Now, let ¯T
K

m and µ̄
K

m be the restrictions of T
K

m and
µ
K

m on the event tK1 “ ¨ ¨ ¨ “ K
m

u. Then ¯T
K

m is the
equiprobable distribution on a set of cardinality |K|, and
µ̄
K

mpkq “ µ
´ì

m

j“1tK
j

“ ku
¯

, k “ 1, . . . , |K|. Invoking
Lemma 8 which we show after the current proof with ↵ “

1∞
i ci

, we obtain

E1pT
K

m}µ
K

mq
“ E1p ¯T

K

m}µ̄
K

mq (107)

• 1 ´ 1

|K| ´ |K|
1∞
j cj

´1
|K|ÿ

k“1

µ

˜
m£

j“1

tK
j

“ ku
¸ 1∞

j cj

.

(108)

Combining (106) and (108), we have

E1pT
K

m}µ
K

mq •

1 ´ 1

|K| ´
±

m

j“1 |W
j

|
cj∞m

i“1 ci

|K|1´ 1∞m
i“1 ci

exp

ˆ
dpµ

Y

m , pQ
Yj q, cmq∞

m

i“1 ci

˙
.

(109)

Then, Theorem 7 follows since
1

2

|Q
K

m ´ T
K

m | “ E1pT
K

m}Q
K

mq (110)

• E1pT
K

m}µ
K

mq ´ E1pQ
K

m}µ
K

mq
(111)

• E1pT
K

m}µ
K

mq ´ E1pQ
Y

m}µ
Y

mq
(112)

• E1pT
K

m}µ
K

mq ´ �. (113)
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Lemma 8. Suppose T is equiprobable on t1, . . . ,Mu and µ
is a nonnegative finite measure on the same alphabet. For any
↵ P p0, 1q,

E1pT }µq • 1 ´ 1

M
´ expp´p1 ´ ↵qD

↵

pµ}T qq, (114)

where E1pT }µq was defined in (16) and the Rényi divergence
is defined as D

↵

pµ}T q :“ 1
↵´1 log

∞
M

x“1 µ
↵pxqT 1´↵pxq.

Proof. Consider the optimization problem over nonnegative
vector aM “ pa1, . . . , aM q:

minimize fpaM q :“
Mÿ

m“1

ˇ̌
ˇ̌ 1
M

´ a
m

ˇ̌
ˇ̌
`

(115)

subject to gpaM q :“ 1

M

Mÿ

m“1

a↵
m

§ � (116)

where � ° 0 is some constant. If µ has probability masses
a1, . . . , aM , then E1pT }µq “ fpaM q and D

↵

pµ}T q is a mono-
tonically decreasing function of gpaM q. We claim that (115)-
(116) have an optimal solution âM satisfying the property:

ˇ̌
ˇ̌
"
m : â

m

P
ˆ
0,

1

M

˙*ˇ̌
ˇ̌ § 1. (117)

Indeed, if otherwise, and there are i and j for which 0 † â
i

§
â
j

† 1
M

, then we can choose t :“ mintâ
i

, 1
M

´ â
j

u, such
that either ã

i

:“ â
i

´ t “ 0 or ã
j

:“ â
j

` t “ 1
M

. For m P
t1, . . . ,Muzti, ju, put ã

m

“ a
m

. By convexity, we can check
that ãM is still an optimal solution to (115)-(116). However,
the count on the left side of (117) decreases by 1 when we
modify â to ã. We can continue this process until (117) is
satisfied. Next, notice that for any aM , if b

m

:“ a
m

1ta
m

†
1
M

u ` 1
M

1ta
m

• 1
M

u, then

fpbM q “ fpaM q, (118)
gpbM q § pgpaM qq. (119)

Thus an optimizer âM of (115)-(116) can further be assumed
to be of the following form:

âM “
„
1

M
,
1

M
, . . . ,

1

M
, ⌘, 0, 0, . . . , 0

⇢
(120)

for some 0 † ⌘ § 1
M

. Suppose that the number of zeros
on the right side of (120) is k. Then from fpâM q • k

M

and
� • gpâM q • 1

M

¨ M´k´1
M

↵ , we deduce that the optimal value
for (115)-(116) satisfies

f • 1 ´ �M↵ ´ 1

M
. (121)

Thus we have shown that

E1pT }µq • 1 ´ 1

M
´ M↵´1

Mÿ

m“1

µ↵pmq (122)

which is the desired inequality.

Remark 8. Let Q
KK

m and

T
KK

mpk, kmq :“ 1

|K|1tk “ k1 “ ¨ ¨ ¨ “ k
m

u (123)

denote the actual and the target distributions of the CR
generated by T0, T1,. . . ,T

m

, respectively. Since

|Q
KK

m ´ T
KK

m | • |Q
K

m ´ T
K

m |, (124)

Theorem 7 also provides a lower bound on |Q
KK

m ´T
KK

m |.
Actually, if the decoders are deterministic, T0 can always
produce K such that the two total variations are equal, because
T0 is aware of the CR produced by the other terminals.
Remark 9. Allowing stochastic decoders can strictly lower
1
2 |Q

K

m ´ T
K

m |: consider the special case where m “ 2, Y1

and Y2 are constant, and there are no messages sent. Then
the minimum 1

2 |Q
K

m ´ T
K

m | achieved by deterministic
decoders is 1 ´ 1

|K| . On the other hand, T1 and T2 can
each independently output an integer in t1, . . . ,

a
|K|u

equiprobably, achieving 1
2 |Q

K

m ´ T
K

m | “ 1 ´ 1?
|K| .

Nevertheless, we can argue that allowing stochastic decoders
can at most reduce the error by a factor of 4: Suppose
1
2 |Q

K

m ´ T
K

m | § � for some stochastic decoders, then
1
2 |Q

K1 ´ T
K1 | § � and QpK1 “ K2 “, . . . ,“ K

m

q § �.
We can then remove the stochasticity of decoders at
T2. . .T

m

but retain the last two inequalities. Indeed, let
f
k

pY
m

,W
m

q denote the probability of producing k upon
observing pY

m

,W
m

q at T
m

. Since K
m

´ pY
m

,W
m

q ´
pK1, . . . ,Km´1q, we have QpK1 “ ¨ ¨ ¨ “ K

m

q “
E

”∞|K|
k“1 fkpY

m

,W
m

qP rK1 “ ¨ ¨ ¨ “ K
m´1 “ k|Y

m

,W
m

s
ı
;

this probability cannot decrease if T
m

switches to the
deterministic protocol that selects a k that maximizes
PrK1 “ ¨ ¨ ¨ “ K

m´1 “ k|Y
m

,W
m

s. By iterating this
argument for T

m´1,. . . ,T2, we see that 1
2 |Q

K

m ´T
K

m | § 2�
is achievable with deterministic decoders at T2,. . . ,T

m

; this
pays a factor of 2 for 1

2 |Q
K

m ´ T
K

m |. Applying the similar
argument again, but starting with 1

2 |Q
Km ´ T

Km | § 2� and
QpK1 “ K2 “ ¨ ¨ ¨ “ K

m

q § 2�, we can further remove
the stochasticity of the decoder at T1, at the cost of another
factor of 2.

B. Second-Order Converse for Common Randomness Gener-
ation

Corollary 9. Consider any stationary memoryless source with
per-letter distribution Q

Y

m , any cm P p0,8qm, and a se-
quence of omniscient helper CR generation schemes allowing
stochastic encoders (indexed by n). Define

A :“

lim sup

nÑ8
1?
n

«
mÿ

j“1

c
j

log |W
j

| ` n d

‹ ´p
mÿ

j“1

c
j

´ 1q log |K|
�

(125)

where d

‹
:“ d

‹pQ
Y

m , pQ
Yj q, cmq. Also assume that

|K| Ñ 8 and P ‹
UY

m is a maximizer in the definition of
d

‹pQ
Y

m , pQ
Yj q, cmq, and define �p¨q as in Section III. Then9

lim inf

nÑ8
1

2

|Q
K

m ´ T
K

m | • Q

˜
Aa

Varpr�|
QY m q

¸
(126)

9Qp¨q denotes the standard Gaussian tail probability function.
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where Q
K

m denotes the actual CR distribution and T
K

m is
the target distribution as defined in (94).

Proof. Using the bound on the smooth BL divergence (54),
we obtain from (93) that

1

2

|Q
K

m ´ T
K

m |

• 1 ´ 1

|K| ´ inf

�PR

$
&

%

±
m

j“1 |W
j

|
cj∞
ci

|K|1´ 1∞
ci

exp

ˆ
�∞
c
i

˙
` P

,
.

-

(127)

where P :“ P r∞n

i“1 r�|
QY m pY m

i

q ° �s. Here we used
Proposition 2-3) to show that

r�|
QY mn pY mnq “

nÿ

i“1

r�|
QY m pY m

i

q. (128)

Taking � “ n d

‹pQ
Y

m , pQ
Yj q, cmq ´ ?

nA1 for any A1 ° A
shows that

lim inf

nÑ8
1

2

|Q
K

m ´ T
K

m | • Q

˜
A1

a
Varpr�|

QY m q

¸
. (129)

Then take A1 Ó A.

C. Second-Order Achievability for Common Randomness
Generation

In this section we show that the second-order converse
(126) is tight for the discrete memoryless sources. The proof
uses standard method of types analysis. First, consider the
following encoding and decoding rules designed for a specific
type pP

Y

mn .
Encoding at T0: For any given cm P p0,8qm, let P ‹

U |Y m be
a maximizer in the definition of d‹pQ

Y

m , pQ
Yj q, cmq. Let P ‹

U

be the output distribution of pP
Y

mn through P ‹
U |Y m . Construct

a codebook of size | ˜K|, where

log | ˜K| :“ nIp pP
Y

mn , P ‹
U |Y mq ` n0.01 (130)

and the codewords are i.i.d. according to the equiprobable
distribution on the P ‹

U

type. Upon observing Y mn, T0 sends
the empirical distribution pP

Y

mn using Oplog nq bits to all
other terminals. Then T0 equiprobably selects among code-
words (if any) u

K

such that pu
K

, Y mnq has the joint type
pP ‹

U |Y m
pP
Y

mnq. Random binning is used to send this selected
index i to other terminals. For Terminal T

j

, each u
i

codeword
is mapped randomly to one of |W

j

| bins where

log |W
j

| “ nIp pP
Y

mn , P ‹
U |Y mq ´ nIp pP

Yj
n , P ‹

U |Yj
q ` n0.02.

(131)

Decoding at T
j

: Note that | ˜K| and |W
j

| defined above
depend on pP

Y

mn , which is known by all terminals as a part
of the messages from T0. Terminal T

j

decodes a codeword
having P ‹

U |Yj

pP
Yj

n joint type with Y
j

n and also in the right
bin.

Error and rate analysis: Conditioned on the type pP
Y

mn ,
the error probability of incorrectly decoding the codeword u

K

is Opn´100q, by the standard covering and random binning

analysis (see e.g. Slepian-Wolf coding [58]). Moreover for any
fixed codebook, the probability that any given codeword index
K is selected is exppnIp pP

Y

mn , P ‹
U |Y mq`Oplog nqq. Therefore

using the hash lemma [40, Lemma 3.1], there exists a mapping
f : ˜K Ñ K where

log |K| “ nIp pP
Y

mn , P ‹
U |Y mq ´ n0.01 (132)

such that fpKq is close to the equiprobable distribution on
K with error Opn´100q in the total variation. Moreover, let
E0 be the event that | pP

Y

mn ´ Q
Y

m | ° n´0.49. Using large
deviations,

PrE0s “ Opn´100q. (133)

Under the complement of E0, by the Taylor expansion we have
mÿ

j“1

c
j

plog |W
j

| ´ log |K|q ` log |K|

“ n
mÿ

j“1

c
j

Ip pP
Yj , P

‹
U |Yj

nq ´ nIp pP
Y

mn , pP ‹
U |Y mq ` Opn0.02q

(134)

“ n d

‹pQ
Y

m , pQ
Yj q, cmq ` n

D
r�|

QY m , pP
Y

mn ´ Q
Y

m

E

` Opn0.02q (135)

“
nÿ

i“1

r�|
QY m pY m

i

q ` Opn0.02q. (136)

We showed that (136) is the cost for the error to be Opn´100q.

If we want the error to converge to Q

ˆ
A?

Varpr�|QY m q

˙
, the

left side of (134) needs to exceed n d

‹pQ
Y

m , pQ
Yj q, cmq ´?

nA.
A tweak: We have obtained the correct second-order upper

bound on the left side of (134), but the proof is not finished
yet since each term therein vary with pP

Y

mn even though the
sum is bounded. To finish, pick any P

U |Y m ‰ P ‹
U |Y m and set

P t

U |Y m :“ tP
U |Y m ` p1´ tqP ‹

U |Y m . Under the complement of
E0, for each pP

Y

mn find t “ Opn´1{2q such that

log |W
j

| “ nIp pP
Y

mn , P t

U |Y mq ´ nIp pP
Yj

n , P t

U |Yj
q ` n0.02

(137)

always equals nIpQ
Y

m , P ‹
U |Y mq ´ nIpQ

Yj , P
‹
U |Yj

q which is
independent of pP

Y

mn . The new codebook size

log |K| “ nIp pP
Y

mn , P t

U |Y mq ´ n0.01 (138)

will change according to this new encoding rule P t

U |Y m , but
one can verify using the first order optimality of P ‹

U |Y m that

mÿ

j“1

c
j

plog |W
j

| ´ log |K|q ` log |K| “
nÿ

i“1

r�|
QY m pY m

i

q ` opn1{2q

(139)

still holds. We thus obtain:

Theorem 10. Consider any discrete memoryless source with
per-letter distribution Q

Y

m , any cm P p0,8qm, and A P R.
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There exists a sequence of omniscient helper CR generation
schemes allowing stochastic encoders (indexed by n) such that

p
mÿ

j“1

c
j

´ 1q log |K| ´
mÿ

j“1

c
j

log |W
j

|

§ n d

‹pQ
Y

m , pQ
Yj q, cmq ´ A

?
n (140)

and

lim sup

nÑ8
1

2

|Q
K

m ´ T
K

m | § Q

˜
Aa

Varpr�|
QY m q

¸
. (141)

Here �p¨q is as in Section III, Q
K

m denotes the actual CR
distribution, and T

K

m is the target distribution as defined in
(94).

D. Second-Order Converse for Smooth BL Divergence
Theorem 7 essentially establishes a single-shot connection

between the smooth BL divergence and omniscient helper CR
generation: the achievability of one implies the converse of the
other. The second-order achievability of common randomness
generation implies the following second-order converse for
smooth BL divergence, which is tight in view of the upper
bound in Theorem 4.

Corollary 11. Fix any discrete memoryless source Q
Y

m , cm P
p0,8qm, and � P p0, 1q.

d

�

pQbn

Y

m , pQbn

Yj
q, cmq • n d

‹pQ
Y

m , pQ
Yj q, cmq

`
b
nVarpr�|

QY m qQ´1p�q ´ op?
nq.

(142)

Proof. If the claim were not true, then by (93) one could prove
a second-order converse for common randomness generation
that contradicts the achievability (Theorem 10).

Remark 10. For non-discrete alphabets, it is possible to prove
the achievability of common randomness generation using the
likelihood encoder [1]. The total variation error vanishes for
rates in the interior of the same rate region. Thus by the same
reasoning as Corollary 11, we have strong converse of smooth
BL divergence for any stationary (not necessarily discrete)
memoryless source:

d

�

pQbn

Y

m , pQbn

Yj
q, cmq • n d

‹pQ
Y

m , pQ
Yj q, cmq ´ opnq.

(143)

for any � P p0, 1q.

V. APPLICATION: ALMOST LOSSLESS GRAY-WYNER
NETWORK

In this section we prove a single-shot converse bound for
the lossless Gray-Wyner source coding problem [59] using the
smooth BL divergence. This will imply the exact second-order
converse, previously also obtained by [16] using the method
of types analysis.

Figure 2 shows the (single-shot) formulation of the prob-
lem. The sources are discrete random variables Y1, . . . , Y

m

with the joint distribution Q
Y

m . Terminal T0 observes Y m

while Terminal T
j

observes Y
j

, j “ 1, . . . ,m. For each

T1

T0

T2

Y 2

D1

D2

ˆY1

ˆY2

W1

W0

W2

Figure 2: Gray-Wyner network

j “ 0, . . . ,m, Terminal T
j

computes integer W
j

pY mq. For
j “ 1, . . . ,m, the decoder D

j

receives pW0,Wj

q and com-
putes ˆY

j

pW0,Wj

q P Y
j

. The goal is that ˆY m “ Y m with high
probability. In the literature, the Gray-Wyner network usually
refers to the m “ 2 case of this model.

Gray and Wyner [59] computed the exact first order rate
region in the discrete memoryless case. Take Q

Y

m – Qbn

Y

m

and Y
j

– Y
j

n in the above single-shot formulation. Define

R
j

“ lim sup

nÑ8
1

n
log |W

j

| (144)

for j “ 0, . . . ,m. The achievable rate region, defined as the set
of pR0, . . . , Rm

q for which there exist a sequence of coding
schemes (indexed by n) such that

lim sup

nÑ8
Pr ˆY m ‰ Y ms “ 0, (145)

is the closure of the set of pR0, . . . , Rm

q P r0,8qm`1 such
that

R0 `
mÿ

j“1

c
j

R
j

• inf

PU|Y m

#
mÿ

j“1

c
j

HpY
j

|Uq ` IpU ;Y mq
+

(146)
“: ´d

‹pQ
Y

m , p⌫
j

q, cmq (147)

for all cm P p0,8qm, where pU, Y mq „ P
U |Y mQ

Y

m and ⌫
j

is the counting measure on Y
j

.

Theorem 12. Fix Q
Y

m , � P p0, 1q, cm P p0,8qm and let ⌫
j

be
the counting measure on Y

j

where |Y
j

| † 8, j “ 1, . . . ,m.
Then any coding scheme for Gray-Wyner satisfies

Pr ˆY m ‰ Y ms • 1 ´ exppd
�

pQ
Y

m , p⌫
j

q, cmqq
mπ

j“0

|W
j

|cj ´ �

(148)

where c0 :“ 1.

Remark 11. Notice that the d

�

pQ
Y

m , p⌫
j

q, cmq in (148) can
be negative since ⌫

j

is the counting measure rather than a
probability measure.

Proof. Note that ˆY m can be viewed as a function of ym, since
all the messages W0,. . . ,W

m

are functions of ym. Define the
correctly decodable set

D :“ tym :

ˆY mpymq “ ymu. (149)
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Let µ be a minimizer in (17) (if the minimum is not achieved,
the proof can still proceed by approximation). Define µ|D as
the restriction of µ on D, that is,

d µ|D
dµ

pymq “ 1tym P Du. (150)

Let ✏ be the error probability. By the triangle inequality for
E

�

-distance,

E1pQ
Y

m} µ|Dq § E1pQ
Y

m} Q
Y

m |Dq ` E1pQ
Y

m |D } µ|Dq
(151)

§ ✏` E1pQ
Y

m}µq (152)
§ ✏` �. (153)

For each u P W0, set A
u

:“ W´1
0 puqXD , and denote by A

uj

its projection onto the j-th coordinate. Then by Proposition 1,
we have

µpA
u

q § exppd
�

pQ
Y

m , p⌫
j

q, cmqq
mπ

j“1

⌫
j

pA
uj

qcj (154)

§ exppd
�

pQ
Y

m , p⌫
j

q, cmqq
mπ

j“1

|W
j

|cj (155)

for each u, where (155) used the estimate ⌫
j

pA
uj

q § |W
j

|
which follows from the fact that A

uj

Ñ ˆY
j

pu,W
j

q by the
definition of correctly decodable sets. The desired result then
follows noting that

|W0|max

u

µpA
u

q •
ÿ

u

µpA
u

q (156)

“ µpDq (157)
• 1 ´ E1pQ

Y

m} µ|Dq (158)
• 1 ´ p✏` �q. (159)

The exact second-order asymptotics for the Gray-Wyner
coding [59] was derived in [16] using the method of types.
In [16], a weighted distribution on Ym is defined where the
probability of the set of correctly decodable ym is amplified,
so that a nonvanishing error is turned into a polynomially
vanishing error. Then Fano’s inequality is applied to the
weighted distribution. Here we show that such a second-order
converse also follows from the smooth BL divergence bound
(Theorem 12), which was proved via a fundamentally different
approach.

Proposition 13 ([16]). Consider a stationary memo-
ryless source with per-letter distribution Q

Y

m , where
|Y1|, . . . , |Y

m

| † 8. Let c1, . . . , cm P p0,8q, c0 :“ 1 and
A P R. For an arbitrary sequence of Gray-Wyner coding
schemes (indexed by n), define

A :“ lim sup

nÑ8

?
n

#
d

‹pQ
Y

m , p⌫
j

q, cmq ` 1

n

mÿ

j“0

c
j

log |W
j

|
+

(160)
where ⌫

j

denotes the counting measure on Y
j

. Then

lim inf

nÑ8
Pr ˆY mn ‰ Y mns • Q

˜
Aa

Varpr�|
QY m pY mqq

¸

(161)

where �p¨q is as in Section III.

Proof. Using the bound on the smooth BL divergence (Theo-
rem 4), we obtain from (148) that

Pr ˆY mn ‰ Y mns •

1 ´ inf

�PR

#
expp�q

mπ

j“0

|W
j

|cj ` P
«

nÿ

i“1

r�|
QY m pY m

i

q ° �

�+

(162)

where Y m „ Q
Y

m . Here we used Proposition 2-3) to show
that

r�|
QY mn pY mnq “

nÿ

i“1

r�|
QY m pY m

i

q. (163)

Taking � “ n d

‹pQ
Y

m , p⌫
j

q, cmq ´ ?
nA1 for any A1 ° A

shows that

lim inf

nÑ8
Pr ˆY mn ‰ Y mns • Q

˜
A1

a
Varpr�|

QY m pY mqq

¸
.

(164)

Taking A1 Ó A establishes the claim.

Remark 12. For the discrete memoryless case, [16] showed
that the bound (161) is tight.

VI. APPLICATION: GAUSSIAN LOSSY GRAY-WYNER
NETWORK WITH SQUARE DISTORTION

We now consider the lossy version of the Gray-Wyner
problem. The setup is still as in Figure 2. But in contrast to
the lossless version, we are given distortion functions �

j

: Yˆ
ˆY Ñ R and the goal is to minimize PrDj : �

j

pY
j

, ˆY
j

q ° D
j

s
where D

j

is a given distortion level, j “ 1, . . . ,m.
In the stationary memoryless case with per-letter source

distribution Q
Y

m , take Y
j

– Y
j

n and �

j

py
j

, ŷ
j

q –
1
n

∞
n

i“1 �j

py
ji

, ŷ
ji

q. Denote by

R
j

:“ lim sup

nÑ8
1

n
log |W

j

| (165)

the rate of the j-th message as before, for j “ 0, . . . ,m. The
achievable rate region is defined as the closure of the set of
pR0, . . . , Rm

q P r0,8qm`1 such that

lim

nÑ8
PrDj : �

j

pY
j

n, ˆY n

j

q ° D
j

s “ 0. (166)

In [59], Gray and Wyner showed that the achievable region is
the closure of the set of pR0, . . . , Rm

q such that

R0 • IpU ;Y mq; (167)
R

j

• R

Yj |U pD
j

q, j “ 1, . . . ,m, (168)

for an auxiliary random variable U [59]. Here R

Yj |U p¨q
denotes the conditional rate-distortion function. That is,

R

Yj |U pDq :“ inf

dp¨q

ª
R

Yj |U“u

pdpuqqdQ
U

puq (169)

where the infimum is over nonnegative measurable functions
d : U Ñ R such that ErdpUqs § D, and R

Yj |U“u

denotes
the conventional (single-letter) rate-distortion function for a
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single source with per-letter distribution Q
Yj |U“u

and per-
letter distortion function �

j

(see e.g. [58]). The second-order
converse for discrete lossy Gray-Wyner coding was proved in
[17], which relies heavily on the method of types and does
not appear to be applicable to continuous sources such as the
Gaussian sources.

We proceed to derive a single-shot converse for general
distortion measures, and then we particularize it to quadratic
distortions to derive a second-order converse for Gaussian
sources.

Theorem 14. Suppose � P p0, 1q, Y m „ Q
Y

m , �

j

: Y
j

ˆ
ˆY
j

Ñ r0,8q, and ⌫
j

is an arbitrary nonnegative �-finite
measure on ˆY

j

, j “ 1, . . . ,m. Then any coding scheme for
the Gray-Wyner network satisfies

PrDj : �
j

pY
j

, ˆY
j

q ° D
j

s

•1 ´ exppd
�

pQ
Y

m , p⌫
j

q, cmqq|W0|
mπ

j“1

|W
j

|cjLcj

j

´ �

(170)

where L
j

:“ sup

yPŶj
⌫
j

p�
j

p¨, yq § D
j

q, j “ 1, . . . ,m.

Proof. The proof is similar to the proof of Theorem 12. Define
the correctly decodable set

D :“ tym : �py
j

, ˆY
j

pW0pymq,W
j

pymqqq § D
j

,@ju. (171)

Steps (151)-(153) still follow. The bound (155) will be re-
placed by

µpA
u

q § exppdq
mπ

j“1

|W
j

|cjLcj

j

(172)

because for each j, A
uj

Ñ ty
j

: Dw
j

, �py
j

, ˆY
j

pu,w
j

qq § D
j

u
(that is, ˆY

j

pu,W
j

q is a D
j

-covering of A
uj

), which implies
that ⌫

j

pA
uj

q § |W
j

|L
j

. The rest of the proof follows
verbatim.

Remark 13. Clearly Theorem 14 recovers Theorem 12 as
a special case when �p¨, ¨q is the Hamming distortion. We
presented Theorem 12 first since it is simpler and contains the
main ingredients of Theorem 14.

Next, we particularize Theorem 14 to the case of stationary
memoryless Gaussian source and square distortion, and prove
a second-order converse. Let us first simplify the first-order
region. Let �

j

: py, ŷq P R2 fiÑ py ´ ŷq2 be the per-
letter distortion function, j “ 1, . . . ,m. By (167) and (168),
pR0, . . . , Rm

q P r0,8qm`1 is achievable if and only if for any
cm P p0,8qm and c0 :“ 1,

mÿ

j“0

c
j

R
j

• inf

PUV m|Y m

#
IpU ;Y mq `

mÿ

j“1

c
j

IpV
j

;Y
j

|Uq
+
,

(173)

where the infimum is over P
UV

m|Y m such that V
j

is a real
valued random variable satisfying ErpV

j

´ Y
j

q2s § D
j

,
j “ 1, . . . ,m, and pU, V m, Y mq „ P

UV

m|Y mQ
Y

m . The
following provides a supporting hyperplane characterization
of this achievable region.

Proposition 15. Let Q
Y

m be an m-dimensional Gaussian
distribution with a non-degenerate covariance matrix. Fix
Dm P p0,`8qm. Define

R :“
§

PU|Y m

$
’’&

’’%

pR,R1, . . . , Rm

q P Rm`1
:

R • IpU ;Y mq,
R

j

• hpY
j

|Uq ´ 1
2 log 2⇡eDj

,
j “ 1, . . . ,m.

,
//.

//-
. (174)

1) R is convex. The (inward pointing) normal at every
boundary point Rm

0 can be chosen as p1, c1, . . . , cmq
with cm P r0, 1sm. If such cm P p0, 1qm, then Rm

0 is the
unique intersection of the supporting hyperplane and R,
and there exists a Gaussian P

U |Y m such that

R0 “ IpU ;Y q; (175)

R
j

“ hpY
j

|Uq ´ 1

2

log 2⇡eD
j

, j “ 1, . . . ,m. (176)

2)

clpRq “
£

c

mPp0,1qm

" pR,R1, . . . , Rm

q P Rm`1
:

R ` ∞
m

j“1 cjRj

• d

‹

*
(177)

where

d

‹
:“ inf

PU|Y m

#
IpU ;Y mq `

mÿ

j“1

c
j

„
hpY

j

|Uq ´ 1

2

log 2⇡eD
j

⇢+
.

3) clpRq X r0,`8qm`1 is the achievable rate region.

Proof. 1) The convexity is standard using the chain rules
of the information quantities (similar to the proof of the
convexity of a rate region). To see that each supporting
hyperplane has a normal vector (pointing towards R)
of the form p1, c1, . . . , cmq, cm P r0, 1sm: first choose
cm0 orthogonal to a supporting hyperplane of R at a
boundary point Rm

0 and pointing into R. From the
form of (174) we can see that c

j

• 0, j “ 0, . . . ,m.
We also see from (174) that for any (no matter how
small) ˆR1, . . . , ˆRm

there exists ˆR large enough such
that p ˆR, ˆR1, . . . , ˆRm

q P R, which implies that c0 ‰ 0.
Thus by re-normalization we can assume without loss
of generality that c0 “ 1. Then c

j

§ 1, j “ 1, . . . ,m,
by Proposition 16 which is given after the present proof.
The claim for the case of cm P p0, 1qm also follows from
Proposition 16.

2) From convex analysis [55] the closed convex set clpRq
is the intersection of closed half spaces on one side
of the supporting hyperplanes. As argued in the proof
of Part 1), the normal (pointing inward) vector of each
supporting hyperplane can be chosen as p1, c1, . . . , cmq
where cm P r0, 1sm. Moreover, since p0, 1qm is dense in
r0, 1sm, we can verify the geometric fact that such an
intersection can be restricted to supporting hyperplanes
whose normal vector has the form p1, c1, . . . , cmq where
cm P p0, 1qm.

3) To see the achievable region contains clpRq X
r0,`8qm`1, it suffices to show the achievability of
an arbitrary pmaxtR

j

, 0uqm
j“0 where Rm

0 is on the
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boundary of R Ñ Rm`1. Choose a Gaussian P
U |Y m

according to Part 1). Now for each j “ 1, . . . ,m,
if �2

Yj |U ° D
j

, then for each u, we can construct
P
NjVj |U“u

under which N
j

and V
j

are independent
Gaussian with means 0 and ErY

j

|U “ us and variances
D

j

and �2
Yj |U ´D

j

• 0 respectively, such that their sum
has the distribution of P

Yj |U“u

. Then we may as well
put V

j

, N
j

, Y
j

and U in the same probability space so
that Y

j

“ N
j

` V
j

. Otherwise, �2
Yj |U § D

j

, we let V
j

be constant. As such, in both cases we have

maxtR
j

, 0u “ hpY
j

|Uq ´ hpY
j

|UV
j

q • 0, (178)
Er|Y

j

´ V
j

|2s “ D
j

, (179)

for j “ 1, . . . ,m. Then pmaxtR
j

, 0uqm
j“0 is achievable

in view of (167) and (168).
For the converse, consider any Rm

0 P r0,8qm`1 that
satisfies

R0 • IpU ;Y mq; (180)
R

j

• IpV
j

;Y
j

|Uq, j “ 1, . . . ,m; (181)

for some P
U |Y m and pP

Vj |UY

mqm
j“1 such that Er|V

j

´
Y
j

|2s § D
j

, j “ 1, . . . ,m. In view of (167) and (168)
and the equivalent formulation of R in (177), it suffices
to show that

R `
mÿ

j“1

c
j

R
j

•

inf

PU|Y m

#
IpU ;Y mq `

mÿ

j“1

c
j

„
hpY

j

|Uq ´ 1

2

log 2⇡eD
j

⇢+

(182)

for any cm P p0, 1qm. This follows because

IpV
j

;Y
j

|Uq “ hpY
j

|Uq ´ hpY
j

|V
j

Uq (183)
“ hpY

j

|Uq ´ hpY
j

´ V
j

|V
j

Uq (184)
• hpY

j

|Uq ´ hpY
j

´ V
j

q (185)

• hpY
j

|Uq ´ 1

2

log 2⇡eD
j

. (186)

Proposition 16. Fix Q
Y

m m-dimensional Gaussian with a
non-degenerate covariance matrix ⌃. If cm P r0,`8qm and
c
j

° 1 for some j, then

inf

PU|Y m

#
´hpY m|Uq `

mÿ

j“1

c
j

hpY
j

|Uq
+

“ ´8. (187)

If cm P r0, 1qm, then the infimum is finite and achieved, and
there exist a ˜⌃ : 0 ® ˜⌃ ® ⌃ such that for any minimizer
P
U |Y m , Y m|U “ u is Gaussian with covariance matrix ˜⌃

(for almost all u and under P
U |Y mQ

Y

m ).

Proof. If P
U |Y m is Gaussian and the covariance matrix of Y m

given U is ˜⌃ under P
U |Y mQ

Y

m , then

´ hpY m|Uq `
mÿ

j“1

c
j

hpY
j

|Uq

“
∞

c
j

´ m

2

log 2⇡e ´ 1

2

log | ˜⌃| `
ÿ c

j

2

log

˜

⌃

jj

(188)

where ˜

⌃

jj

is the j-th diagonal entry of the matrix ˜⌃. The
first claim for the case of c

j

° 1 follows by taking ˜⌃ to be
diagonal with ˜

⌃

jj

Ó 0.
Next, suppose that cm P r0, 1qm. In [23] it is shown that the

value of the left side in (187) does not change if the infimum is
restricted to Gaussian P

U |Y m . Choose a sequence of Gaussian
P i

U |Y m , i “ 1, . . . , for which ´hpY m|Uq ` ∞
m

j“1 cjhpY
j

|Uq
converges to the left side of (187). Let ⌃i be the covariance
matrix of Y m given U under P i

U |Y mQ
Y

m . Since ⌃i ® ⌃
for each i, by passing to a convergent subsequence we can
assume that ⌃i Ñ ⌃‹ for some ⌃‹ ® ⌃. Observe that (188)
is bounded below by

´ hpY m|Uq `
mÿ

j“1

c
j

hpY
j

|Uq

•
∞

c
j

´ m

2

log 2⇡e ´
ÿ

1 ´ c
j

2

log

˜

⌃

jj

, (189)

hence ˜

⌃

i

jj

must be bounded away from 0, for large enough
i. Thus ⌃‹ has strictly positive diagonals. By the continuity
of the right side of (188) in ˜⌃, we see that ⌃‹ is in fact a
minimizer of the right side of (188) under the constraint ˜⌃ ®
⌃. Now let U‹ and Nm independent m-dimensional Gaussian
vectors whose means sum to ErY ms and whose variances are
⌃ ´ ˜⌃ and ˜⌃, respectively. Put Y m “ U‹ ` Nm, and the
corresponding P

U |Y m is a minimizer for the left side of (187).

The constraint in (177) can be rewritten as

R `
mÿ

j“1

c
j

R
j

• ´d

‹pQ
Y

m , p�q, cmq ´
mÿ

j“1

c
j

2

log 2⇡eD
j

,

(190)

for any cm P p0, 1q. We now prove a second-order converse.

Theorem 17. Let Q
Y

m be an m-dimensional Gaussian dis-
tribution with a non-degenerate covariance matrix, and � be
the Lebesgue measure on R. Let cm P p0,8qm, and define
c0 :“ 1. Consider a sequence of Gray-Wyner coding schemes
(indexed by n) for the stationary memoryless source with per-
letter distribution Q

Y

m , and define

A :“ lim sup

nÑ8

?
n

«
1

n

mÿ

j“0

c
j

log |W
j

| ` d

‹ `
mÿ

j“0

c
j

2

log 2⇡eD
j

�

(191)

where d

‹
:“ d

‹pQ
Y

m , p�q, cmq. Then for any D
j

P p0,8q,
j “ 1, . . . ,m,

lim inf

nÑ8
PrDj : }Y

j

n ´ ˆY n

j

}2 ° nD
j

s • Q

˜
Aa

Varpr�|
QY m pY mqq

¸

(192)

where �p¨q is as in Section III.

Proof. First, observe that we will only need to consider the
case of

∞
j

c
j

§ m, since otherwise d

‹pQ
Y

m , p�q, cmq “ 8
by Proposition 16, in which case the claim is vacuous. Using
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the bound on the smooth BL divergence (Theorem 4), we take
⌫
j

“ � in (170) and obtain that

PrDj : }Y
j

n ´ ˆY n

j

}2 ° nD
j

s •

1 ´ inf

�PR

#
expp�q

mπ

j“0

|W
j

|cjLcj

j

` P
«

nÿ

i“1

r�|
QY m pY m

i

q ° �

�+

(193)

where Y m „ Q
Y

m . Here we used Proposition 2-3) to show
that

r�|
QY mn pY mnq “

nÿ

i“1

r�|
QY m pY m

i

q. (194)

Note that in Theorem 14,

L
j

“ |B
n

p
a
nD

j

q| (195)

“ 1 ` Opn´1q?
n⇡

p2⇡eD
j

qn
2 (196)

is the volume of an n-dimensional ball of radius
a
nD

j

.
Taking � “ n d

‹pQ
Y

m , p�q, cmq ´ ?
nA1 for any A1 ° A

shows that

PrDj : }Y
j

n ´ ˆY n

j

}2 ° nD
j

s • Q

˜
A1

a
Varpr�|

QY m pY mqq

¸
.

(197)

Taking A1 Ó A establishes the claim.
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Proceedings of 2009 IEEE International Symposium on Information
Theory, p. 233, June-July 2004.

[36] R. Renner and S. Wolf, “Simple and tight bounds for information
reconciliation and privacy amplification,” in Advances in Cryptology-
ASIACRYPT 2005, pp. 199–216, Springer, 2005.

[37] T. Holenstein and R. Renner, “On the randomness of independent
experiments,” IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 1865–1871,
2011.



0018-9448 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2019.2953151, IEEE
Transactions on Information Theory

18

[38] J. Liu, Information Theory from a Functional Viewpoint. PhD thesis,
Princeton University, 2018.

[39] J. Liu, T. A. Courtade, P. Cuff, and S. Verdú, “Brascamp-Lieb inequality
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