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Monotonicity of entropy and Fisher
information: a quick proof via

maximal correlation

Thomas A. Courtade

A simple proof is given for the monotonicity of entropy and Fisher
information associated to sums of i.i.d. random variables. The proof
relies on a characterization of maximal correlation for partial sums
due to Dembo, Kagan and Shepp.

1. Introduction

Assume throughout that X is a random variable with density f and finite
variance. The entropy h(X) and, under mild regularity conditions on f , the
Fisher information J(X) are defined via

h(X) = −E[log f(X)], J(X) = E
[
ρ2X(X)

]
,

where ρX = f ′/f denotes the score function associated to X.
Let X1, X2, . . . be i.i.d. copies of X and define Sn = X1 + · · ·+Xn,

n ≥ 1, and its standardized counterpart Un = 1√
n
Sn. Two celebrated results

established by Artstein, Ball, Barthe and Naor [1] are:

i) the entropies h(Un) are non-decreasing in n; and

ii) the Fisher informations J(Un) are non-increasing in n.

In other words, the respective central limit theorems for entropy [2] and
Fisher information [3] enjoy monotone convergence (the latter holding under
mild regularity conditions on f).

The aim of this note is to point out a simple and brief proof of these facts
using a characterization of maximal correlation for sums of i.i.d. random
variables.
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2. Monotonicity of Fisher information and entropy

The maximal correlation associated to a random pair X,Y is defined (in one
of its equivalent forms) as

r2(X;Y ) = sup
ϑ

E[|E[ϑ(X)|Y ]|2]
E[|ϑ(X)|2]

,(1)

where the supremum is over all non-constant, real-valued functions ϑ with
Eϑ(X) = 0. An unexpected property enjoyed by r2, discovered by Dembo,
Kagan and Shepp [4], is that r2(Sm;Sn) = m/n for 1 ≤ m ≤ n. A brief proof
of the Dembo-Kagan-Shepp identity has been recently obtained by Kamath
and Nair using information-theoretic arguments [5].

As a consequence, if a function ϑ : R→ R satisfies Eϑ(Sm) = 0, then
definition (1) combined with the Dembo-Kagan-Shepp identity yields

E[|E[ϑ(Sm)|Sn]|2] ≤
m

n
E[|ϑ(Sm)|2] 1 ≤ m ≤ n.(2)

The contraction (2) is the first ingredient in our proof, and we shall
need one more: the behavior of score functions under convolution, observed
by Stam [6].

Lemma 1. Let U, V be independent random variables with smooth densities
and put W = U + V . If ρU and ρW denote the score functions of U and W
respectively, then

ρW (w) = E[ρU (U)|W = w].(3)

Identity (3) is proved by exchanging orders of differentiation and inte-
gration, and is justified by smoothness of densities (e.g., [7, Lemma 1.20]).

Theorem 1 (Monotonicity of Fisher Information). Assume X has
smooth density. For 1 ≤ m ≤ n, J(Un) ≤ J(Um).

Proof. By Lemma 1, we have ρSn
(s) = E[ρSm

(Sm)|Sn = s]. Moreover,
EρSm

(Sm) = 0, so that ϑ = ρSm
is a valid choice in (2). Hence, from the

definition of Fisher information and (2), we conclude

J(Sn) = E[ρ2Sn
(Sn)] = E[|E [ρSm

(Sm)|Sn]|2]

≤ m

n
E[ρ2Sm

(Sm)] =
m

n
J(Sm).(4)

Noting the scaling property α2J (αX) = J(X) finishes the proof. !



Monotonicity of entropy and Fisher information 113

Exactly as in [1], the entropy counterpart follows directly from a standard
semigroup argument, which derives from Stam’s seminal paper [6]. We in-
clude it for completeness.

Theorem 2 (Monotonicity of Entropy). For 1≤m ≤ n, h(Um)≤h(Un).

Proof. For a random variable Z with unit variance, define the Ornstein-
Uhlenbeck evolutes Zt = e−tZ + (1− e−2t)1/2G, where G is standard normal
independent of Z. Note that Zt has smooth density for t > 0. By de Bruijn’s
identity (e.g., [6],[7, Appendix C]),

h(G)− h(Z) =

∫ ∞

0
(J(Zt)− 1) dt.(5)

Using these facts, we find that Theorem 2 follows from Theorem 1 by con-
sidering the Ornstein-Uhlenbeck evolutes of the Xi’s (and consequently Um

and Un) and integrating along the semigroup. !

3. Historical remarks

Suggested by Shannon’s entropy power inequality (EPI), monotonicity of en-
tropy was a long-held conjecture that was eventually verified in 2004 when
Artstein, Ball, Barthe and Naor (ABBN) established a ‘leave-one-out ’ EPI
for sums of independent random variables using a variational characteriza-
tion of Fisher information [1]. Their results imply that the Fisher information
and entropy associated to sums of independent – but not necessarily iden-
tically distributed – random variables enjoy a monotonicity property that
is more general than what we have proved in the present note. Since then,
another proof of the ABBN inequality was given by Tulino and Verdú [8]
using information-estimation relationships, and Shlyakhtenko has proved a
free probability extension in [9]. Madiman and Barron [10, 11] and Madi-
man and Ghassemi [12] have extended the ABBN results to sums of arbitrary
subsets of independent, non-identically distributed random variables.

It is interesting to note that the Dembo-Kagan-Shepp inequality (2) has
been known since 2001, but apparently has not been connected to proving
monotonicity of entropy until now. In retrospect, however, this connection
should not be surprising. Indeed, all of the above referenced proofs (in-
cluding that of Dembo, Kagan and Shepp [4]) critically hinge on variations
of a ‘variance drop’ inequality due to Hoeffding [13]; once an appropriate
variance drop inequality is identified, the respective proofs and that given



114 Thomas A. Courtade

for Theorem 1 above follow a similar program. The only notable excep-
tion in this regard is the proof of (2) by Kamath and Nair [5], which fa-
vors an information inequality over a variance drop inequality. In any case,
the brief proof of Theorem 1 illustrates that monotonicity of entropy and
Fisher information may be viewed as a direct consequence of the contraction
E[|E [ϑ(Sm)|Sn]|2] ≤ m

n E[|ϑ(Sm)|2], and may be of interest to those familiar
with the Dembo-Kagan-Shepp maximal correlation identity, or the Kamath-
Nair strong data processing result.

Finally, we observe that the proof of (2) in [5] goes through verbatim for
random vectors, so the argument above extends immediately to the multi-
dimensional setting.
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