
A quantitative entropic CLT for
radially symmetric random vectors

Thomas A. Courtade
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract—A quantitative entropic central limit theorem is
established for the sum of i.i.d. radially symmetric random
vectors having dimension greater than one. In contrast to recent
related work, strong regularity assumptions – such as positive
spectral gap or log-concavity of densities – are not needed.
However, this added flexibility comes at the expense of an
assumption of radial symmetry.

I. INTRODUCTION

Let X be a random vector on Rd with density f . The
entropy associated with X is defined by

h(X) = �
Z

Rd

f log f, (1)

provided the integral exists in the Lebesgue sense. The non-
Gaussianness of X , denoted by D(X), is defined as

D(X) = h(G

X

)� h(X), (2)

where G

X denotes a Gaussian random vector with the same
covariance as X . Evidently, D(X) is the relative entropy of
X with respect to G

X , and is therefore nonnegative, with
D(X) = 0 if and only if X is Gaussian.

In this paper, we investigate forms of the entropic cen-
tral limit theorem for radially symmetric random vectors of
arbitrary dimension d � 2. To this end, a random vector
with density f on Rd is said to be radially symmetric if
f(x) = �(|x|) for some function � : [0,1) ! [0,1],
where | · | denotes Euclidean length. Radial symmetry arises
naturally in many physical settings (e.g., particle velocities)
and data science applications (e.g., random projections), and
often also appears in characterizing extremal distributions in
diverse situations where various symmetrization techniques
are applicable (e.g., symmetric decreasing rearrangements, for
which [1] is particularly relevant). As such, radial symmetry
defines an important class of probability distributions that
enjoys many applications, and also has explicit structure to
facilitate analysis.

Our first main result pertains to ‘entropy jumps’ under
rescaled convolution. Informally, it may be stated as follows:
Let X,X⇤ be i.i.d. radially symmetric random vectors on Rd,
d � 2, with sufficiently regular density f . For any " > 0

D(X)�D

⇣
1p
2
(X +X⇤)

⌘
� C

"

(f)

d

" E|X|2

k|X|2k1+2"
2+1/"

D(X)

1+"

,

(3)

where C

"

(f) > 0 is an explicit function depending only on "

and the regularity of f , and k · k
p

denotes the usual Lp norm
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for random variables. In particular, (3) produces a nontrivial
bound as soon as E|X|4+�

< 1 for some � > 0. Moreover,
(3) has desired dependence on dimension d for all " > 0, as
discussed in Section III.

Although a radially symmetric density f has a one-
dimensional parameterization in terms of its density on shells
of radius r � 0, the convolution f ⇤ f is inherently a d-
dimensional operation unless f is Gaussian. As such, it does
not appear that (3) can be easily reduced to a one-dimensional
problem.

The quantity on the LHS of (3) is often referred to as the
entropy jump corresponding to X , and has been the topic of
several investigations: Ball, Barthe and Naor [2] and Johnson
and Barron [3] independently established a bound on the
entropy jump in dimension one, under the assumption that X
satisfies a Poincaré inequality. Subsequently, Ball and Nguyen
[4] bounded the entropy jump in general dimension under
the additional assumption of log-concavity. More recently,
Courtade, Fathi and Pananjady found a stability estimate
for the EPI for uniformly log-concave distributions, which
includes the entropy jump as a special case [5]. Although no
significant symmetry assumptions are imposed in any of these
previous works, all assume that the distribution in question
satisfies a Poincaré inequality. Among other things, existence
of a Poincaré inequality implies finite moments of all orders.
In contrast, (3) assumes much weaker regularity, essentially
consisting of smoothness of the density f and |X| having
finite 4 + � moment for some � > 0. That said, our weaker
regularity assumptions come at the price of a radial symmetry
assumption which is crucial in our analysis.

By iterating (3), we obtain a quantitative entropic CLT for
radially symmetric random vectors, to be stated in Section IV.
Barron’s entropic CLT ensures that the non-Gaussianness of
sums of i.i.d. random variables with finite variance tends to
zero, provided that the entropy is ever finite [6]. However,
establishing explicit quantitative bounds on this behavior con-
tinues to be an active area of research; a brief sampling of
recent results is as follows. Under moment conditions, Bobkov,
Chistyakov and Götze [7], [8] establish that entropy along
the CLT decays proportionally to number of convolutions,
which is consistent with classical Berry-Esseen estimates for
the Kolmogorov-Smirnov distance. Except for dimension one,
these bounds only establish the asymptotic rate of entropy
decay, and do not provide quantitative estimates. Using a
different approach based on Stein kernels, Ledoux, Nourdin
and Peccati [9] establish near-optimal bounds on entropy
decay. However, these results only apply when a Stein kernel
exists; a sufficient condition is existence of a Poincaré-type
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inequality [10]. When convergence is measured under the
weaker quadratic Wasserstein-Kantorovich distance, Zhai [11],
Bonis [12] and Courtade, Fathi and Pananjady [10] establish
various CLTs, each with their own advantages and disadvan-
tages. See [10] for a discussion and other related results.

Our approach for establishing (3) differs from each of the
previously mentioned works, but traces its roots to related
problem in statistical physics. In particular, (3) most closely
parallels bounds on entropy production in the Boltzmann
equation (see the review [13] for an overview). Indeed, it
has been observed at least since the early 90s (cf. [14], [15])
that there is a strong analogy between entropy production
in the Boltzmann equation and entropy jumps associated to
rescaled convolution. The details of the former are tangential
to the present discussion, but a major milestone was achieved
when the entropy production in the Boltzmann equation was
bounded from below by an explicit function of D(X) and
various norms of X , where X models the velocity of a particle
in a rarified gas [16], [17]. A key ingredient used to prove
this bound was an earlier result by Desvillettes and Villani
that controls relative Fisher information I(XkG) via entropy
production in the Landau equation:

Lemma 1. [18] Let X be a random vector on Rd, satisfying
E|X|2 = d � 2 and having density f . Then,
ZZ

|x�x⇤|2f(x)f(x⇤)

����⇧(x�x⇤)


rf

f

(x)�rf

f

(x⇤)

�����
2

dx dx⇤

� 2� (d� 1)I(XkG), (4)

where � is the minimum eigenvalue of the covariance matrix
associated to X , and ⇧(v) is the orthogonal projection onto
the subspace orthogonal to v 2 Rd.

In fact, our proof of (3) will follow a program similar to
[16], [17]. Our starting point is to recognize that the LHS of
(4) resembles dissipation of Fisher information when written
in the context of L

2 projections (cf. [3, Lemma 3.1]). Using
the radial symmetry assumption, we are able to bound the
Fisher information dissipation from below by error terms
plus entropy production in the Landau equation, which is
subsequently bounded by relative Fisher information using
Lemma 1. Care must be exercised in order to control error
terms, but the final result (3) closely parallels that proved
in [16] for the Boltzmann equation. We remark that the
assumption of a non-vanishing Boltzmann collision kernel in
[16] has a symmetrizing effect on the particle density functions
involved; the rough analog in the present paper is the radial
symmetry assumption.

The rest of this paper is organized as follows. Section II
introduces notation and definitions that are used throughout.
Section III is the technical core of the paper, wherein bounds
on entropy jumps are established. These are used to derive a
quantitative central limit theorem in Section IV.

II. PRELIMINARIES

For a vector v 2 Rd, we let |v| := (

P
d

i=1 v
2
i

)

1/2 denote its
Euclidean norm. For a random variable X on R and p � 1,
we write kXk

p

:= (E|X|p)1/p for the usual Lp-norm of X .

It will be convenient to use the same notation for 0 < p < 1,
with the understanding that k · k

p

is not a norm in this case.
Throughout, G ⇠ N(0, I) denotes a standard Gaussian

random vector on Rd; the dimension will be clear from
context. For d � 2, we denote the coordinates of a random
vector X on Rd as (X1, X2, . . . , Xd

).
For a random vector X with sufficiently smooth density f ,

we define the Fisher information

J(X) = 4

Z ���r
p

f

���
2
=

Z

f>0

|rf |2

f

. (5)

For random vectors X,Q with respective densities f, g, the
relative Fisher information is defined by

I(XkQ) = 4

Z
g

���r
p

f/g

���
2

and the relative entropy is defined by

D(XkQ) =

Z
f log

f

g

,

where ‘log’ denotes the natural logarithm throughout. Evi-
dently, both quantities are nonnegative and, in the case of
radially symmetric random vectors,

I(X) := I(XkGX

) = J(X)� J(G

X

)

D(X) := D(XkGX

) = h(G

X

)� h(X).

Finally, we recall two basic inequalities that will be taken
for granted without explicit reference: for real-valued a, b we
have (a + b)

2  2a

2
+ 2b

2, and for random variables X,Y ,
we have Minkowski’s inequality: kX + Y k

p

 kXk
p

+ kY k
p

when p � 1.
In the intermediate steps of our development, we will

need to impose certain regularity conditions on densities. In
particular, we need pointwise control of |r log f(x)| in terms
of |x|.

Definition 1. A random vector X on Rd with smooth density
f is c-regular if, for all x 2 Rd,

|r log f(x)|  c (|x|+ E|X|) . (6)

We remark that the smoothness requirement of f in the
definition of c-regularity is stronger than generally required
for our purposes. However, it allows us to avoid further
qualifications; for instance, the identities (5) hold for any c-
regular function. Moreover, since r log f =

rf

f

for smooth
f , we have J(X) < 1 for any c-regular X with E|X|2 < 1.
Evidently, c-regularity quantifies the smoothness of a density
function. The following shows that any density can be molli-
fied to make it c-regular.

Proposition 1. [19] Let X and Z be independent, where Z ⇠
N(0,�

2
I) and E|X| < 1. Then Y = X+Z is c-regular with

c = 4/�

2.

Observe that, in the notation of the above proposition, if X
is radially symmetric then so is Y . Therefore, Proposition 1
provides a convenient means to construct radially symmetric
random vectors that are c-regular. The following estimate will
be needed in our development. Its proof follows similarly to
[19, Proposition 2], and is omitted.
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Proposition 2. Let X and Z be independent random vectors
on Rd, where Z ⇠ N(0, I) and E|X| < 1. Define X

t

=

e

�t

X + (1� e

�2t
)

1/2
Z for t � 0. If X is c-regular, then X

t

is (5c e

2t
)-regular.

Proposition 1 ensures that X
t

will be 4/(1� e

�2t
)-regular,

which yields a poor estimate for small t. However, Proposition
2 affords control over regularity in this regime.

III. BOUNDS ON ENTROPY JUMPS

Here, we establish quantitative estimates on the entropy
jump associated with a radially symmetric random vector
X in dimension d � 2. As can be expected, we begin
with an inequality for Fisher information, and then obtain
a corresponding entropy jump inequality by integrating and
applying de Bruijn’s identity. To lighten notation, we let C

"

denote a positive constant that depends only on ", whose value
may change line to line.

Our main result of this section is as follows:

Theorem 1. Let X,X⇤ be i.i.d. radially symmetric random
vectors on Rd, d � 2, with I(X) < 1. For any " > 0

D(X)�D

⇣
1p
2
(X +X⇤)

⌘
� C

"

d

" E|X|2

k|X|2k1+2"
2+1/"

D(X)

1+3"

I(X)

2"
.

(7)

We remark that, although the RHS of (7) appears to
grow favorably with dimension d, the additional factor of
d

" actually gives appropriate dependence on dimension since
E|X|2, k|X|2k2+1/", D(X) and I(X) all typically scale lin-
early with d. As such, both sides of (7) will generally
scale linearly with d. This is consistent with the oft-desired
‘dimension-free’ property of information inequalities, meaning
that they are additive on product distributions. However, this
usual notion of dimension-free behavior isn’t directly appli-
cable to our setting, since the only product measure that is
radially symmetric is Gaussian.

The remainder of this section is dedicated to the proof of
Theorem 1. We start with an analogous inequality for Fisher
information, which holds under the additional assumption of
c-regularity. This inequality will be integrated to obtain an
entropic inequality, from which the c-regularity assumption
will eventually be eliminated.

A. Fisher Information and Rescaled Convolution

Theorem 2. Let X,X⇤ be i.i.d. radially symmetric random
vectors on Rd, d � 2, with c-regular density f . For any " > 0

J(X)�J

⇣
1p
2
(X+X⇤)

⌘
� C

"

(E|X|2)1+"

c

2" k|X|2k1+2"
2+1/"

I(X)

1+"

.

(8)

Proof of Theorem 2. Begin by observing that inequality (8) is
invariant to scaling t : X 7! tX for t > 0. Indeed, if X is
c-regular, then a change of variables shows that tX is (c/t

2
)-

regular. So, using homogeneity of the norms and canceling
terms, we find that RHS of (8) is homogeneous of degree �2.
The same holds for the LHS, i.e., J(tX) = t

�2
J(X). Hence,

there is no loss of generality in assuming that X is normalized
according to E|X|2 = d. Also, since X is radially symmetric,

X �X⇤ is equal to X +X⇤ in distribution, therefore we seek
to lower bound the quantity

J(X)� J(

1p
2
(X +X⇤)) = J(X)� 2J(X �X⇤).

Toward this end, define the sum W = X � X⇤, and denote
its density by f

W

. By the projection property of the score
function of sums of independent random variables (e.g., [20,
Lemma 3.4]):

2 (J(X)� 2J(X �X⇤)) = E |2⇢
W

(W )�(⇢(X)� ⇢(X⇤))|2 ,

where ⇢ := r log f is the score function of X and ⇢

W

:=

r log f

W

is the score function of W .
For v 2 Rd, let ⇧(v) denote the orthogonal projection onto

the subspace orthogonal to v. Now, we have

2J(X)� 4J(X �X⇤)

= E |2⇢
W

(W )� (⇢(X)� ⇢(X⇤))|2

� E |2⇧(W )⇢

W

(W )�⇧(X�X⇤) (⇢(X)� ⇢(X⇤))|2

= E |⇧(X�X⇤) (⇢(X)� ⇢(X⇤))|2 . (9)

The inequality follows since ⇧(w) = ⇧(x�x⇤) by definition,
and |v| � |⇧(w)v| since ⇧(w) is an orthogonal projection.
The last equality follows since ⇧(w)⇢

W

(w) = 0 due to the
fact that ⇧(w)rf

W

(w) is the tangential gradient of f
W

, which
is identically zero due to radial symmetry of f

W

.
Next, for any R > 0, use the inequality 1 � |x�x⇤|2

R

2 �
|x�x⇤|2

R

2 1{|x�x⇤|>R} to conclude that

2J(X)� 4J(X �X⇤)

� 1
R2

E
⇥
|X�X⇤|2 |⇧(X�X⇤) (⇢(X)�⇢(X⇤))|2

⇤
(10)

� 1
R2

E
⇥
|X�X⇤|2 |⇧(X�X⇤) (⇢(X)�⇢(X⇤))|2 1{|X�X⇤|>R}

⇤
.

Since E|X|2 = d, radial symmetry implies Cov(X) = I.
Therefore, by Lemma 1, the first term in the RHS of (10) is
bounded as

E
h
|X�X⇤|2 |⇧(X�X⇤) (⇢(X)�⇢(X⇤))|2

i
� 2(d�1)I(X).

We now bound the second term in the RHS of (10). By
c-regularity and the triangle inequality, we have

|⇧(x� x⇤) (⇢(x)� ⇢(x⇤))|  |⇢(x)� ⇢(x⇤)|
 c(|x|+ |x⇤|) + 2cE|X|.

Noting that the set {|x� x⇤| > R} is a superset of the union

{|x| � R/2, |x⇤|  |x|} [ {|x⇤| � R/2, |x|  |x⇤|},

we deduce the pointwise inequality

1{|x�x⇤|>R}|x� x⇤|2 |⇧(x� x⇤) (⇢(x)� ⇢(x⇤))|2

 1{|x|�R/2}4|x|2 (2c|x|+ 2cE|X|)2

+ 1{|x⇤|�R/2}4|x⇤|2 (2c|x⇤|+ 2cE|X|)2 .
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Taking expectations and using the fact that X,X⇤ are i.i.d.
we have for any conjugate exponents p, q � 1 and � > 0,

E
h
|X �X⇤|2 |⇧(X �X⇤) (⇢(X)� ⇢(X⇤))|2 1{|X�X⇤|>R}

i

 16 c

2 E
h
|X|2 (|X|+ E|X|)2 1{|X|�R/2}

i

 32 c

2E
h
|X|4 1{|X|>R/2}

i

+ 32 c

2
(E|X|)2 E

h
|X|2 1{|X|�R/2}

i

 32 c

2
��|X|2

��2
2p

(Pr {|X| � R/2})1/q

+ 32 c

2
(E|X|)2

��|X|2
��
p

(Pr {|X| � R/2})1/q

 32c

2
⇣��|X|2

��2
2p

+ (E|X|)2
��|X|2

��
p

⌘✓ E|X|�

(R/2)

�

◆1/q

 64 · 2�/q c2

R

�/q

��|X|2
��2
2p

��|X|2
���/(2q)
�/2

.

Putting both bounds together, we have shown

J(X)� 2J(X �X⇤)

� d� 1

R

2
I(X)� 32 · 2�/q c2

R

2+�/q

��|X|2
��2
2p

��|X|2
���/(2q)
�/2

.

The goal is to now balance terms by choosing R appropriately.

In particular, for any s > 0, taking R =

⇣
b(2+s)

2a

⌘1/s
yields

the identity

a

R

2
� b

R

2+s

=

1

1 + 2/s

✓
2/s

b(1 + 2/s)

◆2/s

a

1+2/s
.

In view of this, we now set " = 2q/�, p = 1+1/(2") (which
fixes q = 1 + 2" and � = 4 + 2/") and simplify to obtain

J(X)�2J(X�X⇤) �
("/8)

"

(E|X|2)1+"

(8(1+"))

1+"

c

2" k|X|2k1+2"
2+1/"

I(X)

1+"

,

where we have made use of the crude bound (d�1)/d � 1/2

and substituted d = E|X|2.

B. Entropy Jumps under c-Regularity

As one would expect, we may ‘integrate up’ in Theorem 2
to obtain an analogous result in terms of entropies.

Theorem 3. Let X,X⇤ be i.i.d. radially symmetric random
vectors on Rd, d � 2, with c-regular density f . For any " > 0

D(X)�D

⇣
1p
2
(X +X⇤)

⌘
� C

"

d

" E|X|2

c

2" k|X|2k1+2"
2+1/"

D(X)

1+"

.

(11)

In comparing Theorems 1 and 3, we see that the two claims
are essentially identical up to constant factors, except that
(7) is an upgrade of (11) in the sense that the regularity
parameter c is replaced by the ratio I(X)/D(X). Hence,
the regularity assumption of Theorem 1 requires only finite
Fisher information, which is weaker than c-regularity (see the
comment following Definition 1). The ratio I(X)/D(X) may
be interpreted as the defectiveness of X with respect to the
logarithmic Sobolev inequality. Interestingly, the defect in the
logarithmic Sobolev inequality also supplies an upper bound
on the entropy jump [21], suggesting that its appearance in
both upper and lower bounds is fundamental.

Proof. Similar to before, the inequality (11) is invariant to
scaling t : X 7! tX . Thus, we assume without loss of
generality that X is normalized so that E|X|2 = d. Next,
define W =

1p
2
(X+X⇤), and let X

t

,W

t

denote the Ornstein-
Uhlenbeck evolutes of X and W , respectively. That is, for
t � 0

X

t

⇠ e

�t

X + (1� e

�2t
)

1/2
G,

W

t

⇠ e

�t

W + (1� e

�2t
)

1/2
G, (12)

where G is independent of X,W . By Proposition 2, X

t

is
(5ce

2t
)-regular for all t � 0. An application of Theorem 2

gives

I(X

t

)� I(W

t

) � C

"

(E|X
t

|2)1+"

(5c)

2" k|X
t

|2k1+2"
2+1/"

e

�4"t
I(X

t

)

1+"

� C

0
"

(E|X|2)1+"

c

2" k|X|2k1+2"
2+1/"

e

�4"t
I(X

t

)

1+"

, (13)

where C

0
"

is a constant depending only on ", and (13) holds
since E|X

t

|2 = E|X|2 and, for p � 1,
��|X

t

|2
��
p

=

�
E|X

t

|2·p
�1/p

 2

�
E(e�2t|X|2 + (1� e

�2t
)|G|2)p

�1/p

= 2

��
e

�2t|X|2 + (1� e

�2t
)|G|2

��
p

 2

⇣
e

�2t
��|X|2

��
p

+ (1� e

�2t
)

��|G|2
��
p

⌘

 2(1 +

p

d

)

��|X|2
��
p

. (14)

The bound (14) uses the fact that |G|2 is a chi-squared random
variable with d degrees of freedom, and hence (using E|X|2 =

d):

��|G|2
��
p

=

 
2

p

�(p+

d

2 )

�(

d

2 )

!1/p

= E|X|2
 

�(p+

d

2 )

�(

d

2 )
�
d

2

�
p

!1/p

 E|X|2
�
1 +

p

d

�


��|X|2

��
p

(1 +

p

d

).

Now, the claim will follow by integrating both sides. Indeed,
by the integral form of de Bruijn’s identity, integrating the LHS
of (13) yields

Z 1

0
(I(X

t

)� I(W

t

)) dt = D(X)�D(W ).

By convexity and Jensen’s inequality, we may bound the
integral of (13) as
Z 1

0
e

�4"t
I(X

t

)

1+"

dt � 1

(4")

"

✓Z 1

0
e

�4"t
I(X

t

)dt

◆1+"

� 1

(4")

"

✓Z 1

0
I(X

t+2"t)dt

◆1+"

=

1

(4")

"

(1 + 2")

1+"

D(X)

1+"

,

where we used the bound I(X

t+s

)  e

�2s
I(X

t

) due to
the convolution inequality for Fisher information, a change
of variables, and the identity

R1
0 I(X

t

)dt = D(X). This
completes the proof of (11).

2018 IEEE International Symposium on Information Theory (ISIT)

1613



C. Proof of Theorem 1

Proof. Similar to before, inequality (7) is invariant to scaling
t : X 7! tX . So, once again, we will assume without loss of
generality that X is normalized so that E|X|2 = d.

Define W =

1p
2
(X+X⇤), and as in (12) let X

t

,W

t

denote
the Ornstein-Uhlenbeck evolutes of X and W for t � 0.
Using de Bruijn’s identity, i.e., d

dt

D(X

t

) = �I(X

t

), and the
convolution inequality for Fisher information, it follows that

d

dt

(D(X

t

)�D(W

t

)) = I(W

t

)� I(X

t

)  0. (15)

Thus, D(X) � D(W ) � D(X

t

) � D(W

t

) for all t � 0. By
Proposition 1, X

t

is 4 (1 � e

�2t
)

�1-regular for all t � 0.
Noting that E|X

t

|2 = E|X|2, an application of Theorem 3
gives, for all t � 0,

D(X)�D(W ) � D(X

t

)�D(W

t

)

� C

"

(1� e

�2t
)

2"
d

" E|X|2

4

2" k|X
t

|2k1+2"
2+1/"

D(X

t

)

1+"

� C

0
"

(1� e

�2t
)

2"
d

" E|X|2

k|X|2k1+2"
2+1/"

D(X

t

)

1+"

,

where the last inequality follows by the same logic as (13),
with C

0
"

yet another constant depending only on ".
The map t 7! D(X

t

) is continuous and convex on t 2
[0,1) (e.g., [15]). Hence, using de Bruijn’s identity, we have
the inequality D(X

t

) � D(X)� tI(X), so that for all t � 0

D(X)�D(W ) � C

0
"

(1�e

�2t
)

2"
d

" E|X|2

k|X|2k1+2"
2+1/"

(D(X)�tI(X))

1+"

.

In principle, we may optimize over t � 0 to obtain a good
lower bound. However, a simple choice suffices. Indeed, the
proof is finished by putting t =

D(X)
2I(X) and noting that 1 �

e

�x � 1p
2
x for x 2 [0, 1/4], which applies for our choice of

t due to the logarithmic Sobolev inequality.

IV. CLT FOR RADIALLY SYMMETRIC RANDOM VECTORS

Let {X(k)
, k � 1} be a sequence of i.i.d. radially symmetric

random vectors of dimension d � 2, each with the same dis-
tribution as X . Iterating (7) leads to quantitative estimates for
convergence (to normality) of the subsequence of standardized
sums

U

n

:= 2

�n/2
2nX

k=1

X

(k)
, n � 0.

The only difficulty in this is that the norms and Fisher
information in (7) change along the subsequence, meaning that
the resulting bound on D(U

n

) would depend on the moments
and Fisher information of U

k

for 0  k < n. However, this can
be dealt with using a simple consequence of the Minkowski
and Rosenthal inequalities. In terms of the above notation,

Lemma 2. For p > 2,
��|U

n

|2
��
p

 dC(p)kX2
1kp, where

C(p) is a constant depending only on p, and X1 is the first
coordinate of X .

Using this together with the fact that I(U
n

)  I(X), it is
an easy exercise to establish the following quantitative CLT:

Corollary 1. Let X,U

n

be as above, normalized so that
E|X|2 = d. For any " > 0

D(U

n

)  D(X) exp

 
�K

"

(X)

n�1X

k=0

D(U

k

)

3"

!
,

where
K

"

(X) =

C

"

d

"

(E|X1|4+2/"
)

"

I(X)

2"
,

and C

"

> 0 depends only on ".

Clearly, this quantifies the convergence of D(U

n

) to zero in
terms of n,D(X), I(X) and moments of X1. It also ensures
rapid initial convergence when the initial distribution is far
from normal (e.g., D(X) � 1).
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