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Abstract—We establish quantitative stability results for the en-
tropy power inequality (EPI) in arbitrary dimension. Specifically,
we show that if uniformly log-concave densities nearly saturate
the EPI, then they must be close to Gaussian densities in the
quadratic Wasserstein distance. Further, if one of the densities
is log-concave and the other is Gaussian, then the deficit in the
EPI can be controlled in terms of the L1-Wasserstein distance.

As a counterpoint, an example shows that the EPI can be un-
stable with respect to the quadratic Wasserstein distance even if
densities are uniformly log-concave on sets of measure arbitrarily
close to one. The proofs are based on optimal transportation.

I. INTRODUCTION

Let X and Y be independent random vectors on Rn with
respective laws µ and ν, each absolutely continuous with
respect to Lebesgue measure. The celebrated EPI proposed
by Shannon and proved by Stam [1] asserts that

N(µ ∗ ν) ≥ N(µ) +N(ν), (1)

where N(µ) := 1
2πee

2h(µ)/n denotes the entropy power of µ,
and h(µ) = h(X) = −

∫
f log f is entropy associated to the

density f of X (all logarithms have base e). For t ∈ (0, 1),
let us define the deficit

δt(µ, ν) := h(
√
tX +

√
t̄ Y )−

(
t h(X) + t̄ h(Y )

)
,

where t̄ := 1−t. Unaware of the works by Shannon, Stam and
Blachman [2], Lieb [3] rediscovered the EPI by establishing
δt(µ, ν) ≥ 0 and noting its equivalence to (1). Due to the
equivalence of the Shannon-Stam and Lieb inequalities, we
shall generally refer to both as the EPI.

It is well known that δt(µ, ν) vanishes if and only if µ, ν
are Gaussian measures that are identical up to translation [4].
However, despite the fundamental role the EPI plays in infor-
mation theory, few stability estimates are known. Specifically,
if δt(µ, ν) is small, must µ and ν be ‘close’ to Gaussian
measures, which are themselves ‘close’ to each other, in
a precise and quantitative sense? This is our motivating
question.

Toward answering this question, our main result is a
dimension-free, quantitative stability estimate for the EPI.
More specifically, we show that if measures µ, ν have uni-
formly log-concave densities and nearly saturate either form
of the EPI, then they must also be close to Gaussian measures
in quadratic Wasserstein distance. We also show that the
EPI is not stable (with respect to the same criterion) in
situations where the densities nearly satisfy the same regularity
conditions. A weaker deficit estimate is obtained involving
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the L1-Wasserstein distance for log-concave measures when
one of the two variables is Gaussian. A further estimate is
obtained when one of the variables is Gaussian and the other
has nonzero spectral gap.

Before stating the main results, let us introduce notation.
Throughout, | · | denotes Euclidean length on Rn. We let
Γ ≡ Γ(Rn) denote the set of centered Gaussian probability
measures on Rn, and let γ denote the standard Gaussian
measure on Rn. That is1,

dγ(x) = e−|x|2/2 dx

(2π)n/2
.

Next, we recall that for p ≥ 1, the Lp-Wasserstein distance
between probability measures µ, ν is defined according to

Wp(µ, ν) = inf (E|X − Y |p)1/p ,

where the infimum is over all couplings on X,Y with marginal
laws X ∼ µ and Y ∼ ν. If X ∼ µ is a centered random
vector, then we write Σµ = E[XX⊤] to denote the covariance
matrix of X . We remark here that both forms of the EPI
are invariant to translation of the measures µ, ν. Thus, our
persistent assumption of centered probability measures is for
convenience and comes without loss of generality.

Organization: The rest of this paper is organized as fol-
lows: Sections II and III describe our main results and the
relationship to previous work, respectively. Section IV gives
an example where the EPI is not stable with respect to
quadratic Wasserstein distance when regularity conditions are
not met. Section V gives proofs of our main results and a
brief discussion of techniques, which are primarily based on
optimal mass transportation.

II. MAIN RESULTS

Our main result is the following:

Theorem 1. Let µ = e−ϕγ and ν = e−ψγ be centered
probability measures, where ϕ and ψ are convex. Then

δt(µ, ν)≥
tt̄

2
inf

γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
.

(2)

Under the assumptions of the theorem, the three terms in
the RHS of (2) explicitly give necessary conditions for the
deficit δt(µ, ν) to be small. In particular, µ, ν must each be
quantitatively close to Gaussian measures, which are them-
selves quantitatively close to one another. Additionally, W 2

2 is

1Explicit dependence of quantities on the ambient dimension n will be
suppressed in situations where our arguments are the same in all dimensions.
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additive on product measures, so (2) is dimension-free, which
is compatible with the additivity of δt on product measures.

Theorem 1 may be readily adapted to the setting of uni-
formly log-concave densities. Toward this end, let η > 0
and recall that h(η1/2X) = h(X) + 1

2 log η, so that δt(µ, ν)
is invariant under the rescaling (X,Y ) → (η1/2X, η1/2Y ).
Similarly, if X ∼ µ has density f which is η-uniformly log-
concave, i.e.,

−∇2 log f ≥ ηI, (3)

then a change of variables reveals that the density fη as-
sociated to the rescaled random variable η1/2X satisfies
−∇2 log fη ≥ I. In particular, fηdx = e−ϕdγ for some convex
function ϕ. Thus, Theorem 1 is equivalent to the following:

Corollary 1. If µ and ν are centered probability measures
with densities satisfying (3), then

δt(µ, ν) ≥ η
tt̄
2

inf
γ1,γ2∈Γ

(
W 2

2 (µ, γ1) +W 2
2 (ν, γ2) +W 2

2 (γ1, γ2)
)
.

Variations on this result also apply to certain families of
non log-concave measures, see Remark 2.

For convenience, let d2W2
(µ) := infγ0∈Γ W 2

2 (µ, γ0) denote
the squared W2-distance from µ to the set of centered Gaussian
measures. Using the inequality (a+ b+ c)2 ≤ 3(a2+ b2+ c2)
and the triangle inequality for W2, we may conclude a weaker,
but potentially more convenient variant of Corollary 1.

Corollary 2. If µ and ν are centered probability measures
with densities satisfying (3), then

δt(µ, ν) ≥ η
tt̄

8

(
d2W2

(µ) + d2W2
(ν) +W 2

2 (µ, ν)
)
. (4)

Shannon’s form of the entropy power inequality (1) is
oftentimes preferred to Lieb’s inequality for applications in
information theory. In this form, it is only necessary that
µ, ν be Gaussian with proportional covariances in order to
achieve equality. Motivated by this, we define for two centered
probability measures µ, ν the quantity

dF (µ, ν) := inf
θ∈(0,1)

∥∥∥
√
θΣ1/2

µ −
√
1− θΣ1/2

ν

∥∥∥
F
,

where ∥ · ∥F denotes Frobenius norm and Σ1/2 denotes the
unique positive semidefinite matrix such that Σ1/2Σ1/2 = Σ.
In particular, dF (µ, ν) = 0 if and only if the covariance
matrices Σµ and Σν are proportional.

Starting with Corollary 2, straightforward computations give
an analogous estimate for Shannon’s EPI:

Corollary 3. Let µ, ν be centered probability measures on Rn

satisfying (3) with parameters ηµ and ην , respectively. Then

N(µ ∗ ν) ≥ (N(µ) +N(ν))∆EPI(µ, ν),

where ∆EPI(µ, ν) is equal to

exp

(
min{θηµ, θ̄ην}

4n

(
θ̄d2W2

(µ) + θd2W2
(ν) + d2F (µ, ν)

))
,

with θ being chosen to satisfy θ/θ̄ = N(µ)/N(ν).

We note that, under the stated assumptions of log-concavity,
equality conditions for (1) are explicitly captured by the three
main terms defining ∆EPI(µ, ν).

Finally, we give stability estimates when one variable is
Gaussian.

Theorem 2. If µ is centered and has log-concave density,

δt(µ, γ) ≥ C t t̄ min(W 2
1 (µ, γ), 1), (5)

with C a numerical constant that does not depend on µ.

This estimate is reminiscent of the deficit estimates on
Talagrand’s inequality of [5], [6], with a remainder term that
stays bounded when the distance becomes large.

In a more general direction, a measure µ is said to have
spectral gap λ if, for all smooth s : Rn → R with

∫
sdµ = 0,

λ

∫
s2dµ ≤

∫
|∇s|2dµ.

Theorem 3. If µ is centered and has spectral gap λ, then

δt(µ, γ) ≥ min(λ, 1)
t t̄

2
D(µ∥γ).

All log-concave distributions have positive spectral gap [7],
so the hypothesis of Theorem 3 is weaker than that of Theorem
2. However, the advantage of (5) is that it does not rely on
any quantitative information on µ, only that it is log-concave.

III. RELATION TO PRIOR WORK

Chronologically speaking, the first stability result for the
EPI is a qualitative estimate due to Carlen and Soffer [4],
which holds under general conditions. Roughly speaking, they
show that there is a function Θ : R → [0,∞), strictly
increasing from 0, depending only on the dimension n, the
parameter t and the smoothness and decay properties of
µ, ν that satisfies δt(µ, ν) ≥ Θ(D(µ)), where D denotes
the nongaussianness of µ. The construction of the function
Θ relies on a compactness argument, and is therefore non-
explicit so is not directly comparable to our results. However,
it did allow Carlen and Soffer to rigorously settle the cases of
equality.

A few quantitative stability estimates for the EPI have been
developed in recent years. We review them below and com-
ment on the relationship to our results; a more detailed survey
may be found in [8]. To begin, we mention a stability result
due to Toscani [9], which asserts for probability measures µ, ν
with log-concave densities, there is a function R such that

N(µ ∗ ν) ≥ (N(µ) +N(ν))R(µ, ν),

where R(µ, ν) ≥ 1 with equality only if µ, ν are Gaussian
measures. Although it can be written explicitly in terms of
integrals of nonlinear functionals evaluated along the evolutes
of µ, ν under the heat semigroup, the function R(µ, ν) is
complicated and does not explicitly control the distance of
µ, ν to the space of Gaussian measures. Toscani leaves this
as an open problem [9, Remark 7]. Corollary 3 provides a
satisfactory answer to his problem when µ, ν are uniformly
log-concave. Similarly, Theorem 2 provides an answer when
one of the measures is log-concave and the other Gaussian.

Next, we compare to the main result of Ball and Nguyen
[10], which states that if µ is a centered isotropic probability
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measure (i.e., Σµ = I) with spectral gap λ and log-concave
density, then

δ1/2(µ, µ) ≥ λ
4(1+λ)D(µ∥γ) ≥ λ

8(1+λ)W
2
2 (µ, γ), (6)

where the second inequality is due to Talagrand’s Gaussian
transportation cost inequality. Theorem 3 gives a similar bound
under weaker hypotheses, with the caveat that one measure
is required to be Gaussian. Likewise, if µ is uniformly log-
concave then Corollary 1 yields a similar bound. Indeed,
Corollary 1 may be viewed as an extension of (6) to non-
identical measures and all parameters t ∈ (0, 1). However, two
points should be mentioned: (i) a stability estimate with respect
to W2 is weaker than one involving relative entropy; and (ii)
uniform log-concavity implies a positive spectral gap, but not
vice versa. It is interesting to ask whether the hypothesis of
Corollary 1 can be weakened to require only a spectral gap;
Theorem 3 along with earlier results by Ball, Barthe and Naor
[11] and Johnson and Barron [12] in dimension one provides
some grounds for cautious optimism.

The latter two results mentioned above assume log-concave
densities, as do we (for the most part). In contrast, the refined
EPI established in [13] provides a qualitative stability estimate
for the EPI when µ is arbitrary and ν is Gaussian. However,
the deficit is quantified in terms of the so-called strong data
processing function, and is therefore not directly comparable
to the present results. Nevertheless, a noteworthy consequence
is a reverse entropy power inequality, which does bear some
resemblance to the result of Corollary 3. In particular, for
arbitrary probability measures µ, ν on Rn with finite second
moments, it was shown in [14] that

N(µ ∗ ν) ≤ (N(µ) +N(ν))
(
θ̄ p(µ) + θ p(ν)

)
, (7)

where θ is the same as in the definition of ∆EPI(µ, ν) and
p(µ) := 1

nN(µ)J(µ), with J(µ) denoting Fisher information.
Stam’s inequality asserts p(µ) ≥ 1 with equality only if µ is
Gaussian, so that p(µ) may be interpreted as a measure of how
far µ is from the set of Gaussian measures. Thus, the deficit
term θ̄ p(µ)+θ p(ν) in (7) bears a pleasant resemblance to the
deficit term θ̄ d2W2

(µ) + θ d2W2
(ν) in Corollary 3. Importantly,

though, the former is an upper bound on N(µ ∗ ν), while the
latter yields a lower bound.

Finally, if X ∼ µ is a radially symmetric random vector
on Rn, n ≥ 2, satisfying modest regularity conditions (e.g,.
convolution with a Gaussian measure of small variance is
sufficient), then it was recently established in [15] that, for
any ε > 0

δ1/2(µ, µ) ≥ Cε(µ)n
εD1+ε(µ∥γµ), (8)

where γµ denotes the Gaussian measure with the same covari-
ance as µ, and Cε(µ) is an explicit function that depends only
on ε, a finite number of moments of µ, and its regularity. This
closely parallels quantitative estimates on entropy production
in the Boltzmann equation [16], [17]. Neither (2) nor (8) imply
the other since the hypotheses required are quite different
(uniform log-concavity vs. radial symmetry). However, both
results do give quantitative bounds on entropy production un-
der convolution in terms of a distance from Gaussian measures.
In general, the constants in (2) will be much better than those
in (8) which, although numerical, can be quite small.

IV. INSTABILITY OF THE EPI: AN EXAMPLE

As a counterpoint to Theorem 1 and to provide justification
for the regularity assumptions therein, we observe that there
are probability measures that satisfy the hypotheses required
in Theorem 1 on sets of measure arbitrarily close to one, but
severely violate its conclusion.

Proposition 1. There is a sequence of probability measures
(µϵ)ϵ>0 on R with finite and uniformly bounded entropies and
second moments such that

1) The measures µϵ satisfy (3) for η = 1 with high
probability. That is, limϵ↓0 µϵ(Ωϵ) = 1, where Ωϵ :=
{x | − d2

dx2 log fϵ(x) ≥ 1} with dµϵ = fϵdx.
2) The measures µϵ saturate the EPI as ϵ approaches zero.

That is, limϵ↓0 δt(µϵ, µϵ) = 0 for all t ∈ (0, 1).
3) (µϵ)ϵ>0 are bounded away from Gaussians in W2.

Specifically, lim infϵ↓0 infγ0∈Γ W 2
2 (µϵ, γ0) > 1/3.

We remark that the measures (µϵ)ϵ>0 in the proposition
are not necessarily pathological. In fact, it suffices to consider
simple Gaussian mixtures that approximate a Gaussian mea-
sure, albeit with heavy tails. Indeed, the proposition follows
by choosing dµϵ = fϵdx, with

fϵ(x) = ϵ

√
ϵ√
π
e−ϵx2

+ (1− ϵ)

√
1− ϵ√
π

e−(1−ϵ)x2

.

The computations can be found in [18].

V. DISCUSSION AND PROOFS

The remainder of this paper makes use of ideas from optimal
transport, and reader familiarity assumed. The unfamiliar
reader is directed to the comprehensive introduction [19]. We
recall that a map T : Rn → Rn is said to transport a measure
µ to ν if the pushforward of µ under T is ν (i.e., ν = T#µ).

Our starting point comes from a recent paper of Rioul [20].
Through an impressively short sequence of direct but carefully
chosen steps, Rioul recently gave a new proof of the EPI based
on transportation of measures. From his proof, we may readily
distill the following:

Lemma 1. Let T1 : Rn → Rn and T2 : Rn → Rn be
diffeomorphisms satisfying µ = T1#γ and ν = T2#γ. If µ
and ν have finite entropies, then

δt(µ, ν) ≥ E log
| det(t∇T1(X∗) + t̄∇T2(Y ∗))|

| det(∇T1(X∗))|t | det(∇T2(Y ∗))|t̄
, (9)

where X∗ ∼ γ and Y ∗ ∼ γ are independent.

Remark 1. For a vector-valued map Φ = (Φ1,Φ2, . . . ,Φn) :
Rn → Rn, we write ∇Φ to denote its Jacobian. That is,
(∇Φ(x))ij =

∂
∂xi

Φj(x).

In words, (9) shows that the deficit in the EPI can always
be bounded from below by a function of the Jacobians ∇T1

and ∇T2, where T1 and T2 are are invertible and differentiable
maps that transport measures γ to µ and γ to ν, respectively.

When T1 and T2 are Knöthe maps (see [21], [22]), the
Jacobians ∇T1 and ∇T2 are upper triangular matrices with
positive diagonal entries. Using this property, Rioul concludes
δt(µ, ν) ≥ 0 using concavity of the logarithm applied to
the eigenvalues (diagonal entries) of ∇T1 and ∇T2. By strict
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concavity of the logarithm, saturation of this inequality implies
the diagonal entries of ∇T1 and ∇T2 must be equal almost
everywhere. Combining this information with the fact that
a relative entropy term (omitted above) must vanish, Rioul
recovers the well known necessary and sufficient conditions
for δt(µ, ν) to vanish. Specifically, µ and ν must be Gaussian
measures, equal up to translation.

In our proof, instead of the Knöthe map, we shall use the
Brenier map from optimal transport theory, which has a useful
rigid structure:

Theorem 4 (Brenier-McCann [23], [24]). Consider two prob-
ability measures µ, ν on Rn, and assume that µ is absolutely
continuous with respect to the Lebesgue measure. There exists
a unique map T (called the Brenier map) transporting µ onto
ν that arises as the gradient of a convex lower semicontinuous
function. Moreover, this map is such that

W 2
2 (µ, ν) = E[|X − T (X)|2],

where X is a random variable with law µ, and therefore T (X)
has law ν. In other words, (X,T (X)) is an optimal coupling
for the Wasserstein distance W2.

In contrast to Rioul’s argument based on Knöthe maps,
if T1 and T2 are taken instead to be Brenier maps (again,
transporting γ to µ and γ to ν, respectively), then the Jacobians
∇T1 and ∇T2 are symmetric positive definite by the Brenier-
McCann Theorem. Thus, concavity of the log-determinant
function on the positive semidefinite cone immediately gives
the EPI from (9). Moreover, by strict concavity of the log-
determinant function, equality in the EPI implies ∇T1(X∗) =
∇T2(Y ∗) almost everywhere, and are thus constant. Hence,
T1 and T2 are necessarily affine functions, identical up to
translation. This immediately implies δt(µ, ν) = 0 only if µ, ν
are Gaussian measures with identical covariances.

Unfortunately, while both arguments easily settle cases
of equality in the EPI, neither yield quantitative stability
estimates. However, we note that the Brenier map is gen-
erally better suited for establishing quantitative stability in
functional inequalities. Indeed, it was remarked by Figalli,
Maggi and Pratelli in their comparison to Gromov’s proof of
the isoperimetric inequality that the Brenier map is generally
more efficient than the Knöthe map in establishing quantitative
stability estimates due to its rigid structure [25]. We crucially
use the properties of the Brenier map in proving Theorem 1.

A. Proof of Theorem 1
The proof of Theorem 1 is short, but makes use of several

foundational results from the theory of optimal transport. We
will need the following lemma; see [18] for a proof.

Lemma 2. For positive definite matrices A,B and t ∈ [0, 1],

log det(tA+ t̄B) ≥ t log det(A) + t̄ log det(B)

+
t t̄

2max{λ2
max(A),λ2

max(B)}∥A−B∥2F ,

where λmax(·) denotes the largest eigenvalue.

In addition, we remind the reader that a random vector X
having log-concave density enjoys (i) finite second moment

(in fact, finite moments of all orders); and (ii) finite entropy
h(X). Since Theorem 1 requires log-concave densities, these
conditions will be implicitly assumed throughout the proof.

Proof of Theorem 1. Assume first that the densities e−ϕ and
e−ψ are smooth and strictly positive on Rn. Also, let X∗ ∼ γ
and Y ∗ ∼ γ be independent. Define T1 to be the Brenier
map transporting γ to µ, and let T2 denote the Brenier map
transporting γ to ν. We recall here that a Brenier map is always
the gradient of a convex function by the Brenier-McCann
theorem, and therefore ∇T2 and ∇T1 are positive semidefinite
since they coincide with Hessians of convex functions. In fact,
since all densities involved are non-vanishing, they are positive
definite. Moreover, when the densities are strictly positive on
the whole space, we know by results of Caffarelli [26], [27]
that the maps T1 and T2 are C1-smooth.

Using the assumed smoothness and convexity of the poten-
tials ϕ and ψ, Caffarelli’s contraction theorem (see [28] and,
e.g., [19, Theorem 9.14]) implies T1 and T2 are 1-Lipschitz,
so that λmax(∇T1) ≤ 1 and λmax(∇T2) ≤ 1. Therefore,
since ∇T2 and ∇T1 are positive definite, Lemma 2 yields
the following (pointwise) estimate

log det(t∇T1 + t̄∇T2) ≥ t log det(∇T1) + t̄ log det(∇T2)

+
tt̄

2
∥∇T1 −∇T2∥2F .

Combined with (9) we obtain:

δt(µ, ν) ≥
tt̄

2
E∥∇(T1(X

∗)−X∗)−∇(T2(Y
∗)− Y ∗)∥2F .

Now, define matrices A = E[∇(T1(X∗) − X∗)] and B =
E[∇(T2(Y ∗)− Y ∗)]. By orthogonality, we have

E∥∇(T1(X
∗)−X∗)−∇(T2(Y

∗)− Y ∗)∥2F
= E∥∇(T1(X

∗)−(I +A)X∗)−∇(T2(Y
∗)−(I +B)Y ∗)∥2F

+ ∥A−B∥2F
= E∥∇(T1(X

∗)− (I +A)X∗)∥2F
+ E∥∇(T2(Y

∗)− (I +B)Y ∗)∥2F + ∥A−B∥2F
≥ E|T1(X

∗)− (I +A)X∗|2 + E|T2(Y
∗)− (I +B)Y ∗|2

+ E∥(I +A)X∗ − (I +B)X∗∥2F .

The final inequality is due to the L2 Gaussian Poincaré
inequality

∫
|f |2dγ ≤

∫
|∇f |2dγ, holding for every C1-

smooth function f : Rn → R with mean zero. Indeed, its
application is justified by C1-smoothness of the Brenier maps
among log-concave distributions, and the identity

E[T1(X
∗)− (I +A)X∗] =

∫
xdµ− (I +A)

∫
xdγ = 0,

which holds similarly for Y ∗. The desired inequality now
follows from the definition of W2.

Thus, Theorem 1 holds when the densities are smooth
and positive everywhere. If this is not the case, we may
regularize µ, ν by first convolving with a Gaussian measure.
The general result then follows by considering arbitrarily small
perturbations. See [18] for details.

Remark 2. Assuming uniform log-concavity ensures that the
optimal transport map is Lipschitz. This can still be the case
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in other situations. For example, this holds for families of
bounded perturbations of the Gaussian measure, including
the radially symmetric case [29]. Extensions to settings where
eigenvalues grow at most linearly (e.g,. as in the case of the
exponential measure) can be found in [18].

B. Proof of Theorems 2 and 3

Proof of Theorem 2. Assume that X∗ ∼ γ, and let T be the
Brenier map sending γ onto µ. For convenience, let us write
λi for the eigenvalues of ∇T (x), in increasing order (so that
λn = λmax(∇T (x))). Since the Brenier map sending γ onto
γ is the identity, the combination of (9) and Lemma 2 yields
in this case

δt(µ, γ) ≥
tt̄
2
E
[

∥∇T (X∗)− I ∥2F
1 + λmax(∇T (X∗))2

]
=

tt̄
2
E
[∑n

i=1(λi − 1)2

1 + λ2
n

]
.

By the Cauchy-Schwarz inequality and the lower bound on
δt(µ, γ) noted above, we have

E
[√∑

(λi − 1)2
]
≤

√
E[1 + λ2

n]

√

E
[∑

(λi − 1)2

1 + λ2
n

]

≤
√
E[1 + λ2

n]

√
2

t(1− t)
δt(µ, γ).

The L1 Poincaré inequality for the Gaussian measure implies

W1(µ, γ) ≤ 2E
[√∑

(λi − 1)2
]
.

Hence, if we have an L2 bound on the largest eigenvalue of
∇T , we can deduce a W1 estimate on the deficit (in contrast
to using a uniform bound as in the proof of Theorem 1). To
this end, a result of Kolesnikov asserts that E[λ2

n] ≤ 3
2E[λn]2

(see [30], Theorem 6.1 and the discussion at the top of page
1526). Moreover,

E[λn] ≤ 1 + E[|λn − 1|] ≤ 1 + E
[√∑

(λi − 1)2
]
.

From this estimate we deduce

E
[√∑

(λi − 1)2
]
≤

√

4 + 3E
[√∑

(λi − 1)2
]2

√
2
t t̄

δt(µ, γ).

Since r/
√
1 + r2 ≥ cmin(r, 1) and 2E

[√∑
(λi − 1)2

]
≥

W1(µ, γ), we have
√
2δt(µ, γ)/(t t̄ ) ≥ Cmin(W1(µ, γ), 1),

so the result follows.

Proof of Theorem 3. Let I(ν∥γ) denote the Fisher informa-
tion of ν relative to γ. It was shown in [5, Proof of Theorem
1] that if ν is a centered probability measure with spectral gap
λ, then for all t ≥ 0

I(νt∥γ) ≤ e−2tI(ν∥γ) 1

1 + λ(e2t − 1)
,

where νt denotes the evolute of ν along the Ornstein-
Uhlenbeck process at time t. The claim follows by identifying
ν ← µτ , integrating with respect to the time variable τ ,
and applying de Bruijn’s identity. Detailed computations are
omitted due to space constraint.
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