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The Effect of Local Decodability Constraints
on Variable-Length Compression

Ashwin Pananjady and Thomas A. Courtade

Abstract— We consider a variable-length source coding
problem subject to local decodability constraints. In particular,
we investigate the blocklength scaling behavior attainable by
encodings of r-sparse binary sequences, under the constraint
that any source bit can be correctly decoded upon probing at
most d codeword bits. We consider both adaptive and non-
adaptive access models, and derive upper and lower bounds that
often coincide up to constant factors. Such a characterization
for the fixed-blocklength analog of our problem, known as the
bit probe complexity of static membership, remains unknown
despite considerable attention from researchers over the last
few decades. We also show that locally decodable schemes for
sparse sequences are able to decode 0s (frequent source symbols)
of the source with far fewer probes on average than they can
decode 1s (infrequent source symbols), thus rigorizing the notion
that infrequent symbols require high probe complexity, even
on average. Connections to the fixed-blocklength model and to
communication complexity are also briefly discussed.

Index Terms— Variable-length compression, local decoding,
bit-probe, static membership.

I. INTRODUCTION

EFFICIENT representation of a sequence of source bits
by a significantly shorter sequence of encoded bits

(i.e., a codeword) is the classical problem of lossless source
coding, proposed by Shannon in his seminal 1948 paper [2].
It is widely known that optimal compression performance can
be achieved with schemes such as Huffman codes [3] or the
Lempel-Ziv universal compression algorithm [4]. However,
these compression schemes suffer from the drawback that they
do not support local decodability. Specifically, retrieving a
single bit of the source sequence generally requires a decoder
to access all of the encoded bits.

This is clearly undesirable in applications that favor retriev-
ing selected pieces of information, rather than the entire source
sequence. One such application is in bioinformatics [5], [6],
in which a DNA sequence is stored as a binary string
with relation to a reference sequence, with 1s representing
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single nucleotide polymorphisms (SNPs) at those positions.
In SNP calling, we are interested in learning whether there
is a SNP at position i . Since we are not interested in any
other information about the sequence, we would ideally like
to accomplish this by accessing few bits in the compressed
representation of the DNA sequence. In this specific instance,
local decodability is strongly motivated, since decompressing
the whole genome can be prohibitively expensive from a
memory standpoint.

Another example presents itself in the efficient storage of
relationships among objects (e.g., relational databases [7]).
Given a collection of n objects, the relationships among these
objects can be represented by an undirected graph on n ver-
tices, with the presence or absence of an edge (i, j) signifying
that objects i and j are related or unrelated, respectively
(e.g., friendships in social networks). One can think of repre-
senting all graphs with n vertices by sequences of

(n
2

)
bits

representing all possible edges. A ‘1’ at a given position
indicates the presence of that edge, and a ‘0’ indicates that
it is absent. Thus, testing relationships between objects is
accomplished by querying the value of the corresponding bit.
As in SNP calling, it would be ideal to have a compressed
representation of the graph which permits such queries upon
accessing a small number of encoded bits.

We remark that both applications referred to above involve
a source that is inherently sparse - both SNPs and the number
of relationships are small compared to the total length of
the sequence. Motivated in part by this, our objective in
this paper is to analyze the fundamental tradeoffs between
access constraints and compressibility of sparse sequences,
in the context of locally decodable compression schemes.
We consider a variable blocklength model, in which source
sequences can be mapped to codewords of varying lengths,
and that the decoder is informed of the codeword length at
the start of the decoding process.

The problem of locally decodable source coding for fixed-
length codes has been studied in the context of succinct data
structures, in the bit probe [8], [9] and cell probe [10], [11]
complexity models. In particular, locally decodable source
coding in the fixed blocklength setting is an instance of the
static membership problem in the bit-probe model, which can
be stated as follows: Encode subsets S ⊆ {1, 2, . . . , n} of
size at most r into a data structure of fixed length ℓ, such
that queries of the form “Is i ∈ S” for i ∈ {1, 2, . . . , n}
can be determined by probing (i.e., accessing) at most
d bits in the data structure, either adaptively or non-adaptively.
By letting S denote the set of indices where a binary sequence
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has ones, the static membership problem considered by the
bit probe model yields a fixed-blocklength, locally decodable
representation of sparse sequences.

Buhrman et al. [12] analyzed the bit probe complexity of
the static membership problem and provided the lower bound
ℓ = "(dr1−1/dn1/d), which remains the best lower bound
for a general n, r, d . They also showed, among other results,
a scheme that for odd d , achieves a blocklength scaling as
ℓ = O(rdn4/(d+1)). The interested reader is referred to [13]
and references therein for a comprehensive survey on several
improvements to these bounds (for specific regimes of r and d)
that have been proposed in the literature [14]–[17]. Notably,
Garg and Radhakrishnan [18] recently improved the bounds
of Burhman et al. In particular, they provided tight bounds for
the case of d = 2 adaptive bit probes and improved the upper
bound of [12] for certain regimes of r and d: For odd d , they
showed an upper bound of ℓ = Õ(dr1−1/dn2/(d−1)), which
still exhibits a substantial gap in the exponent compared to
the lower bound ℓ = "(dr1−1/dn1/d). Thus, while significant
progress has been made since the static membership problem
was introduced in the 70s [8], tight bounds on its bit-probe
complexity that hold in general have remained elusive.

Largely independent from the prior work on the bit
probe model, locally decodable source coding has also
received recent attention from the information theory
community [19]–[22]. Closely related to the present paper is
the recent work by Mazumdar et al. [19], which considers the
design of locally decodable source codes under the bit probe
model for general memoryless sources, with vanishing block-
error probability. Among its other contributions are order-wise
tight bounds for the case of i.i.d. Bernoulli sources, which was
first considered by [21].

In this paper, we introduce and analyze the problem of
variable-blocklength compression (to be defined precisely in
Section II) of sparse sequences under local decodability con-
straints. Our model thus differs fundamentally from those
appearing in both [12] and [19], [21] since such a variable-
blocklength setting has not been previously studied. Consid-
ering a variable-blocklength setting is practically motivated
because compressed file size is rarely fixed a-priori by the
compression scheme, and file length is often recorded in
metadata available to a decompressor. As we show in the
sequel, our analysis of the variable blocklength case allows us
to provide tight order-wise bounds on the average blocklength
of the code in many cases. Also, in contrast to [21], we restrict
ourselves exclusively to the lossless setting, in which the
decoder must attain zero (and not vanishing) probability of
error, which is motivated by high-fidelity applications such as
SNP calling.

Our Contributions

In this paper, we introduce the problem of locally decodable
source coding for sparse sequences with variable-blocklength
codes. We provide non-asymptotic upper and lower bounds
on the average blocklength attainable by such schemes, which
are sharp up to constant factors in many cases of interest.
We reiterate that the fixed-blocklength analog of this problem
does not yet have such a sharp characterization.

Roughly speaking, our bounds show that the scaling of the
average blocklength is given by drnr/(rd+1), which can be
substantially lower than the best known upper bounds for the
fixed blocklength regime holding for general r, d, n, which
scale as dr1−1/dn2/d [18].1 As a corollary, we give necessary
and sufficient conditions on the number of bit-probes required
to achieve competitively optimal compression performance,
finding that our schemes allow us to probe a small fraction of
bits required by the trivial scheme that attains competitively
optimal compression.

We also show upper bounds on the average probe depth of
locally decodable schemes, and a lower bound on the number
of probes that are required to decode ‘infrequent’ source
symbols, on average. Our results articulate the notion that
more infrequent symbols demand higher probe complexity,
even on average. We also comment on connections to the
fixed-blocklength model and to communication complexity.

II. NOTATION AND PROBLEM SETTING

For an integer k ≥ 1, we employ the shorthand notation
[k] ! {1, 2, . . . , k}. We make frequent use of the conventional
asymptotic notations O(·), o(·),"(·),ω(·),$(·).

Throughout, we consider encodings of r -sparse binary
vectors, which are simply sequences xn = (x1, x2, . . . , xn) ∈
{0, 1}n having Hamming weight precisely r (we may assume
without loss of generality that r ≤ n/2). Our restriction to
sequences of weight precisely r is primarily for convenience,
since our arguments readily generalize to vectors having
weight at most r . In some cases, we allow the sparsity
parameter r to scale with n, in which case we write rn .

The support of a source sequence xn is defined to be the
set of nonzero coordinates, i.e. supp(xn) = {i ∈ [n] : xi = 1}.
When referring to multiple distinct sequences, we use the
bracket subscript notation, i.e. xn

(1), xn
(2), . . ., where each

xn
( j ) ∈ {0, 1}n .
Letting

([n]
r

)
⊂ {0, 1}n denote the set of r -sparse binary

vectors, we assume random vectors Xn ∈
([n]

r

)
are drawn

uniformly from all
(n

r

)
possibilities.

A source code (i.e., compressor) c for r -sparse vectors is
an invertible mapping2 c : ([n]

r

) → {0, 1}∗, where {0, 1}∗ =
{0, 1, 00, 01, 10, . . . } denotes the set of all binary strings.
Letting ℓ(b) denote the length of b ∈ {0, 1}∗, we remark that
there are source codes for which the average codeword length
is roughly3

E
[
ℓ(c(Xn))

]
≈ log

(
n
r

)
bits, (1)

and this is essentially best-possible, since the entropy of the
source H (Xn) = log

(n
r

)
, and as shown in [23], the expected

length of any one-one encoding is bounded from below by

E
[
ℓ(c(Xn))

]
≥ H (Xn)− log(H (Xn) + 1)− log e bits. (2)

Indeed, the naïve scheme which lists the positions of each
nonzero entry (requiring approximately log n bits each) is

1For a summary of our bounds and a detailed comparison of our bounds
with those in the fixed blocklength setting, see Section III-B.

2Notice that we do not impose prefix constraints.
3Here and throughout, log(x) denotes the base-2 logarithm of x .
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essentially optimal when r ≪ n. However, it is not clear
whether such a source code admits a decoding algorithm that,
for any specified index j ∈ [n], can recover bit x j by probing a
bounded number of bits in c(xn). Thus, in the spirit of locally-
decodable error-correcting codes [24] and the data structure
counterparts in [12] and [21], we define a variable-length
(r, d, n)-locally decodable source code:

Definition 1: A (r, d, n)-locally decodable source code,
or simply, an (r, d, n) code, consists of a mapping

c :
([n]

r

)
→ {0, 1}∗

with the property that, for each xn, the bit x j can be recovered
with knowledge of ℓ(c(xn)) and by probing at most d bits
of c(xn) for all indices j ∈ [n].

In other words, we can say c is a (r, d, n)-locally decodable
source code only if there exists a corresponding ‘(r, d, n)-local
decompressor’ — i.e., an algorithm that takes as input a query
index j ∈ [n] and the codeword length ℓ(c(xn)), and returns
the data bit x j after accessing at most d bits of c(xn). In light
of this, we refer to the number d as an access constraint
(or, decoding depth), since it bounds the number of encoded
bits that the decoder probes before making a determination.
In contrast to the fixed-blocklength settings that have been
considered previously (cf. [12], [21], [24]), Definition 1 does
not preclude variable-length encoding schemes. As mentioned
above, this is motivated by practice, where data structures are
usually of variable length and any access protocol is cognizant
of the encoded data’s length so that segmentation faults are
avoided. Indeed, in computer file systems, a file is typically
accessed after first reading metadata that describes the location
and length of the file.

Note that our definition of an (r, d, n)-local decompres-
sor does not distinguish between adaptive or non-adaptive
bit probes. That is, a decompressor can probe entries of
c(xn) in an adaptive manner (where codeword locations are
accessed sequentially, and the positions accessed can depend
on the bit values observed during previous probes), or in
a non-adaptive manner (where codeword locations accessed
are determined only by the query index j ∈ [n] and the
codeword length ℓ(c(xn))). When such a distinction is neces-
sary, we explicitly refer to adaptive and non-adaptive (r, d, n)
codes.

III. MAIN RESULTS

A. Bounds on Expected Blocklength

In this section, we present lower and upper bounds on
the expected blocklength achievable by variable-length source
codes obeying a local decodability constraint, and give suf-
ficient conditions for them to coincide. Proofs can be found
in Section IV.

Theorem 1: The expected codeword length of any
(r, d, n)-locally decodable code with adaptive bit-probes
satisfies

E
[
ℓ(c(Xn))

] + 1 ≥
(

rd + 1
4e

) ((
n
r

)1/(rd+1)

− 1

)

. (3)

As a sanity check, we can evaluate the lower bound (3)
when there is no locality constraint. In this case, a good com-
pression scheme will be able to achieve an average codeword
length of H (Xn) = log

(n
r

)
bits, and so it suffices to take

d = log
(n

r

)
to specialize our result to the compression problem

without a locality constraint.
Proposition 1: In case d = log

(n
r

)
, the lower bound (3)

reduces to

E[ℓ(c(Xn))] + 1 ≥ R(r, n)

4 e
log

(
n
r

)
,

where R(r, n) is bounded above and below by universal
constants

√
2− 1 ≤ R(r, n) ≤ 2.

Hence, we recover the information-theoretic lower bound
without locality constraints (1) (up to constant factors) in
the absence of a local decodability constraint. On this note,
an important consequence of Theorem 1 is that it dictates
how quickly d must scale with respect to n, r in order to
accommodate encoding schemes that are near-optimal in the
traditionally information-theoretic sense. In the next section
we quantify this tension more precisely, and establish how
large d must be in order to ensure competitive optimality.
Before doing this, we give general achievability results and
discuss the tightness of (3).

We first present a scheme for the special case of
r = d = 1. In addition to being a purely deterministic scheme,
it also serves as an illustrative example of the random coding
argument used in the proof of Theorem 2 to follow.

1) Deterministic Scheme for r = 1, d = 1:
a) Codebook construction: Define a sequence of sets

S1, S2, . . . , S⌈
√

2n⌉, starting with S1 = {1}, and inductively
defining Sk to be the segment {mk−1 + 1, mk−1 + 2, . . . ,
mk−1+k}, with mk−1 denoting the maximum element of Sk−1.
In other words, we have S1 = {1}, S2 = {2, 3}, S3 =
{4, 5, 6}, etc. We note that S1, S2, . . . , S⌈

√
2n⌉ are disjoint by

construction and cover [n] since

|S1 ∪ S2 ∪ · · · ∪ S⌈
√

2n⌉| =
⌈
√

2n⌉∑

k=1

k ≥ n +
√

n
2
.

b) Encoding procedure: For xn ∈ ([n]
1

)
, choose k such

that supp(xn) ⊆ Sk = {mk + 1, . . . , mk + k} and encode xn

to c(xn) = (xmk+1, xmk+2, . . . , xmk+k) ∈ {0, 1}k .
Clearly, this encoding is (1, 1, n)-locally decodable. Indeed,

upon observing the codeword length k = ℓ(c(xn)), any query
for index j /∈ Sk returns 0, whereas any query for index j ∈ Sk
is easily handled by probing and returning the ( j − mk−1)th

coordinate of c(xn).
c) Performance analysis: Since Pr{supp(Xn) ⊆ Sk} ≤

k
n , the expected codeword length for this encoding is given by

E
[
ℓ(c(Xn))

] ≤
⌈
√

2n⌉∑

k=1

k
k
n

=
√

2 + 6
√

n + 4
√

2n
6
√

n
+ O(1)

= 2
√

2
3

√
n + O(1/

√
n). (4)
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Note that the expected length is within a constant of
what is specified by Theorem 1. In fact, for r = d = 1,
the lower bound in Theorem 1 can actually be improved4

to E
[
ℓ(c(Xn))

]
≥ 2

√
2

3
√

n − o(
√

n), thereby completely
characterizing the scaling behavior of an optimal (1, 1, n)-
locally decodable code as E

[
ℓ(c(Xn))

]
∼ 2
√

2
3
√

n.
Having observed that the lower bound (3) exhibits the

correct scaling behavior in the r = d = 1 setting, we now
turn to the general case.

Theorem 2: Suppose n, r is such that the source entropy
satisfies log

(n
r

) ≥ 12. For any d ≥ 1, there exists a
non-adaptive (r, d, n)-locally decodable code c with average
codeword length

E
[
ℓ(c(Xn))

]
≤ 250(rd + 1)

(
rr

(
n
r

))1/(rd+1)

. (5)

A few remarks are in order. First, Theorem 1 is a converse
result for adaptive schemes, while Theorem 2 is an achiev-
ability result for non-adaptive schemes. We will see in the
examples that follow that these bounds often coincide (up
to constant factors), showing that adaptivity provides at most
constant-factor improvement in such cases.5 Second, we note
that both Theorem 1 and Theorem 2 are non-asymptotic
in nature (see Remark 1 for a clarification on the constant
factors involved). While Theorem 1 holds for any choice of
parameters r, d, n, Theorem 2 requires that the source entropy
be modestly large. Implications of the theorems together,
however, become most crisp when n → ∞, and r, d are
functions of n. We illustrate this with some examples.

Example 1: First take n → ∞ and r, d fixed (i.e., not
depending on n). In this case, we find that the blocklength
of an optimal sequence {c⋆

n} of (r, d, n) codes scales as
E

[
ℓ(c⋆

n(Xn))
] = $(nr/(rd+1)). Hence, when r, d are fixed,

performance scales poorly relative to the information-theoretic
lower bound without locality constraints, of $(log n). In fact,
an exponentially longer codeword length is required on aver-
age! It is also worthwhile to note that the blocklength scaling
behavior in the bit-probe model (discussed in Section I)
remains a longstanding open problem, even in this setting of
arbitrary fixed r, d and n→∞, with the best bounds differing
in the exponent by a substantial margin (i.e., exponents in best
upper and lower bounds differ by roughly a factor of two [18]).

Example 2: Consider the setting where rn = nϵ and
dn = δ log n, where ϵ, δ > 0 are fixed constants. Then it is a
straightforward calculation using (3) and (5) to see that any
optimal sequence {c⋆

n} of (rn, dn, n)-locally decodable codes
satisfies

C1(2(1−ϵ)/δ − 1) ≤ E
[
ℓ(c⋆

n(Xn))
]

δnϵ log n
≤ C221/δ as n →∞,

where C1 and C2 are absolute constants. Thus, up to constant
factors, the blocklength scaling behavior of optimal codes in
this regime is δnϵ log n, and the decoder will probe a fraction

4The proof is roughly the same as the proof of Theorem 1, but the various
bounds can be improved by particularizing to r = d = 1.

5It is important to note that a non-adaptive scheme in the variable block-
length setting may still “adapt” depending on the codeword length it observes,
in contrast to the fixed blocklength setting.

of the codeword proportional to 1/rn in worst case. Contrast
this with the trivial encoding scheme that simply stores the
position of each ‘1’; the natural decoder based on binary search
would require roughly log(rn) · log(n) probes in worst case.

Example 3: If we now parameterize nm =
(m

2

)
, rm = (1 +

ϵ) ln m
m

(m
2

)
and dm = δ log m, then as m → ∞ any optimal

sequence {c⋆
m} of (rm, dm , nm)-locally decodable codes will

satisfy

C1(21/δ − 1) ≤ E
[
ℓ(c⋆

m(Xnm ))
]

rmdm
≤ C222/δ.

This particular choice of parameters can be interpreted as
encoding a random graph on m vertices with (1 + ϵ) ln m

m

(m
2

)

edges. Since ln m
m is the threshold for connectivity, this graph

is connected with high probability for ϵ > 0. Now, querying
whether two vertices are connected in this graph corresponds
to querying a bit of Xnm . In order to accomplish this in time
that grows logarithmically in the number of vertices requires
average blocklength of order rd = $

(
mlog2(m)

)
.

In the latter two examples, average blocklength scales
rndn = $(log

( n
rn

)
), which is within constant factors of the

information-theoretic lower bound without locality constraints
(i.e., competitively optimal). In both cases, we chose rndn =
"(log

( n
rn

)
) in order to achieve this scaling. Thus, it is natural

to ask: do there exist competitively optimal schemes with
rndn = o(log

( n
rn

)
)? The answer to this question is negative,

and is the focus of the next section. However, before we
proceed, we unify the above examples under the following
straightforward corollary of Theorems 1 and 2:

Corollary 1: If log
( n

rn

)
= "(rndn) and dn = "(log rn),

then any optimal sequence of (rn, dn, n)-locally decodable
codes {c⋆

n} satisfies

E
[
ℓ(c⋆

n(Xn))
]

= $

(

rndn

(
n
rn

)1/(rndn+1)
)

.

B. Summary and Comparison

Having seen instantiations of our results for various exam-
ples, it is now instructive to see how our results compare with
those of fixed blocklength locally decodable codes. We provide
such a comparison in Table I. We have deliberately simplified
some of the expressions in order to make the comparison
apparent. Let us parse this table row by row.

In the most general case (for arbitrary parameters (r, d, n)),
our upper bound provides improvement over the best-known
fixed-blocklength scheme, as seen by the simple inequality

(n
r

)1/d
n1/d >

(n
r

)r/(rd+1)
rr/(rd+1).

Now consider the case where r and d are constants (a
very sparse source), and the asymptotics are with respect
to n. In this regime, also known to be the difficult regime
for the fixed blocklength case, we see the starkest difference
between our bounds and the bounds for fixed blocklength
codes. In particular, while our lower and upper bounds are
sharp, the lower and upper bounds for fixed blocklength
codes differ by a multiplicative factor of n1/d . Moreover, our
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TABLE I

BLOCKLENGTH SCALING FOR FIXED BLOCKLENGTH AND VARIABLE BLOCKLENGTH (r, d, n) CODES.
(CONSTANT AND LOGARITHMIC PREFACTORS ARE OMITTED FOR CONCISENESS)

upper bound is asymptotically much better than the upper
bound for fixed blocklength codes, as is evident from the
relation

n2/d ≫ nr/(rd+1).

Moreover, since

n1/d ≪ nr/(rd+1),

our upper bounds exhibit a scaling behaviour that is asymp-
totically smaller than the lower bound for fixed blocklength
codes.

An intermediate regime is one where r = o(log n),
corresponding to graph compression below the connectivity
threshold (see the example above). Evaluating the bounds in
this regime by choosing d = $(log r), we again see that there
is a multiplicative gap of n1/d between the lower and upper
bounds in the fixed blocklength setting, while our bounds are
sharp. Moreover, since

(n
r

)1/d
n1/d ≫

(n
r

)r/(rd+1)
,

we obtain improvements in achievability in this regime. Also,
as before, our upper bound is strictly smaller than the lower
bound for fixed blocklength compression.

The bounds for fixed blocklength and variable blocklength
codes are most comparable when d scales sufficiently fast
relative to (n, r), i.e., d = "

(
log log

(n
r

))
. In this regime,

the lower and upper bounds for both fixed- and variable-
blocklength codes match up to constant factors, and the upper
bound for fixed-blocklength codes is achieved by a different
scheme than the first three cases. However, it is worth noting
that since

(n
r

)1/d
>

(n
r

)r/(rd+1)
,

we still obtain slight improvements in blocklength scaling
behavior, which diminish when r grows sufficiently rapidly.

C. Local Decodability and Competitive Optimality

We now provide necessary conditions for competitive opti-
mality. To this end, we define:

Definition 2: For a sequence of integers {rn}n≥1 a sequence
of encoders

cn :
([n]

rn

)
→ {0, 1}∗ n ≥ 1

is said to be competitively optimal if

lim sup
n→∞

E[ℓ(cn(Xn))]
log

( n
rn

) = O(1).

In other words, competitively optimal schemes attain com-
pression rates within a constant factor of the information
theoretic lower bound (without locality constraints) log

( n
rn

)

for large enough n.
From Theorem 1, it is possible to deduce the following

necessary condition for competitive optimality:
Theorem 3: If {cn} is a competitively optimal sequence of

(rn, dn, n)-locally decodable codes, then rndn = "
(

log
( n

rn

))
.

In other words, we cannot expect to attain competitive
optimality when rn and dn are simultaneously small relative
to the source entropy (note the contrast to the sufficient
conditions in Corollary 1). This relationship can be somewhat
complicated since the source entropy generally depends on
both n and rn . However, when the source sequence is modestly
sparse (i.e., rn = O(n1−ϵ) for some ϵ > 0), then the explicit
dependence on rn in Theorem 3 can be eliminated to obtain
the following condition:

Corollary 2: If rn = O(n1−ϵ) for some ϵ > 0, then there
exists a competitively optimal sequence of (rn, dn, n)-locally
decodable codes if and only if dn = "(log n).

In contrast to Corollary 2, if rn = $(n), the informa-
tion theoretic lower bound without locality constraints is
log

( n
rn

) = $(n), and the identity encoding cn(xn) = xn is
competitively optimal, with all source bits being decodable
with dn = 1 probes. We also remark that in the regime in
which r = "(n), compression performance is characterized
by the constant factors that the notion competitive optimality
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hides. However, our focus in this paper is on the sparse regime
when r = o(n); a discussion of the linear regime can be found
in [19].

We now turn to the question of whether it is possible to
design locally decodable codes which exhibit an even stronger
sense of locality on average.

D. Average Probe Depth of Local Decoding

The results in the paper so far have addressed the problem
of compression with a bound on the worst case probe depth
over all choices of bits of the source that we wish to decode.
However, we could now ask how the average probe depth
behaves. In this section, we introduce two notions of “average”
probe depth.

The first definition is a natural one – we consider the average
probe depth to recover any bit of the source. More precisely,
letting d(i, xn) denote the number of probes used to determine
the value of bit i in sequence xn , we define:

Definition 3: The average probe depth D to recover any bit
of the source is defined as the probe depth averaged over all
sequences and all possible query bits, i.e.,

D ! Exn Ei∈[n]d(i, xn)

= 1(n
r

)
∑

xn

1
n

∑

i∈[n]
d(i, xn),

Our result for this notion of average probe depth shows that
there are (r, d, n)-locally decodable codes with performance
suggested by Theorem 2 for which D is small.

Theorem 4: Suppose
1) rndn = o(n) with log

( n
rn

)
≥ 12; and

2) dn ≤ (1− ϵ) log n
log(Ce) for some fixed ϵ > 0 and C > 1.

Then there exists a sequence of (rn, dn, n) codes with expected
length satisfying (5), for which

D ≤ 1 + 1
C − 1

+ o(1)

bits. Here the o(1) term goes to 0 as n→∞.
Theorem 4 essentially states that although the maximum

probe depth to determine any bit in the source is dn , provided
dn and rn are small enough, there exists a scheme with close to
optimal expected length in which we can probe only a small
number of codeword bits on average to determine any bit.
For instance, if dn is a constant d and rn = o(n), then we
can get away with just over 1 probe on average to determine
any source bit, although we are allowed a maximum of
d probes.

As it turns out, the reduction in average probe depth
achieved by this scheme is a consequence of the sparsity
of the source, since if a source bit is 0, we only need
to probe a small number of codeword bits to determine it.
A related question is the following: if we we restrict our
attention to the effort required to decode infrequent symbols,
is this still small on average? To answer this we require
a different notion of average probe depth, which is defined
below.

Definition 4: The average 1-probe depth D1 to recover 1s
in the source is defined as the probe depth averaged over all

bits that take the value 1 in the source sequence, i.e.,

D1 ! Exn Ei∈supp(xn)d(i, xn)

= 1(n
r

)
∑

xn

1
r

∑

i∈supp(xn)

d(i, xn).

In order to state our results for this notion of average probe
depth, we need the following precise definition of “good”
locally decodable codes.

Definition 5: An α-optimal (r, d, n)-locally decodable code
is one whose expected length is within a multiplicative factor
α ≥ 1 of the lower bound (3). In other words, it is a code
with expected length satisfying:

E
[
ℓ(c(Xn))

]
+ 1 ≤ α

(
rd + 1

4e

) ((
n
r

)1/(rd+1)

− 1

)

.

We are now ready to state our theorem, which is a converse
result for 1-probe depth of α-optimal codes.

Theorem 5: Suppose rndn = o
(
log

(n
r

))
. Then for any

α-optimal (rn, dn, n)-locally decodable code,

D1 = "α(dn), (6)

where the prefactors in the lower bound (6) are a function
of α.

A few remarks are now in order. Firstly, from Corollary 1 we
know that provided log

( n
rn

) = "(rndn) and dn = "(log rn),
the upper bound (5) and lower bound (3) for the expected
length of (r, d, n)-locally decodable codes coincide up to a
constant factor. In other words, the code of Theorem 2 is
α-optimal under these conditions. Theorems 4 and 5 now
clearly bring out the difference in the difficulty of decoding
frequent and infrequent source symbols. In essence, the theo-
rems convey that if a bit is 0, there are locally decodable codes
for which we require a small number of probes to decode it
on average, while if it is a 1, we require essentially d probes,
our maximum budget, for any code that we use.

This was precisely the intuition behind the lower bound
of [16] for maximum probe depth - that sparser symbols
require more probes in worst case. Theorems 4 and 5 show
that the same intuition is correct even in an average sense.

As mentioned in the introduction, a large portion of the
literature related to this problem considers fixed-blocklength
locally decodable codes. In the next section, we draw con-
nections from our model to the fixed blocklength model by
considering the general problem of compression with headers.

E. Using Headers

In the variable blocklength formulation, the length of the
codeword is available as side information to the decoder;
the local decodability constraint is imposed while probing the
codeword itself. In principle, the side information could be
viewed as a header that the decoder reads in advance, but
whose contents are severely constrained to express only the
codeword length.

One can now ask how things change if we were able
to freely encode information in the bits of the header. The
following definition makes this precise.



PANANJADY AND COURTADE: EFFECT OF LOCAL DECODABILITY CONSTRAINTS ON VARIABLE-LENGTH COMPRESSION 2599

Definition 6: A (r, d, n, ℓ)h-locally decodable code is a
mapping

([n]
r

)
→ {0, 1}ℓ of the source sequences to codewords

of fixed length ℓ, with the property that any bit of the source
sequence xn can be recovered by reading a header of h bits,
and by probing d bits of c(xn).

We have the following achievability result for such codes.
Theorem 6: There exists a (r, d, n, ℓ)h-locally decodable

code with h = log log
(n

r

)
− log d bits and codewords of fixed

length ℓ = 3drn1/d bits.
Conceptually, these (r, d, n, ℓ)h -locally decodable codes can

be viewed as an intermediate construction lying between the
variable blocklength codes introduced in this paper, and their
fixed blocklength counterparts. When the header is allowed
to encode arbitrary information, the performance of these
codes coincides with the upper bound of Buhrman et al. [12]
referenced in the fourth row of Table I: if the bits of the header
are counted in our probing budget, then we obtain a fixed-
blocklength code with blocklength scaling as drn1/d provided
d ≥ "(log log

(n
r

)
).

IV. PROOFS OF MAIN RESULTS

In this section, we provide the proofs of Theorems 1 through
6. Proofs of some technical lemmas that are used below
are deferred to the appendices. For convenience, we recall
the following standard inequalities which are used repeatedly
throughout the proofs without explicit mention:

(n
k

)k
≤

(
n
k

)
≤ nk

k! ≤
(ne

k

)k
.

Proof of Theorem 1: Our proof begins with the notion of
a “decoding transcript” introduced in [12, Th. 6]. Let c be a
(r, d, n)-locally decodable code. For a source sequence xn , let
cq(xn) denote the qth coordinate of the codeword c(xn), and
define the transcript

T k
i !

{(
q, cq(xn

(i))
)

: ℓ(c(xn
(i)))= k, and location q of c(xn

(i))

is accessed to determine x j for some j ∈supp(xn
(i))},

(7)

where we have abused notation slightly by letting x j denote
the j th coordinate of sequence xn

(i). Note that each transcript
T k

i is a subset of [k] × {0, 1} of size at most rd , since
|supp(xn

(i))| = r and the decoder makes at most d probes in
response to a query. Also note that for i ̸= i ′, T k

i ̸⊆ T k
i ′ . To see

this, assume the contrary, that T k
i ⊆ T k

i ′ for some i ̸= i ′. Let
the encoded source word be xn

(i ′). If we now query the value
of x j for j ∈ supp(xn

(i))\supp(xn
(i ′)), we see that the decoder

makes an error, establishing the contradiction.
Since for fixed k, the T k

i s are not subsets of one another,
an application of the LYM inequality [25] (also provided in
Lemma 6, Appendix A) yields

#{i : ℓ(c(xn
(i))) = k} ≤ max

v≤rd

(
2k
v

)
for each k. (8)

In light of (8), the average codeword length must satisfy

E
[
ℓ(c(Xn))

]
≥

M(n,r,d)∑

k=1

k
maxv≤rd

(2k
v

)
(n

r

) , (9)

where M(n, r, d) is the largest integer satisfying

M(n,r,d)+1∑

k=1

max
v≤rd

(
2k
v

)
>

(
n
r

)
≥

M(n,r,d)∑

k=1

max
v≤rd

(
2k
v

)
. (10)

Now define the probability distribution

Q(k) = maxv≤rd
(2k

v

)
(n

r

) for 1 ≤ k ≤ M(n, r, d)

and Q(M(n, r, d) + 1) = 1 −∑M(n,r,d)
k=1 Q(k). Since Q(k) ≤

Q(k + 1) for k < M(n, r, d) by definition, we can conclude

E
[
ℓ(c(Xn))

]
≥

M(n,r,d)+1∑

k=1

k · Q(k) ≥ M(n, r, d) + 1
2

. (11)

Toward evaluating (11), we need the following technical
estimate, which is proved in Appendix A.

Lemma 1: For all M, v ≥ 1,

M∑

k=1

max
i≤v

(
2k
i

)
≤ (v + 1)1/22v

(
M + 2 + v+1

2e

)v+1

(v + 1)! . (12)

Identifying M ← M(n, r, d) + 1 and v ← rd in (12),
the first inequality in (10) can be rearranged to conclude that

M(n, r, d) + 3 ≥
((

n
r

)1/(rd+1)

− 1

)(
rd + 1

2e

)
,

where we have made use of the lower bound n! ≥√
2πnn+ 1

2 e−n . Recalling (11) proves the desired inequality.
Proof of Proposition 1: Let us look at the ratio

R(r, n) := r log
(n

r

)
+ 1

log
(n

r

)
((

n
r

)1/(r log (n
r)+1)

− 1

)

for the nontrivial regime of parameters n ≥ r + 1 and r ≥ 1.
In case n = r or r = 0, the lower bound evaluates to zero,
rendering the claim trivially true.

Observe

2 r

((
n
r

)1/(r log (n
r)+1)

− 1

)

≥ R(r, n) ≥ r

((
n
r

)1/(r log (n
r)+1)

− 1

)

,

so we would like to show that the function
r
((n

r

)1/(r log (n
r)+1) − 1

)
can be bounded above and below by

constants.
To this end, note that the function f : x 6→ x1/(r log(x)+1)

is increasing in x > 0. Indeed,

f ′(x) = x−
r log x

1+r log x

(1 + r log x)2 ≥ 0.

So, for n ≥ r + 1 we have

(r + 1)1/(r log(r+1)+1)

≤
(

n
r

)1/(r log (n
r)+1)

≤ lim
x→∞ x1/(r log x+1) = 21/r ,
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giving the upper bound

R(r, n) ≤ 2 r(21/r − 1) ≤ 2,

where the second inequality holds for r ≥ 1. Likewise,
the lower bound yields

R(r, n) ≥ r
(
(r + 1)1/(r log(r+1)+1) − 1

)
≥
√

2 − 1.

Proof of Theorem 2: The proof is by a random coding argu-
ment, but it is important to note that standard typicality argu-
ments are not applicable here since they do not support local
decodability. Briefly, the idea behind our encoding scheme
is to first encode some information about supp(c(xn)) into
the codeword length, and then carefully encode the remaining
information so that bit x j can be recovered by computing the
binary AND of d encoded bits. A precise description of the
codebook generation and decoding procedure is given below,
along with an illustrative example in Figure 1.

A. Codebook Construction

For k = rd + 1, rd + 2, . . . choose a subset Sk ⊆ [n] of

size 1
4

(k
d)

(rd
d )

uniformly at random from all such subsets,6 and

set Sk = [n] if 1
4

(k
d)

(rd
d )

> n. For each j ∈ Sk , choose a subset

Tj,k ⊆ [k] of size d independently and uniformly from all
such subsets. All subsets are made available to both encoder
and decoder.

For a sequence xn ∈ ([n]
r

)
, let k(xn) denote the smallest

integer k such that the following two conditions hold:

(C1) supp(xn) ⊆ Sk ; and
(C2) Tj,k ̸⊆ ∪i∈supp(xn)Ti,k for all j ∈ Sk \ supp(xn).

B. Encoding Procedure

A sequence xn ∈
([n]

r

)
is encoded to a codeword c(xn) of

length k(xn) satisfying

supp(c(xn)) = ∪i∈supp(xn)Ti,k(xn ).

In other words, xn is encoded to a vector of length k(xn),
which has 1’s in all positions j ∈ Ti,k(xn ) if and only
if xi = 1.

C. Decoding Procedure

On observing the length of codeword c(xn) =
(c1, c2, . . . , cℓ(c(xn))), determine bit x j as follows:

(1) If j /∈ Sℓ(c(xn)), declare x j = 0; else
(2) If j ∈ Sℓ(c(xn)), declare x j = ∧i∈Tj,k(xn )

ci , where ‘∧’
denotes binary AND.

By the nature of the codebook construction, it is clear that
the decoder (i) will never make an error; and (ii) satisfies the
non-adaptive d-local decodability constraint.

6Floor and ceiling operators are omitted for clarity of presentation.

Fig. 1. Encoding of 2-sparse source sequences of length n = 12 using
a codeword of length k = 10, with at most d = 3 bit probes. As a result,
|Sk | = r

r+1
(k
d
)
/
(rd

d
) = 4. The source sequences xn

(1), . . . , xn
(6) represent those

that satisfy condition (C1) of the encoding criterion for Sk = {2, 3, 5, 6}.
Condition (C2) is only satisfied by xn

(3), xn
(5), xn

(6), which are encoded as
shown. If the bit to be decoded j ∈ [n] \ Sk = {1, 4, 7, 8, 9, 10, 11, 12}, then
the decoder outputs 0 without probing the bits of the codeword. If j ∈ Sk ,
then the decoder probes positions Tj,k of the codeword and returns the AND
of the bits (shaded blocks correspond to 1’s, unshaded blocks signify 0’s).

D. Performance Analysis

Recall that each codeword length k defined some region of

encoding Sk , where |Sk | = min
{

n, 1
4

(k
d)

(rd
d )

}
. To show a bound

on the expected codeword length, fix an arbitrary sequence
xn and define the events

Ek,1 = {supp(xn) ⊆ Sk}, and

Ek,2 = {Tj,k ̸⊆ ∪i∈supp(xn)Ti,k for all j ∈ Sk \ supp(xn)}.
By independence of the sets used in the codebook construc-
tion, we have

EC
[
ℓ(c(xn))

]
=

∑

k≥rd+1

k Pr{Ek,1 ∩ Ek,2}

×
k−1∏

j=rd+1

(
1− Pr{E j,1 ∩ E j,2}

)
, (13)

where EC [·] denotes expectation over the ensemble of random
codebooks. Importantly, we note that (13) is a decreasing
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function of Pr{Ek,1 ∩ Ek,2} for each k. Therefore, in order to
upper bound (13), we lower bound Pr{Ek,1∩Ek,2}. To that end,
observe that

Pr{Ek,1 ∩ Ek,2} = Pr{Ek,1} Pr{Ek,2|Ek,1}
where the conditional probability Pr{Ek,2|Ek,1} can be bounded
from below by a simple union bound:

Pr{Ek,2|Ek,1} ≥ 1−
∑

j∈Sk\supp(xn)

Pr{Tj,k ⊆ ∪i∈supp(xn)Ti,k}

≥ 1− |Sk |
(rd

d

)
(k

d

) .

Therefore, we have

Pr{Ek,1 ∩ Ek,2} ≥

⎧
⎪⎨

⎪⎩

1
(n

r)

(|Sk |
r

) (
1− |Sk | (

rd
d )

(k
d)

)
, if |Sk | < n

1− n (rd
d )

(k
d)

, otherwise

=

⎧
⎪⎪⎨

⎪⎪⎩

1
(n

r)
3
4

( 1
4

(k
d)

(rd
d )

r

)
, if |Sk | < n,

1− n (rd
d )

(k
d)

, otherwise,
(14)

where (14) follows from substituting the value of |Sk |. The
challenge of the proof is to now carefully bound (14) and (13).
We do this separately for the two cases above and then arrive
at a uniform lower bound. Let k∗ be the largest k such that
|Sk | < n. For the first case, when k ≤ k∗,

(
n
r

)
Pr{Ek,1 ∩ Ek,2} ≥

3
4

( 1
4

(k
d)

(rd
d )

r

)
(15)

≥ 3
4

1
(4r)r

( (k
d

)
(rd

d

)

)r

(16)

≥ 3
4

1
(4r)r

( ( k
d

)d

( rde
d

)d

)r

= 3
4

krd

(4r)r (erd)rd . (17)

For the second case, we claim that it is sufficient to only
consider codeword lengths up to a particular kmax in our
calculation of the expected length. To see this, observe that
the probability of encoding by codewords of length k∗ + 1 is
given by

Pr{Ek∗+1,1 ∩ Ek∗+1,2} ≥ 1− n

(rd
d

)
(k∗+1

d

)

≥ 3/4. (18)

Let us now consider the codeword lengths k∗ + 1, k∗ +
2, . . . , k∗+ t . Since Pr{Ek,1 ∩Ek,2} increases with k, an appli-
cation of (18) gives us the following upper bound on the
probability that xn is not encoded by codewords of any of
these lengths.

Pr{xn not encoded by any codewords of length

k∗ + 1, k∗ + 2, . . . , k∗ + t} ≤
(

1
4

)t

.

Since the total number of source sequences is
(n

r

)
, we can see

that setting t = log (n
r)

2 is sufficient to ensure that
(n

r

) ( 1
4

)t
< 1.

In other words, there exists a code that ensures that all source
sequences in

([n]
r

)
are successfully encoded into codewords of

length between k∗ + 1 and k∗ + t . Therefore, it is sufficient
for us to restrict our attention to k such that k ≤ kmax, with
kmax defined as

kmax ! k∗ + log
(n

r

)

2
. (19)

We know, however, from (2), that kmax ≥ log
(n

r

)
−log log

(n
r

)
−

log e. For log
(n

r

)
≥ 12, it is straightforward to combine this

fact with (19) to obtain

kmax ≤ 8k∗. (20)

Bounding for the second case, we now have

Pr{Ek,1 ∩ Ek,2} ≥ Pr{Ek∗,1 ∩ Ek∗,2}, for k∗< k≤ kmax (21)

≥ 3
4

(k∗)rd

(4r)r (erd)rd
(n

r

) (22)

≥ 3
4

(k/8)rd

(4r)r (erd)rd
(n

r

) , (23)

where (21) follows from the fact that Pr{Ek,1∩Ek,2} increases
with k, (22) follows from (17), and (23) from (20). Hence,
from (17) and (23), we have the uniform lower bound

Pr{Ek,1 ∩ Ek,2} ≥ Cr,d krd , ∀ rd + 1 ≤ k ≤ kmax, (24)

where we have defined Cr,d !
( 4

3

(n
r

)
(4r)r (8erd)rd

)−1
for

convenience.
Now, using the inequality (1 − x) ≤ e−x , we can upper

bound (13) with (24) as

EC
[
ℓ(c(xn))

]

≤
kmax∑

k=rd+1

Cr,d krd+1 exp

⎛

⎝−
k−1∑

j=rd+1

Cr,d j rd

⎞

⎠

≤
∑

k≥rd+1

Cr,d krd+1 exp
(
−Cr,d

∫ k−1

rd+1
zrd dz

)

=
∑

k≥rd+1

[
Cr,d krd+1

× exp

(

−Cr,d

(
(k − 1)rd+1 − (rd + 1)rd+1)

rd + 1

)]

= exp
(
Cr,d (rd + 1)rd

)

×
∑

k≥rd+1

Cr,d krd+1 exp
(
−Cr,d

(k − 1)rd+1

rd + 1

)

≤ exp
(

Cr,d (rd + 1)rd + rd + 1
rd

)

×
∑

k≥rd+1

Cr,d (k − 1)rd+1 exp
(
−Cr,d

(k − 1)rd+1

rd + 1

)

= exp
(

Cr,d (rd + 1)rd + rd + 1
rd

)
(rd + 1)

×
∑

k≥rd

Cr,d
krd+1

rd + 1
exp

(
−Cr,d

krd+1

rd + 1

)
. (25)
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Since the function ue−u is monotone increasing on (0, 1)
and monotone decreasing on (1,∞) with a maximum of 1/e,
we can bound the sum in (25) as
∞∑

k=rd

Cr,d
krd+1

rd + 1
exp

(
−Cr,d

krd+1

rd + 1

)

≤ 2/e +
∫ ∞

0
Cr,d

zrd+1

rd + 1
exp

(
−Cr,d

zrd+1

rd + 1

)
dz. (26)

The integral in (26) can be bounded by the following lemma,
the proof of which is postponed to the appendix.

Lemma 2:

(rd + 1)

∫ ∞

0
Cr,d

zrd+1

rd + 1
exp

(
−Cr,d

zrd+1

rd + 1

)
dz

≤
(

rd + 1
Cr,d

)1/(rd+1)

.

To finish the proof, we use Lemma 2 and the integral upper
bound on (25) to conclude

EC
[
ℓ(c(xn))

]

≤ 2(rd + 1) exp
(

Cr,d (rd + 1)rd + 1
rd

)

+ exp
(

Cr,d (rd + 1)rd + rd + 1
rd

) (
rd + 1
Cr,d

)1/(rd+1)

≤ 2(rd + 1)e · exp
(

3
128n

)

+ e(rd + 1) exp
(

3
128n

)
·
(

rr
(

n
r

))1/(rd+1)

×
[

exp
(

1
rd

)
· (8e)rd/(rd+1)

(
4 · 4r

3

)1/(rd+1)
]

(27)

≤ 250(rd + 1)

(
rr

(
n
r

))1/(rd+1)

, (28)

where (27) comes from substituting the definition of Cr,d , and
(28) comes from optimizing the quantity in square brackets -
which increases in r and decreases in d - and assuming n ≥ 1.

Since all sequences in
([n]

r

)
are equally probable, linearity

of expectation ensures the existence of a code c which
satisfies (5) as desired.

Remark 1: Notice that the constant factor in (28) differs
substantially from that of the lower bound (3). However,
the bounds are tight for the case of r = d = 1 as shown
in Section III-A.1. In addition, for d = 1 and arbitrary r ,
the analysis can be tightened to improve the constant factor
to *

(
r+2
r+1

)
. Based on this, we conjecture that the achievability

scheme proposed in the proof of Theorem 2 can yield a
multiplicative factor as small as *

(
rd+2
rd+1

)
, which is strictly

less than 1, at the expense of more careful intermediate
bounds.

Proof of Theorem 3: Suppose {cn} is a competitively
optimal sequence of (rn, dn, n)-locally decodable codes, and
define ϵn according to

rndn + 1 = ϵn log
(

n
rn

)
.

Then Theorem 1 and the definition of competitive optimality
imply that there is some constant K for which

K ≥ E[ℓ(cn(Xn))]
log

( n
rn

)

≥ ϵn

((
n
rn

)1/(ϵn log ( n
rn))
− 1

)

= ϵn

(
21/ϵn − 1

)

for all n sufficiently large. Since ϵ(21/ϵ − 1)↗∞ as ϵ ↘ 0,
this implies that there is a constant K ′ > 0 such that ϵn ≥ K ′

for all n sufficiently large, proving the claim.
Proof of Theorem 4: Theorem 4 is a consequence of the

following general result which provides an explicit expression
for the o(1) term.

Lemma 3: There exists a sequence of (rn, dn, n) codes with
expected codeword length satisfying (5) for which D ≤ 1 +

1
C−1 + d(Ce)d+rd

n bits.
Proof: We use the scheme from the proof of Theorem 2,

with the encoding procedure modified such that the source
sequence is stored as is when k = n. Note that the code still
remains locally decodable, since the sequences that are stored
without compression are 1-locally decodable. This ensures that
the maximum codeword length is upper bounded at n.

The decoding procedure is modified as follows.
(D1) If j /∈ Sℓ(c(xn)), declare x j = 0; else
(D2) If j ∈ Sℓ(c(xn)), probe bits in ∪i∈Tj,k(xn )

ci uniformly at
random with replacement.7 Stop when the first 0 is seen,
and declare x j = 0, else declare x j = 1.

Intuitively, it should be obvious that this scheme would
probe a much smaller number of bits than the scheme of
Theorem 2 on average, since we “exit” after making just a
few probes whenever the bit being queried is a zero. We now
show that this is indeed the case.

Let C denote the (random) codebook. For fixed codeword
length k, we denote the average number of queries made over
all codewords of that length by

Dk(C) ! Exn :ℓ(c(xn))=kEi∈[n]d(i, xn)

= 1
#{xn

(i) : ℓ(c(xn
(i))) = k}

∑

xn :ℓ(c(xn))=k

1
n

∑

i∈[n]
d(i, xn).

Let us analyze the decoding of bits when the codeword
length is k. Out of the n bits to be decoded, for the n −
min

(
n, r

r+1
(k

d)
(rd

d )

)
bits corresponding to condition (D1) of

the decoding rule, we declare x j = 0 after simply look-
ing at ℓ(c(xn)) (i.e. without a single probe). For the other

min
(

n, r
r+1

(k
d)

(rd
d )

)
− r bits that are zeroes corresponding to

condition (D2), we make a number of probes that is a truncated
geometric random variable with support [d], and success
probability at least k−rd

k , since the number of ones in the
codeword is upper bounded by rd . The expected number of
probes to determine these bits is therefore upper bounded by
min(d, k

k−rd ). For the remaining r bits that are ones, we make

7These results carry over to probes without replacement.
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d probes to determine them. We can therefore conclude that
over the random codebook,

EC[Dk(C)] ≤ 1
n

(
min

(

n,
r

r +1

(k
d

)
(rd

d

)

)

min
(

d,
k

k − rd

)
+rd

)
.

Taking the expectation of this over the probability distribution
of ℓ(c(xn)), we have

EC[D(C)] =
∑

k≥rd+1

Pr{ℓ(c(xn)) = k} · EC[Dk(C)]

≤ rd
n

+ 1
n

∑

k≥rd+1

Pr{ℓ(c(xn)) = k}

×
( r

r + 1

(k
d

)
(rd

d

) min
(

d,
k

k − rd

) )
, (29)

where we have implicitly assumed that we sum over k such

that r
r+1

(k
d)

(rd
d )
≤ n.

Splitting the sum in (29) into two parts for some fixed
C > 1, we have

EC[D(C)]

≤ rd
n

+ 1
n

Crd∑

k=rd+1

Pr{ℓ(c(xn)) = k} ·
( r

r + 1

(k
d

)
(rd

d

) · d
)

+ 1
n

∑

k≥Crd+1

Pr{ℓ(c(xn)) = k} ·
( r

r + 1

(k
d

)
(rd

d

) · C
C − 1

)
,

(30)

since k
k−rd < C

C−1 for k ≥ Crd + 1. Bounding each of the
two sums, we have:

EC[D(C)] ≤ rd
n

+ 1
n

d ·
(

r
r + 1

( e·Crd
d )d

( rd
d )d

)

+ C
C − 1

≤ d(Ce)d + rd
n

+ C
C − 1

,

where we have used the fact that r
r+1

(k
d)

(rd
d )
≤ n, since the

codeword is never longer than n bits. As before, linearity of
expectation ensures the existence of a sequence of (n, r, d)

codes in the random ensemble with D ≤ d(Ce)d+rd
n + C

C−1 .
Proof of Theorem 5: Recall the definition of an α-optimal

code, as being one which has expected codeword length within
a constant factor α of the lower bound (3).

Also recall the definition of average probe depth to
recover 1s of the source D1, which is restated below for
convenience.

D1 = Exn Ei∈supp(xn)d(i, xn).

Now define the quantity D1
k as being the average probe

depth D1 conditioned on the codeword length being k. In other
words,

D1
k ! Exn :ℓ(c(xn))=kEi∈supp(xn)d(i, xn)

= 1
#{xn

(i) : ℓ(c(xn
(i))) = k}

∑

xn:ℓ(c(xn))=k

1
r

∑

i∈supp(xn)

d(i, xn).

In order to prove Theorem 5, we first show that it is
sufficient to prove the following proposition.

Proposition 2: Suppose rndn = o
(
log

(n
r

))
. Then for any

α-optimal code, there exists some S ⊂ N such that
1) D1

k ≥ d − C
r ∀ k ∈ S, and

2) 1
(n

r)
∑

k∈S #{i : ℓ(c(xn
(i))) = k} ≥ C ′,

for some constants C, C ′ that depend on α.
It is easy to see that Proposition 2 proves Theorem 5, since

D1 = 1(n
r

)
∑

k

#{i : ℓ(c(xn
(i))) = k}D1

k

≥ 1(n
r

)
∑

k∈S

#{i : ℓ(c(xn
(i))) = k}D1

k

≥
(

d − C
r

)
1(n
r

)
∑

k∈S

#{i : ℓ(c(xn
(i))) = k}

≥ C ′
(

d − C
r

)
.

We have therefore established that it is sufficient to prove
Proposition 2. In order to do so, we need the following key
lemma, which relates D1

k to #{i : ℓ(c(xn
(i))) = k} for large

enough k. Note its similarity to (8).
Lemma 4: For any codeword length k ≥ 2rd + 4, the fol-

lowing holds:

2rD1
k+2

(
k

rD1
k + 2

)
≥ 1

2
#{i : ℓ(c(xn

(i))) = k}.

proof: Define the transcript T k
i as in (7). Let mk

t = #{i :
ℓ(c(xn

(i))) = k, |T k
i | = t}. In words, mk

t is the number of
source sequences that are encoded into codewords of length k
and have transcripts of size t . Note that by definition,

rd∑

t=0

tmk
t ≤ rD1

k · #{i : ℓ(c(xn
(i))) = k},

and
rd∑

t=0

mk
t = #{i : ℓ(c(xn

(i))) = k}.

Also, we know that mk
t is bounded by the number of unique

T k
i s that can be created. This constraint can be expressed as:

mk
t ≤ 2t

(
k
t

)
.

From these constraints, we see that the average probe depth
D1

k ≥ p∗, where p∗ is the solution to the following linear
program:

p∗ = min
at ,p

p

s. t.
rd∑

t=0

tat ≤ r p · #{i : ℓ(c(xn
(i))) = k}

rd∑

t=0

at = #{i : ℓ(c(xn
(i))) = k}

at ≤ 2t
(

k
t

)
∀ t = {1, 2, . . . rd}. (P1)



2604 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

The solution to (P1) can be found by a greedy argument,
as follows. We want

t̂−1∑

t=1

t2t
(

k
t

)
+ t̂at̂ = r p · #{i : ℓ(c(xn

(i))) = k}, (31)

where t̂ is the smallest integer satisfying

t̂∑

t=1

2t
(

k
t

)
≥ #{i : ℓ(c(xn

(i))) = k}. (32)

Here, at̂ = #{i : ℓ(c(xn
(i))) = k}−∑t̂−1

t=1 2t (k
t

)
.

Since
2i+1( s

i+1)
2i(s

i)
≥ 2 for i < s/2 and t̂ ≤ rd , we have

∑t̂−1
t=1 t2t

(k
t

)

∑t̂−1
t=1 2t

(k
t

) ≥ (t̂ − 2) (33)

for k > 2rd − 2. We therefore have, from (31) and (33), that

r p∗ ≥ (t̂ − 2)
∑t̂−1

t=1 2t
(k

t

)
+ t̂at̂

∑t̂−1
t=1 2t

(k
t

)
+ at̂

= t̂ − 2

∑t̂−1
t=1 2t(k

t

)

∑t̂−1
t=1 2t

(k
t

)
+ at̂

≥ t̂ − 2 (34)

We also know that 2t̂(k
t̂

)
≥∑t̂−1

t=1 2t
(k

t

)
, and so by (32),

2t̂
(

k
t̂

)
≥ 1

2
#{i : ℓ(c(xn

(i))) = k}.

Equation (34) gives us that

2rp∗+2
(

k
r p∗ + 2

)
≥ 1

2
#{i : ℓ(c(xn

(i))) = k},

which proves the lemma since 2i
(s

i

)
is an increasing function

of i for i < s/2, and D1
k ≤ d ∀ k. "

Our next step is to lower bound #{i : ℓ(c(xn
(i))) = k}

with some function of d for α-optimal codes. Let us begin

with some definitions. Define pmax(k) = maxv≤rd (2k
v )

(n
r)

. For
any (r, d, n) locally decodable code, define a distribution
p : p(k) = #{i:ℓ(c(xn

(i)))=k}
(n

r)
. By the argument used in the proof

of Theorem 1, p(k) ≤ pmax(k) ∀ k; call such distributions
valid distributions.

The following technical lemma proves a key property of
such distributions. The proof is postponed to the Appendix D.

Lemma 5: Let p be a valid distribution corresponding to
an α-optimal (r, d, n)-locally decodable code. Then there exist
constants ϵ(α), δ(α) independent of r, d, n, and S ⊆ N such
that

1) αrd p(k)
pmax(k) ≥ ϵ(α) ∀ k ∈ S, and

2)
∑

k∈S p(k) ≥ δ(α).
Abbreviating ϵ(α), δ(α) by ϵ, δ and restating Lemma 5

in words: for any scheme that has expected length within a
constant factor of (3), there is a set S such that 1

(n
r)

∑
k∈S #{i :

ℓ(c(xn
(i))) = k} ≥ δ, and for which #{i : ℓ(c(xn

(i))) = k} ≥

ϵ
αrd maxv≤rd

(2k
v

)
∀ k ∈ S. Combining this with Lemma 4 for

k ≥ 2rd + 4, we obtain
(

2k
rD1

k + 2

)
≥ 2rD1

k+2
(

k
rD1

k + 2

)

≥ 1
2

#{i : ℓ(c(xn
(i))) = k}

≥ ϵ

2αrd max
v≤rd

(
2k
v

)

= ϵ

2αrd

(
2k
rd

)
. (35)

Rearranging (35), we obtain

2αrd

ϵ
≥

(
2k − rd + 1

rd

)rd−rD1
k−2

,

which for k ≥ (α + 1/2)rd yields

log
(

2
ϵ

)
≥ rd − rD1

k − 2.

Therefore, for each k ∈ S∩{(α+1/2)rd, . . .}∩{2rd+4, 2 rd+
5, . . .}, we have

D1
k ≥ d − 1

r

(
log

( 2
ϵ

) + 2
)
.

Defining M ′ ! min((α+1/2)rd, 2rd +4), the only remaining
step to prove Proposition 2 is to show that

1(n
r

)
M ′∑

k=1

#{i : ℓ(c(xn
(i))) = k}→ 0 as n→∞.

This is equivalent to showing that

lim
n→∞

∑

k≤M ′
p(k) = 0. (36)

Since p(k) ≤ pmax(k), an application of Lemma 1 with

M ← M ′ proves (36) for
(n

r

) 1
(rd+1) = ω(1).

Proposition 2, and with it Theorem 5, are therefore
proved.

Proof of Theorem 6: We use a set of p = 1
d log

(n
r

)

schemes s1, s2, . . . sp , each of which uses a data structure
of blocklength ℓ = 3rdn1/d to encode a subset of

([n]
r

)
.

Information about which scheme is used in the encoding will
be stored in the header, and so a header length of log p bits
is necessary.

E. Codebook Construction

For each k ∈ [p] and j ∈ [n], choose a subset Tj,k ⊆ [ℓ] of
size d independently and uniformly from all such subsets. All
subsets (i.e., the codebook) are made available to both encoder
and decoder.

For a sequence xn ∈
([n]

r

)
, let k(xn) denote the smallest

integer k such that the following condition holds:
• Tj,k ̸⊆ ∪i∈supp(xn)Ti,k for all j ∈ [n] \ supp(xn).

In words, k(xn) is the first scheme among s1 . . . sp using which
xn can be encoded, as follows.
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F. Encoding Procedure

A sequence xn ∈
([n]

r

)
is encoded to a codeword c(xn) of

length ℓ satisfying

supp(c(xn)) = ∪i∈supp(xn)Ti,k(xn ),

with scheme number given by the binary representation
of k(xn).

In other words, xn is encoded to a vector of length ℓ, which
has 1’s in all positions j ∈ Ti,k(xn ) if and only if xi = 1, and
a header is prefixed to it denoting the number of the scheme
using which it was encoded.

G. Decoding Procedure

On observing the scheme number k(xn), determine bit x j
trivially as follows:

Declare x j = ∧i∈Tj,k(xn )
ci , where ‘∧’ denotes binary AND.

By the nature of the codebook construction, it is clear that
the decoder (i) will never make an error; and (ii) satisfies the
non-adaptive d-local decodability constraint.

H. Performance Analysis

We must now show that our choices of ℓ = (2 + ϵ)rdn1/d

and p = 1
d log

(n
r

)
allow for a correct encoding.

Let us start by looking at the number of source sequences
that are encoded by scheme s1. Consider an arbitrary source
sequence xn . Define the bad event

E j = {x j = 0, Tj,1 ⊆ ∪i∈supp(xn)Ti.1}.
Since Tj,1s are picked independently and uniformly,

Pr{E j } ≤
(

rd
ℓ

)d

∀ j ∈ [n] \ supp(xn).

Now xn is not encoded in scheme s1 if and only if E j occurs
for some j ∈ [n] \ supp(xn). Therefore,

Pr{xn is not encoded using s1} = Pr{∪ j∈[n]\supp(xn)E j }

≤ (n − r)

(
rd
ℓ

)d

.

It is therefore clear by linearity of expectation that the expected
number of source sequences that are available for encoding by
s2, s3, . . . , sp is given by

E
[
#{i : xn

(i) is not encoded by s1}
]
≤

(
n
r

)
(n − r)

(
rd
ℓ

)d

.

Since the randomness used in the creation of Tj,k for
each scheme k is independent of the others, we can use the
argument above to see that after p schemes, the expected
number of source sequences that are left to be decoded is

E
[
#{i : xn

(i) not encoded by s1, s2, . . . , sp}
]

≤
(

n
r

) [

(n − r)

(
rd
ℓ

)d
]p

.

It is straightforward to verify that our choices of ℓ and p ensure
that this quantity is less than 1, which ensures the existence of
a deterministic set of schemes s1, . . . , sp that encode all

(n
r

)

source sequences.

Fig. 2. Plot of the simulated expected codeword length along with the
upper and lower bounds for a competitively optimal sequence of codes, with
d = log n, r = 5. Notice the normalization by the entropy of the source,
and the fact that the bounds only differ by a constant factor as predicted by
Corollary 2.

V. NUMERICAL EXPERIMENTS

Fixing an r -sparse codeword xn , we simulated the random-
ized scheme of Theorem 2, noting the length of the code-
word at which xn first satisfied the conditions for encoding.
We averaged this over 100 trials, and plotted our results for a
sequence of competitively optimal codes with fixed r = 5 and
by varying n with d = log n.

Figure 2 confirms the scaling suggested by corollary 2.
Rather surprisingly, the lower bound of Theorem 1 appears
to be close to the empirical performance of our encoding
scheme. The plot also reveals a substantial gap in the constant
factor between the upper bound predicted by Theorem 2 and
the simulation, suggesting a weakness in the analysis of our
scheme.

In particular, we have sacrificed constant factors in going
from (15) to (16) and again in (24), in order to get uniform
bounds which hold for all n, r, d . As the plot reveals, knowl-
edge of how r and d scale can be used to tighten the analysis
and improve the constant factor substantially.

VI. CONCLUDING REMARKS

We provided bounds for the blocklength scaling behaviour
of (r, d, n) locally-decodable codes that are tight up to constant
factors for many regimes of r , d , and n. Determining the tight
constant in these bounds is an open problem. We also showed
that in contrast to the fixed blocklength setting (cf. [14]),
adaptivity of probes provides no essential advantage in our
setting of variable length source coding. An interesting open
question is the extension of these results to the case when
the source distribution is non-uniform, in which case variable
blocklength codes are clearly preferable to fixed blocklength
ones. In conclusion, we mention two variations on our main
results:
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A. Compression With Block Errors

In [21], Makhdoumi et al. allow for vanishing block-error
probability in decoding. Although we only considered error-
free encodings, the proof of Theorem 1 readily extends to
incorporate block-error probability as follows: Letting x̂ n

denote the decoder’s estimate of the sequence xn given code-
word c(xn), the block error rate is defined to be Pr{Xn ̸= X̂n}.
Now, Theorem 1 continues to hold for any (r, d, n) code with
block-error rate ε by simply replacing the quantity

(n
r

)
with

(1 − ε)
(n

r

)
. Indeed, this follows by considering only those

sequences that are correctly decoded and making the same
substitution in (10) in the proof of Theorem 1.

B. Connection to Communication Complexity

It is known that the bit-probe model has applications
to asymmetric communication complexity [26]. To draw an
analogous connection to our setting, consider an asymmetric
communication complexity model [26] in which Alice (the
user) has i ∈ [n], Bob (the server) has S ⊂ [n] of size r , and
they wish to compute the membership function

f (i, S) =
{

1 if i ∈ S
0 otherwise.

(37)

We now enforce that the function f must be computed
under a SPEEDLIMIT paradigm, which proceeds as follows.
Communication starts with Bob sending a speed limit message
to Alice consisting of some z bits, which limits the length of
any of her messages to z bits. Bob’s subsequent messages
consist of 1 bit. After the initial round, Alice and Bob
communicate over d rounds8 to evaluate f . The setting arises
in practice where a server imposes upload bandwidth limits on
users it serves (e.g., to maintain quality or fairness of service).

Note that our scheme in Theorem 2 provides a communica-
tion protocol to compute f under the SPEEDLIMIT paradigm.
Bob is essentially given a source sequence xn , which he stores
as c(xn). Alice is given the index i of the source bit that must
be decoded, and must do so by making queries to Bob. Bob
begins by sending ℓ(c(xn)) to Alice, using log ℓ(c(xn)) bits.
Alice then sends messages m j , j ∈ [d] of log ℓ(c(xn)) bits
each. In response to message m j , Bob sends back cm j (xn).
Alice then announces f to be the AND of the d bits she has
received from Bob. Therefore, from Theorem 2:

Corollary 3: There exists a deterministic communication
protocol for computing the function f as in (37) under
the SPEEDLIMIT paradigm for which the speed limit z and
number of communication rounds d satisfy

E
[
2z] ≤ 250(rd + 1)

(
rr

(
n
r

))1/(rd+1)

.

APPENDIX

TECHNICAL PROOF DETAILS

In this section, we provide further details for the proofs
given in Section III.

8To be consistent with the rest of the paper, a communication round consists
of one message by Alice and a response by Bob.

A. Details for Proof of Theorem 1

The LYM inequality used in proving the lower bound (3)
is given below for convenience.

Lemma 6 (LYM Inequality [25]): Let U be a u-element set,
let A be a family of subsets of U such that no set in A is a
subset of another set in A, and let am denote the number of
sets of size m in A. Then

u∑

m=0

am(u
m

) ≤ 1. (38)

The second key inequality was Lemma 1, which is restated
below for convenience.

Lemma 1: For all M, v ≥ 1,

M∑

k=1

max
i≤v

(
2k
i

)
≤ (v + 1)

1
2 2v

(
M + 2 + v+1

2e

)v+1

(v + 1)! . (39)

Proof of Lemma 1: We begin the proof by splitting the
bound into two cases:

Proposition 3: For v ≥ 1

M∑

k=1

max
i≤v

(
2k
i

)
≤

{
3
2

(2M
M

)
for 1 ≤ M ≤ v

2v (M+2)v+1

(v+1)! for M ≥ v + 1.

proof: Note that if M ≤ v, then

M∑

k=1

max
i≤v

(
2k
i

)
=

M∑

k=1

(
2k
k

)
.

We prove by induction on M that
∑M

k=1
(2k

k

)
≤ 3

2

(2M
M

)
. The

base case M = 1 is trivial, so by the inductive hypothesis,
we have

M+1∑

k=1

(
2k
k

)
≤

(
2(M + 1)

M + 1

)
+ 3

2

(
2M
M

)
.

However, we can write
(

2(M + 1)

M + 1

)
= (2M + 2)(2M + 1)

(M + 1)2

(
2M
M

)
≥ 3

(
2M
M

)
,

completing the proof of the first claim.
Next, if M ≥ v + 1, then

M∑

k=1

max
i≤v

(
2k
i

)
=

v∑

k=1

(
2k
k

)
+

M∑

k=v+1

(
2k
v

)

≤
M+1∑

k=v

(
2k
v

)

≤
M+1∑

k=v

(2k)v

v!

≤ 2v

v!

∫ M+2

0
zvdz

≤ 2v (M + 2)v+1

(v + 1)! ,

establishing the second claim. "
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Recalling the crude upper bound
(2M

M

)
≤ 4M , Lemma 1

follows from the inequality

(3(v + 1)!)1/(v+1)4M/(v+1)≤ (v +1)
1

2(v+1) 2
(

M +2 + v + 1
2e

)

(40)

for 1 ≤ M ≤ v and Proposition 3. Using the well-known
bound n! ≤ enn+ 1

2 e−n , we have

(3(v + 1)!)1/(v+1)4M/(v+1)

≤ (3e)1/(v+1)(v + 1)(v + 1)
1

2(v+1) 4M/(v+1)e−1.

Thus, (40) is implied by the following:

(3e)1/(v+1)(v + 1)4M/(v+1) ≤ 2e
(

M + 2 + v + 1
2e

)
. (41)

Since the LHS in (41) is a convex function in M , we can show
(40) holds for 1 ≤ M ≤ v by verifying it at the points M = 0
and M = v + 1. It is straightforward to check that this is the
case, completing the proof. Indeed, for M = 0, (41) reduces
to

(3e)1/(v+1) − 4e
v + 1

≤ 1,

which holds since

max
0≤x≤1/2

{
(3e)x − 4ex

}
= 1.

Similarly, for M = v + 1, (41) reduces to

4(3e)1/(v+1) − 4e
v + 1

≤ 1 + 2e,

which holds since

max
0≤x≤1/2

{
4(3e)x − 4ex

}
= 4

(√
3e− e

2

)

< 1 + 2e.

B. Details for Proof of Theorem 2

In this section, we provide the proof of Lemma 2, which is
restated below for convenience.

Lemma 2:

(rd + 1)

∫ ∞

0
Cr,d

zrd+1

rd + 1
exp

(
−Cr,d

zrd+1

rd + 1

)
dz

≤
(

rd + 1
Cr,d

)1/(rd+1)

.

Proof: Abbreviating C ! Cr,d , consider the change of

variables z =
(

u(rd+1)
C

)1/(rd+1)
. Then,

(rd + 1)

∫ ∞

0
C

zrd+1

rd + 1
exp

(
−C

zrd+1

rd + 1

)
dz

= (rd + 1)

∫ ∞

0
ue−udz

= (rd + 1)

∫ ∞

0
ue−u

(
u−rd/(rd+1)

rd + 1

(
rd + 1

C

)1/(rd+1)

du

)

=
(

rd + 1
C

)1/(rd+1) ∫ ∞

0
u1/(rd+1)e−udu

=
(

rd + 1
C

)1/(rd+1)

*

(
rd + 2
rd + 1

)

=
(

rd + 1
C

)1/(rd+1)

*

(
rd + 2
rd + 1

)

≤
(

rd + 1
C

)1/(rd+1)

, (42)

where (42) follows because *(x) ≤ 1 for x ≤ 2.

C. Proof of Corollary 2

To prove the “only if” direction, note that Theorem 3 asserts
that there must be a constant K > 0 such that

rndn ≥ K log
(

n
rn

)
≥ Krn log

n
rn

.

Thus, by the assumption that rn = O(n1−ϵ) for some ϵ > 0,

dn ≥ K log
n
rn

= "(log n).

To prove the “if” direction, suppose there are positive
constants K , ϵ, c such that for n sufficiently large

dn ≥ K log n

rn ≤ cn1−ϵ .

Since reducing dn can only adversely affect performance,
we can assume without loss of generality that dn = K log n,
and so for n sufficiently large, there exists some constant C
such that

(rndn + 1)

(
(rn)

rn

(
n
rn

))1/(rndn+1)

≤ (rndn + 1)

(
(rn)rn

(
en
rn

)rn
)1/(rndn+1)

≤ Crndnnrn/(rndn+1)

≤ Crndnn1/dn

= Crn(K log n)n1/(K log n)

≤ C21/K K
ϵ

rn log
n
rn

≤ C21/K K
ϵ

c log
(

n
rn

)
.

An application of Theorem 2 completes the proof.

D. Details for Proof of Theorem 5

In this section, we provide the proof of Lemma 5, which
has been restated below for convenience.

Lemma 5. Let p be a valid distribution corresponding to an
α-optimal (r, d, n)-locally decodable code. Then there exist
constants ϵ(α), δ(α) independent of r, d, n, and S ⊆ N such
that

1) αrd p(k)
pmax(k) ≥ ϵ(α) ∀ k ∈ S, and

2)
∑

k∈S p(k) ≥ δ(α).

Proof: Since Ep[ℓ(c(Xn))] ≤ α
( rd+1

4e

) ((n
r

)1/(rd+1) − 1
)

,
an application of Markov’s inequality for some fixed
constant c yields that Pr p[ℓ(c(Xn)) ≤ (α + c)

( rd+1
4e

)
((n

r

)1/(rd+1) − 1
)
] ≥ c

α+c . For ease of notation, we define
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Kα,c ! (α+c)
( rd+1

4e

) ((n
r

)1/(rd+1) − 1
)
]. We use the notation

αrd p(k) ≪ pmax(k) to mean αrd p(k)
pmax(k) → 0 as any of

r, d, n→∞.
We prove Lemma 5 by contradiction. Assume that it is false,

i.e., for all sets S ⊆ [Kα,c] such that
∑

k∈S p(k) ≥ δ, for some
constant δ independent of r, d, n, there exists some k ∈ S such
that αrd p(k) ≪ pmax(k). Note that at least one set such that∑

k∈S p(k) ≥ δ must exist, since
∑

k∈[Kα,c ] p(k) ≥ c
α+c . Now

consider one such set S, and remove from it all elements k
such that αrd p(k) ≪ pmax(k) to form the set S′. Since S′

cannot be such that
∑

k∈S ′ p(k) ≥ δ′ for any fixed δ′ > 0,
we must have that

∑
k∈S\S ′ p(k) ≥ δ. In other words, there

exists some set S ⊆ [Kα,c] such that αrd p(k) ≪ pmax(k) ∀
k ∈ S, and

∑
k∈S p(k) ≥ δ. We complete the proof by arguing

that no such set can exist.
Recall that

∑
k∈S p(k) ≥ δ. Along with the constraint that

αrd p(k)≪ pmax(k), this implies that
∑

k∈S

pmax(k)

αrd fk(n, r, d)
≥ δ, (43)

for some sequence of functions { fk(n, r, d)}k∈S such that
fk → ∞ as one of r, d, n → ∞ ∀ k ∈ S. Now defining
g(n, r, d) ! mink fk(n, r, d) as the pointwise minimum of all
the functions, we have:
∑

k∈S

pmax(k)

αrd fk(n, r, d)

≤ 1
αrd g(n, r, d)

∑

k∈S

pmax(k)

≤ 1
αrd g(n, r, d)

∑

k∈[Kα,c]
pmax(k)

= 1
αrd g(n, r, d)

∑

k∈[Kα,c]

maxv≤rd
(2k

v

)
(n

r

)

≤ 1
αrd g(n, r, d)

(n
r

) (rd + 1)1/22rd

(
Kα,c + 2 + rd+1

2e

)rd+1

(rd + 1)! ,

(44)

where (44) follows from (12) by substituting M ← Kα,c.
Recalling the definition of Kα,c, we now have

∑

k∈S

pmax(k)

αrd fk(n, r, d)
≤ α

g(n, r, d)
.

Notice however that this is a contradiction to (43), since
g(n, r, d)→∞. Lemma 5 is hence proved.
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