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Abstract: Inspired by the forward and the reverse channels from the image-size characterization
problem in network information theory, we introduce a functional inequality that unifies both the
Brascamp-Lieb inequality and Barthe’s inequality, which is a reverse form of the Brascamp-Lieb
inequality. For Polish spaces, we prove its equivalent entropic formulation using the Legendre-Fenchel
duality theory. Capitalizing on the entropic formulation, we elaborate on a “doubling trick” used
by Lieb and Geng-Nair to prove the Gaussian optimality in this inequality for the case of Gaussian
reference measures.
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1. Introduction

The Brascamp-Lieb inequality and its reverse [1] concern the optimality of Gaussian functions in
a certain type of integral inequality. (Not to be confused with the “variance Brascamp-Lieb inequality”
(cf. [2–4]), which generalizes the Poincaré inequality). These inequalities have been generalized in
various ways since their discovery, nearly 40 years ago. A modern formulation due to Barthe [5] may
be stated as follows:

Brascamp-Lieb Inequality and Its Reverse ([5] Theorem 1). Let E, E1, . . . , Em be Euclidean spaces and
Bi : E→ Ei be linear maps. Let (ci)

m
i=1 and D be positive real numbers. Then, the Brascamp-Lieb inequality:

∫ m

∏
i=1

f ci
i (Bix)dx ≤ D

m

∏
i=1

(∫
fi(xi)dxi

)ci

, (1)

for all nonnegative measurable functions fi on Ei, i = 1, . . . , m, holds if and only if it holds whenever fi,
i = 1, . . . , m are centered Gaussian functions (a centered Gaussian function is of the form x 7→ exp(r− x>Ax),
where A is a positive semidefinite matrix and r ∈ R). Similarly, for F a positive real number, the reverse
Brascamp-Lieb inequality, also known as Barthe’s inequality (B∗i denotes the adjoint of Bi),∫

sup
(yi) : ∑m

i=1 ciB∗i yi=x

m

∏
i=1

f ci
i (yi)dx ≥ F

m

∏
i=1

(∫
fi(yi)dyi

)ci

, (2)

for all nonnegative measurable functions fi on Ei, i = 1, . . . , m, holds if and only if it holds for all centered
Gaussian functions.
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For surveys on the history of both the Brascamp-Lieb inequality and Barthe’s inequality and their
applications, see, e.g., [6,7]. The Brascamp-Lieb inequality can be seen as a generalization of several
other inequalities, including Hölder’s inequality, the sharp Young inequality, the Loomis-Whitney
inequality, the entropy power inequality (cf. [6] or the survey paper [8]), hypercontractivity and the
logarithmic Sobolev inequality [9]. Furthermore, the Prékopa-Leindler inequality can be seen as
a special case of Barthe’s inequality. Due in part to their utility in establishing impossibility bounds,
these functional inequalities have attracted much attention in information theory [10–17], theoretical
computer science [18–22] and statistics [23–28], to name only a small subset of the literature. Over
the years, various proofs of these inequalities have been proposed [1,29–34]. Among these, Lieb’s
elegant proof [29], which is very close to one of the techniques that will be used in this paper, employs
a doubling trick that capitalizes on the rotational invariance property of the Gaussian function: if f is
a one-dimensional Gaussian function, then:

f (x) f (y) = f
(

x− y√
2

)
f
(

x + y√
2

)
. (3)

Since (1) and (2) have the same structure modulo the direction of the inequality, a common
viewpoint is to consider (1) and (2) as dual inequalities. This viewpoint successfully captures the
geometric aspects of (1) and (2). Indeed, it is known that:

D · F = 1 (4)

as long as D, F < ∞ [5]. Moreover, both D and F are equal to one under Ball’s geometric condition [35]:
E1, . . . , Em are dimension one, and:

m

∑
i=1

ciBiB∗i = I (5)

is the identity matrix. While fruitful, this “dual” viewpoint does not fully explain the asymmetry
between the forward and the reverse inequalities: there is a sup in (2), but not in (1).

This paper explores a different viewpoint. In particular, we propose a single inequality that unifies
(1) and (2). Accordingly, we should reverse both sides of (2) to make the inequality sign consistent
with (1). To be concrete, let us first observe that (1) and (2) can be respectively restated in the following
more symmetrical forms (with changes of certain symbols):

• For all nonnegative functions g and f1, . . . , fm such that:

g(x) ≤
m

∏
i=1

f
cj
j (Bjx), ∀x, (6)

we have:

∫
E

g ≤ D
m

∏
j=1

(∫
Ej

f j

)cj

. (7)

• For all nonnegative measurable functions g1, . . . gl and f such that:

l

∏
i=1

gbi
i (zi) ≤ f (

l

∑
i=1

biB∗i zi), ∀z1, . . . , zl , (8)

we have:

l

∏
i=1

(∫
Ei

gi

)bi

≤ D
∫

E
f . (9)
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Note that in both cases, the optimal choice of one function ( f or g) can be explicitly computed
from the constraints, hence the conventional formulations in (1) and (2). Generalizing further, we can
consider the following problem: Let X , Y1, . . . ,Ym, Z1, . . . ,Zl be measurable spaces. Consider
measurable maps φj : X → Yj, j = 1, . . . , m and ψ : X → Zi, i = 1, . . . , l. Let b1, . . . , bl and c1, . . . , cm

be nonnegative real numbers. Let ν1, . . . , νl be measures on Z1, . . . ,Zl and µ1, . . . , µm be measures
on Y1, . . . ,Ym, respectively. What is the smallest D > 0 such that for all nonnegative f1, . . . , fm on
Y1, . . .Ym and g1, . . . , gl on Z1, . . . ,Zl satisfying:

l

∏
i=1

gbi
i (ψi(x)) ≤

m

∏
j=1

f
cj
j (φj(x)), ∀x, (10)

we have:

l

∏
i=1

(∫
gidνi

)bi

≤ D
m

∏
j=1

(∫
f jdµj

)cj

? (11)

Except for special case of l = 1 (resp. m = 1), it is generally not possible to deduce a simple
expression from (10) for the optimal choice of gi (resp. f j) in terms of the rest of the functions. We will
refer to (11) as a forward-reverse Brascamp-Lieb inequality.

One of the motivations for considering multiple functions on both sides of (11) comes from
multiuser information theory: independently, but almost simultaneously with the discovery of the
Brascamp-Lieb inequality in mathematical physics, in the late 1970s, information theorists including
Ahslwede, Gács and Körner [36,37] invented the image-size technique for proving strong converses
in source and channel networks. An image-size inequality is a characterization of the tradeoff of
the measures of certain sets connected by given random transformations (channels); we refer the
interested readers to [37] for expositions on the image-size problem. Although not the way treated
in [36,37], an image-size inequality can essentially be obtained from a functional inequality similar
to (11) by taking the functions to be (roughly speaking) the indicator functions of sets. In the
case of (10), the forward channels φ1, . . . , φm and the reverse channels ψ1, . . . , ψl degenerate into
deterministic functions. In this paper, motivated by information theoretic applications similar to
those of the image-size problems, we will consider further generalizations of (11) to the case of
random transformations. Since the functional inequality is not restricted to indicator functions, it is
strictly stronger than the corresponding image-size inequality. As a side remark, [38] uses functional
inequalities that are variants of (11) together with a reverse hypercontractivity machinery to improve
the image-size plus the blowing-up machinery of [39] and shows that the non-indicator function
generalization is crucial for achieving the optimal scaling of the second-order rate expansion.

Of course, to justify the proposal of (11), we must also prove that (11) enjoys certain nice
mathematical properties; this is the main goal of the present paper. Specifically, we focus on two
aspects of (11): equivalent entropic formulation and Gaussian optimality.

In the mathematical literature, e.g., [32,36,40–46], it is known that certain integral inequalities
are equivalent to inequalities involving relative entropies. In particular, Carlen, Loss and Lieb [47]
and Carlen and Cordero-Erausquin [32] proved that the Brascamp-Lieb inequality is equivalent to the
superadditivity of relative entropy. In this paper, we prove that the forward-reverse Brascamp-Lieb
inequality (11) also has an entropic formulation, which turns out to be very close to the rate region of
certain multiuser information theory problems (but we will clarify the difference in the text). In fact,
Ahlswede, Csiszár and Körner [37,39] essentially derived image-size inequalities from similar entropic
inequalities. Because of the reverse part, the proof of the equivalence of (11) and corresponding
entropic inequality is more involved than the forward case considered in [32] beyond the case of finite
X , Yj, Zi, and certain machinery from min-max theory appears necessary. In particular, the proof
involves a novel use of the Legendre-Fenchel duality theory. Next, we give a basic version of our
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main result on the functional-entropic duality (more general versions will be given later). In order to
streamline its presentation, all formal definitions of notation are postponed to Section 2.

Theorem 1 (Dual formulation of the forward-reverse Brascamp-Lieb inequality). Assume that:

(i) m and l are positive integers; d ∈ R, X is a compact metric space;
(ii) bi ∈ (0, ∞), νi is a finite Borel measure on a Polish space Zi, and QZi |X is a random transformation from

X to Zi, for each i = 1, . . . , l;
(iii) cj ∈ (0, ∞), µj is a finite Borel measure on a Polish space Yj, and QYj |X is a random transformation from

X to Yi, for each j = 1, . . . , m;
(iv) For any (PZi )

l
i=1 such that ∑l

i=1 D(PZi‖νi) < ∞, there exists PX such that PX → QZi |X → PZi ,
i = 1, . . . , l and ∑m

j=1 D(PYj‖µj) < ∞, where PX → QYj |X → PYj , j = 1, . . . , m.

Then, the following two statements are equivalent:

1. If the nonnegative continuous functions (gi), ( f j) are bounded away from zero and satisfy:

l

∑
i=1

biQZi |X(gi) ≤
m

∑
j=1

cjQYj |X( f j) (12)

then:

l

∏
i=1

(∫
gidνi

)bi

≤ exp(d)
m

∏
j=1

(∫
f jdµj

)cj

(13)

2. For any (PZi ) such that D(PZi‖νi) < ∞ (of course, this assumption is not essential (if we adopt the
convention that the infimum in (14) is +∞ when it runs over an empty set)), i = 1, . . . , l,

l

∑
i=1

biD(PZi‖νi) + d ≥ inf
PX

m

∑
j=1

cjD(PYj‖µj) (14)

where PX → QYj |X → PYj , j = 1, . . . , m, and the infimum is over PX such that PX → QZi |X → PZi ,
i = 1, . . . , l.

Next, in a similar vein as the proverbial result that “Gaussian functions are optimal” for the
forward or the reverse Brascamp-Lieb inequality, we show in this paper that Gaussian functions are
also optimal for the forward-reverse Brascamp-Lieb inequality, particularized to the case of Gaussian
reference measures and linear maps. The proof scheme is based on rotational invariance (3), which
can be traced back in the functional setting to Lieb [29]. More specifically, we use a variant for the
entropic setting introduced by Geng and Nair [48], thereby taking advantage of the dual formulation
of Theorem 1.

Theorem 2. Consider b1, . . . , bl , c1, . . . , cm, D ∈ (0, ∞). Let E1, . . . , El , E1, . . . , Em be Euclidean spaces,
and let Bji : Ei → Ej be a linear map for each i ∈ {1, . . . , l} and j ∈ {1, . . . , m}. Then, for all continuous
functions f j : Ej → [0,+∞), gi : Ei → [0, ∞) satisfying:

l

∏
i=1

gbi
i (xi) ≤

m

∏
j=1

f
cj
j

(
l

∑
i=1

Bjixi

)
, ∀x1, . . . , xl , (15)

we have:

l

∏
i=1

(∫
gi

)bi

≤ D
m

∏
j=1

(∫
f j

)cj

, (16)
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if and only if for all centered Gaussian functions f1, . . . , fm, g1, . . . , gl satisfying (15), we have (16).

As mentioned, in the literature on the forward or the reverse Brascamp-Lieb inequalities, it is
known that a certain geometric condition (5) ensures that the best constant equals one. Now, for the
forward-reverse inequality, there is a simple example where the best constant equals one:

Example 1. Let l be a positive integer, and let M := (mji)1≤j≤l,1≤i≤l be an orthogonal matrix. For any
nonnegative continuous functions ( f j)

l
j=1 (gi)

l
i=1 on R such that:

l

∏
i=1

gi(xi) ≤
l

∏
j=1

f j

(
l

∑
i=1

mjixi

)
, ∀xl ∈ Rl , (17)

we have:

l

∏
i=1

∫
gi(x)dx ≤

l

∏
i=1

∫
f j(x)dx. (18)

The rest of the paper is organized as follows: Section 2 defines the notation and reviews some
basic theory of convex duality. Section 3 proves Theorem 1 and also presents its extensions to the
settings of noncompact spaces or general reverse channels. Section 4 proves the Gaussian optimality
in the entropic formulation, with the caveat that a certain “non-degenerate” assumption is imposed to
ensure the existence of extremizers. At the end of Section 4, we give a proof sketch of Example 1 and
also propose a generalization of the example. To completely prove Theorem 2, in Appendix F, we use
a limiting argument to drop the non-degenerate assumption and apply the equivalence between the
functional and entropic formulations.

2. Review of the Legendre-Fenchel Duality Theory

Our proof of the equivalence of the functional and the entropic inequalities uses the
Legendre-Fenchel duality theory, a topic from convex analysis. Before getting into that, a recap
of some basics on the duality of topological vector spaces seems appropriate. Unless otherwise
indicated, we assume Polish spaces and Borel measures. Recall that metric space. It enjoys several nice
properties that we use heavily in this section, including the Prokhorov theorem and the Riesz-Kakutani
theorem. Of course, the Polish space assumption covers the cases of Euclidean and discrete spaces
(endowed with the Hamming metric, which induces the discrete topology, making every function on
the discrete set continuous), among others. Readers interested in discrete spaces only may refer to the
(much simpler) argument in [49] based on the KKT condition.

Notation 1. Let X be a topological space.

• Cc(X ) denotes the space of continuous functions on X with a compact support;
• C0(X ) denotes the space of all continuous functions f on X that vanish at infinity (i.e., for any ε > 0,

there exists a compact set K ⊆ X such that | f (x)| < ε for x ∈ X \ K);
• Cb(X ) denotes the space of bounded continuous functions on X ;
• M(X ) denotes the space of finite signed Borel measures on X ;
• P(X ) denotes the space of probability measures on X .

We consider Cc, C0 and Cb as topological vector spaces, with the topology induced from the sup
norm. The following theorem, usually attributed to Riesz, Markov and Kakutani, is well known in
functional analysis and can be found in, e.g., [50,51].
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Theorem 3 (Riesz-Markov-Kakutani). If X is a locally compact, σ-compact Polish space, the dual (the dual
of a topological vector space consists of all continuous linear functionals on that space, which is naturally also
topological vector space (with the weak∗ topology)) of both Cc(X ) and C0(X ) isM(X ).

Remark 1. The dual space of Cb(X ) can be strictly larger than M(X ), since it also contains those linear
functionals that depend on the “limit at infinity” of a function f ∈ Cb(X ) (originally defined for those f that do
have a limit at infinity and then extended to the whole Cb(X ) by the Hahn-Banach theorem; see, e.g., [50]).

Of course, any µ ∈ M(X ) is a continuous linear functional on C0(X ) or Cc(X ), given by:

f 7→
∫

f dµ (19)

where f is a function in C0(X ) or Cc(X ). As is well known, Theorem 3 states that the converse is also
true under mild regularity assumptions on the space. Thus, we can view measures as continuous
linear functionals on a certain function space (in fact, some authors prefer to construct measure theory
by defining a measure as a linear functional on a suitable measure space; see Lax [50] or Bourbaki [52]);
this justifies the shorthand notation:

µ( f ) :=
∫

f dµ (20)

which we employ in the rest of the paper. This viewpoint is the most natural for our setting since in
the proof of the equivalent formulation of the forward-reverse Brascamp-Lieb inequality, we shall use
the Hahn-Banach theorem to show the existence of certain linear functionals.

Definition 1. Let Λ : Cb(X ) → (−∞,+∞] be a lower semicontinuous, proper convex function. Its
Legendre-Fenchel transform Λ∗ : Cb(X )∗ → (−∞,+∞] is given by:

Λ∗(`) := sup
u∈Cb(X )

[`(u)−Λ(u)]. (21)

Let ν be a nonnegative finite Borel measure on a Polish space X , and define the convex functional
on Cb(X ):

Λ( f ) := log ν(exp( f )) (22)

= log
∫

exp( f )dν. (23)

Then, note that the relative entropy has the following alternative definition: for any µ ∈ M(X ),

D(µ‖ν) := sup
f∈Cb(X )

[µ( f )−Λ( f )] (24)

which agrees with the more familiar definition D(µ‖ν) := µ(log dµ
dν ) when ν is a probability measure,

by the Donsker-Varadhan formula (cf. [53] Lemma 6.2.13). If µ is not a probability measure, then D(µ‖ν)
as defined in (24) is +∞.

Given a bounded linear operator T : Cb(Y)→ Cb(X ), the dual operator T∗ : Cb(X )∗ → Cb(Y)∗ is
defined in terms of:

T∗µX : Cb(Y)→ R;

f 7→ µX(T f ), (25)
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for any µX ∈ Cb(X )∗. Since P(X ) ⊆ M(X ) ⊆ Cb(X )∗, T is said to be a conditional expectation
operator if T∗P ∈ P(Y) for any P ∈ P(X ). The operator T∗ is defined as the dual of a conditional
expectation operator T and, in a slight abuse of terminology, is said to be a random transformation
from X to Y .

For example, in the notation of Theorem 1, if g ∈ Cb(Y) and QY|X is a random transformation
from X to Y , the quantity QY|X(g) is a function on X , defined by taking the conditional expectation.
Furthermore, if PX ∈ P(X ), we write PX → QY|X → PY to indicate that PY ∈ P(Y) is the measure
induced on Y by applying QY|X to PX .

Remark 2. From the viewpoint of category theory (see for example [54,55]), Cb is a functor from the category
of topological spaces to the category of topological vector spaces, which is contra-variant because for any
continuous, φ : X → Y (morphism between topological spaces), we have Cb(φ) : Cb(Y)→ Cb(X ), u 7→ u ◦ f
where u ◦ φ denotes the composition of two continuous functions, reversing the arrows in the maps (i.e., the
morphisms). On the other hand, M is a covariant functor and M(φ) : M(X ) → M(Y), µ 7→ µ ◦ φ−1,
where µ ◦ φ−1(B) := µ(φ−1(B)) for any Borel measurable B ⊆ Y . “Duality” itself is a contra-variant functor
between the category of topological spaces (note the reversal of arrows in Figure 1). Moreover, Cb(X )∗ =M(X )

and Cb(φ)
∗ =M(φ) if X and Y are compact metric spaces and φ : X → Y is continuous. Definition 2 can

therefore be viewed as the special case where φ is the projection map:

Cb(X )

Cb(Z1) 3 g1

Cb(Z2) 3 g2

Cb(Y1) 3 f1

Cb(Y2) 3 f2

S1

S2

T1

T2

P(X ) 3 PX

P(Z1) 3 PZ1

P(Z2) 3 PZ2

P(Y1) 3 PY1

P(Y2) 3 PY2

S∗1

S∗2

T∗1

T∗2

Figure 1. Diagrams for Theorem 1.

Definition 2. Suppose φ : Z1 ×Z2 → Z1, (z1, z2) 7→ z1 is the projection to the first coordinate.

• Cb(φ) : Cb(Z1) → Cb(Z1 × Z2) is called a canonical map, whose action is almost trivial: it sends
a function of zi to itself, but viewed as a function of (z1, z2).

• M(φ) : M(Z1 ×Z2) → M(Z1) is called marginalization, which simply takes a joint distribution to
a marginal distribution.

The Fenchel-Rockafellar duality (see [40] Theorem 1.9, or [56] in the case of finite dimensional
vector spaces) usually refers to the k = 1 special case of the following result.

Theorem 4. Assume that A is a topological vector space whose dual is A∗. Let Θj : A → R ∪ {+∞},
j = 0, 1, . . . , k, for some positive integer k. Suppose there exist some (uj)

k
j=1 and u0 := −(u1 + · · ·+ uk)

such that:

Θj(uj) < ∞, j = 0, . . . , k (26)
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and Θ0 is upper semicontinuous at u0. Then:

− inf
`∈A∗

[
k

∑
j=0

Θ∗j (`)

]
= inf

u1,...,uk∈A

[
Θ0

(
−

k

∑
j=1

uj

)
+

k

∑
j=1

Θj(uj)

]
. (27)

For completeness, we provide a proof of this result, which is based on the Hahn-Banach theorem
(Theorem 5) and is similar to the proof of [40] Theorem 1.9.

Proof. Let m0 be the right side of (27). The ≤ part of (27) follows trivially from the (weak) min-max
inequality since:

m0 = inf
u0,...,uk∈A

sup
`∈A∗

{
k

∑
j=0

Θj(uj)− `(
k

∑
j=0

uj)

}
(28)

≥ sup
`∈A∗

inf
u0,...,uk∈A

{
k

∑
j=0

Θj(uj)− `(
k

∑
j=0

uj)

}

= − inf
`∈A∗

[
k

∑
j=0

Θ∗j (`)

]
.

It remains to prove the ≥ part, and it suffices to assume without loss of generality that m0 > −∞.
Note that (26) also implies that m0 < +∞. Define convex sets:

Cj := {(u, r) ∈ A×R : r > Θj(u)}, j = 0, . . . , k; (29)

B := {(0, m) ∈ A×R : m ≤ m0}. (30)

Observe that these are nonempty sets because of (26). Furthermore, C0 has a nonempty interior
by the assumption that Θ0 is upper semicontinuous at u0. Thus, the Minkowski sum:

C := C0 + · · ·+ Ck (31)

is a convex set with a nonempty interior. Moreover, C ∪ B = ∅. By the Hahn-Banach theorem
(Theorem 5), there exists (`, s) ∈ A∗ ×R such that:

sm ≤ `

(
k

∑
j=0

uj

)
+ s

k

∑
j=0

rj. (32)

For any m ≤ m0 and (uj, rj) ∈ Cj, j = 0, . . . , k. From (30), we see (32) can only hold when s ≥ 0.
Moreover, from (26) and the upper semicontinuity of Θ0 at u0, we see that the ∑k

j=0 uj in (32) can take
a value in a neighborhood of 0 ∈ A; hence, s 6= 0. Thus, by dividing s on both sides of (32) and setting
`← −`/s, we see that:

m0 ≤ inf
u0,...,uk∈A

[
−`
(

k

∑
j=0

uj

)
+

k

∑
j=0

Θj(uj)

]
(33)

= −
[

k

∑
j=0

Θ∗j (`)

]

which establishes ≥ in (27).

Theorem 5 (Hahn-Banach). Let C and B be convex, nonempty disjoint subsets of a topological vector space A.
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1. If the interior of C is non-empty, then there exists ` ∈ A∗, ` 6= 0 such that:

sup
u∈B

`(u) ≤ inf
u∈C

`(u). (34)

2. If A is locally convex, B is compact and C is closed, then there exists ` ∈ A∗ such that:

sup
u∈B

`(u) < inf
u∈C

`(u). (35)

Remark 3. The assumption in Theorem 5 that C has a nonempty interior is only necessary in the infinite
dimensional case. However, even if A in Theorem 4 is finite dimensional, the assumption in Theorem 4 that
Θ0 is upper semicontinuous at u0 is still necessary, because this assumption was not only used in applying
Hahn-Banach, but also in concluding that s 6= 0 in (32).

3. The Entropic-Functional Duality

In this section, we prove Theorem 1 and some of its generalizations.

3.1. Compact X
We first state a duality theorem for the case of compact spaces to streamline the proof. Later, we

show that the argument can be extended to a particular non-compact case (Theorem 1 is not included
in the conference paper [49], but was announced in the conference presentation). Our proof based on
the Legendre-Fenchel duality (Theorem 4) was inspired by the proof of the Kantorovich duality in the
theory of optimal transportation (see [40] Chapter 1, where the idea was credited to Brenier).

Recall from Section 2 that a random transformation (a mapping between probability measures)
is formally the dual of a conditional expectation operator. Suppose PYj |X = T∗j , j = 1, . . . , m and
PZi |X = S∗i , i = 1, . . . , l.

Proof of Theorem 1. We can safely assume d = 0 below without loss of generality (since otherwise,
we can always substitute µ1 ← exp

(
d
c1

)
µ1).

1)⇒2) This is the nontrivial direction, which relies on certain (strong) min-max type results.
In Theorem 4, put (in (36), u ≤ 0 means that u is pointwise non-positive):

Θ0 : u ∈ Cb(X ) 7→
{

0 u ≤ 0;
+∞ otherwise.

(36)

Then,

Θ∗0 : π ∈ M(X ) 7→
{

0 π ≥ 0;
+∞ otherwise.

(37)

For each j = 1, . . . , m, set:

Θj(u) := cj inf log µj

(
exp

(
1
cj

v

))
(38)

where the infimum is over v ∈ Cb(Y) such that u = Tjv; if there is no such v, then Θj(u) := +∞
as a convention. Observe that:

• Θj is convex: indeed, given arbitrary u0 and u1, suppose that v0 and v1 respectively achieve
the infimum in (38) for u0 and u1 (if the infimum is not achievable, the argument still
goes through by the approximation and limit argument). Then, for any α ∈ [0, 1], vα :=
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(1− α)v0 + αv1 satisfies uα = Tjvα where uα := (1− α)u0 + αu1. Thus, the convexity of Θj
follows from the convexity of the functional in (23);

• Θj(u) > −∞ for any u ∈ Cb(X ). Otherwise, for any PX and PYj := T∗j PX , we have:

D(PYj‖µj) = sup
v
{PYj(v)− log µj(exp(v))} (39)

= sup
v
{PX(Tjv)− log µj(exp(v))} (40)

= sup
u∈Cb(X )

{
PX(u)−

1
cj

Θj(cju)

}
(41)

= +∞ (42)

which contradicts the assumption that ∑m
j=1 cjD(PYj‖µj) < ∞ in the theorem;

• From Steps (39)–(41), we see Θ∗j (π) = cjD(T∗j π‖µj) for any π ∈ M(X ), where the
definition of D(·‖µj) is extended using the Donsker-Varadhan formula (that is, it is infinite
when the argument is not a probability measure).

Finally, for the given (PZi )
l
i=1, choose:

Θm+1 : u ∈ Cb(X ) 7→
{

∑l
i=1 PZi (wi) if u = ∑l

i=1 Siwi for some wi ∈ Cb(Zi);
+∞ otherwise.

(43)

Notice that:

• Θm+1 is convex;
• Θm+1 is well defined (that is, the choice of (wi) in (43) is inconsequential). Indeed, if (wi)

l
i=1

is such that ∑l
i=1 Siwi = 0, then:

l

∑
i=1

PZi (wi) =
l

∑
i=1

S∗i PX(wi) (44)

=
l

∑
i=1

PX(Siwi)

= 0,

where PX is such that S∗i PX = PZi , i = 1, . . . , l, whose existence is guaranteed by the
assumption of the theorem. This also shows that Θm+1 > −∞.

•

Θ∗m+1(π) := sup
u
{π(u)−Θm+1(u)} (45)

= sup
w1,...,wl

{
π

(
l

∑
i=1

Siwi

)
−

l

∑
i=1

PZi (wi)

}

= sup
w1,...,wl

{
l

∑
i=1

S∗i π(wi)−
l

∑
i=1

PZi (wi)

}

=

{
0 if S∗i π = PZi , i = 1, . . . , l;

+∞ otherwise.

Invoking Theorem 4 (where the uj in Theorem 4 can be chosen as the constant function uj ≡ 1,
j = 1, . . . , m + 1):
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inf
π : π≥0, S∗i π=PZi

m

∑
j=1

cjD(T∗j π‖µj)

= − inf
vm ,wl : ∑m

j=1 Tjvj+∑l
i=1 Siwi≥0

[
m

∑
j=1

cj log µj

(
exp

(
1
cj

vj

))
+

l

∑
i=1

PZi (wi)

]
(46)

where vm denotes the collection of the functions v1, . . . , vm, and similarly for wl . Note that the
left side of (46) is exactly the right side of (14). For any ε > 0, choose vj ∈ Cb(Yj), j = 1, . . . , m
and wi ∈ Cb(Zi), i = 1, . . . , l such that ∑m

j=1 Tjvj + ∑l
i=1 Siwi ≥ 0 and:

ε−
m

∑
j=1

cj log µj

(
exp

(
1
cj

vj

))
−

l

∑
i=1

PZi (wi) > inf
π : π≥0, S∗i π=PZi

m

∑
j=1

cjD(T∗j π‖µj) (47)

Now, invoking (13) with f j := exp
(

1
cj

vj

)
, j = 1, . . . , m and gi := exp

(
− 1

bi
wi

)
, i = 1, . . . , l,

we upper bound the left side of (47) by:

ε−
l

∑
i=1

bi log νi(gi) +
l

∑
i=1

biPZi (log gi) ≤ ε +
l

∑
i=1

biD(PZi‖νi) (48)

where the last step follows by the Donsker-Varadhan formula. Therefore, (14) is established since
ε > 0 is arbitrary.

2)⇒1) Since νi is finite and gi is bounded by assumption, we have νi(gi) < ∞, i = 1, . . . , l. Moreover,
(13) is trivially true when νi(gi) = 0 for some i, so we will assume below that νi(gi) ∈ (0, ∞) for
each i. Define PZi by:

dPZi

dνi
=

gi
νi(gi)

, i = 1, . . . , l. (49)

Then, for any ε > 0,

l

∑
i=1

bi log νi(gi) =
l

∑
i=1

bi[PZi (log gi)− D(PZi‖νi)] (50)

<
m

∑
j=1

cjPYj(log f j) + ε−
m

∑
j=1

cjD(PYj‖µj) (51)

≤ ε +
m

∑
j=1

cj log µj( f j) (52)

where:

• (51) uses the Donsker-Varadhan formula, and we have chosen PX , PYj := T∗j PX , j = 1, . . . , m
such that:

l

∑
i=1

biD(PZi‖νi) >
m

∑
j=1

cjD(PYj‖µj)− ε (53)

• (52) also follows from the Donsker-Varadhan formula.

The result follows since ε > 0 can be arbitrary.
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Remark 4. Condition (iv) in the theorem imposes a rather strong assumption on (Si): for simplicity, consider
the case where |X |, |Zi| < ∞. Then, Condition (iv) assumes that for any (PZi ), there exists PX such that
PZi = S∗i PX . This assumption is certainly satisfied when (Si) are induced by coordinate projections; the case of
l = 1 and PZ|X being a reverse erasure channel gives a simple example where PZ|X is not a deterministic map.

Next, we give a generalization of Theorem 1, which alleviates the restriction on (Si):

Theorem 6. Theorem 1 continues to hold if Condition (iv) therein is weakened to the following:

• For any PX such that D(S∗i PX‖νi) < ∞, i = 1, . . . , l, there exists P̃X such that S∗i P̃X = S∗i PX for each i
and ∑m

j=1 cjD(T∗j P̃X‖µj) < ∞ for each j.

and the conclusion of the theorem will be replaced by the equivalence of the following two statements:

1. For any nonnegative continuous functions (gi), ( f j) bounded away from zero and such that:

l

∑
i=1

biSi log gi ≤
m

∑
j=1

cjTj log f j (54)

we have:

inf
(g̃i) : ∑l

i=1 biSi log g̃i≥∑l
i=1 biSi log gi

l

∏
i=1

ν
bi
i (g̃i) ≤ exp(d)

m

∏
j=1

µ
cj
j ( f j). (55)

2. For any (PX) such that D(S∗i PX‖νi) < ∞, i = 1, . . . , l,

l

∑
i=1

biD(S∗i PX‖νi) + d ≥ inf
P̃X : S∗i P̃X=S∗i PX

m

∑
j=1

cjD(T∗j P̃X‖µj). (56)

In Appendix A, we show that Theorem 6 indeed recovers Theorem 1 for the more restricted class
of random transformations.

Proof. Here, we mention the parts of the proof that need to be changed: upon specifying ( f j) and (gi)

right after (47), we select (g̃i) such that:

l

∑
i=1

biSi log g̃i ≥
l

∑
i=1

biSi log gi (57)

l

∑
i=1

bi log νi(g̃i) ≤
m

∑
j=1

cj log µj( f j) + ε. (58)

Then, in lieu of (59), we upper-bound the left side of (47) by:

2ε−
l

∑
i=1

bi log νi(g̃i) +
l

∑
i=1

biPZi (log g̃i) ≤ 2ε +
l

∑
i=1

biD(PZi‖νi) (59)

which establishes the 1)⇒2) part. For the other direction, for each i ∈ {1, 2, . . . , l}, define:

Λi(u) := inf
g̃i>0 : biSi log g̃i=u

bi log νi(g̃i). (60)

Then, following essentially the same proof as that of Θj in (38), we see that Λi is proper convex and:

Λ∗i (π) = biD(S∗i π‖µj). (61)
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Moreover, let:

Λl+1(u) :=

{
0 if u = −∑ biSi log gi;

+∞ otherwise.
(62)

Then, Λ∗l+1(π) = −∑ biS∗i π(log gi). Using the Legendre-Fenchel duality, we see that for any
ε > 0,

inf
(g̃i) : ∑l

i=1 biSi log g̃i≥∑l
i=1 biSi log gi

l

∑
i=1

bi log νi(g̃i)

= inf
u1,...,ul+1

{
Θ0

(
−

l+1

∑
i=1

ui

)
+

l+1

∑
i=1

Λi(ui)

}
(63)

= sup
π

{
−

l+1

∑
i=0

Θ∗i (π)

}
(64)

= sup
π≥0

{
−

l+1

∑
i=1

Θ∗i (π)

}
(65)

= sup
π≥0

{
l

∑
i=1

biS∗i π(log gi)−
l

∑
i=1

biD(S∗i π‖νi)

}
(66)

≤
l

∑
i=1

biS∗i PX(log gi)−
l

∑
i=1

biD(S∗i PX‖νi) + ε (67)

≤
m

∑
j=1

cjT∗j P̃X(log f j)−
m

∑
j=1

cjD(T∗j P̃X‖µj) + 2ε (68)

≤ 2ε +
m

∑
j=1

cj log µj( f j) (69)

where:

• To see (67), we note that the sup in (66) can be restricted to π, which is a probability measure, since
otherwise, the relative entropy terms in (66) are +∞ by its definition via the Donsker-Varadhan
formula. Then, we select PX such that (67) holds.

• In (68), we have chosen P̃X such that:

S∗i P̃X = S∗i PX , 1 ≤ i ≤ l; (70)
l

∑
i=1

biD(S∗i PX) >
m

∑
j=1

cjD(T∗j P̃X‖µj)− ε, (71)

and then applied the assumption (54). The result follows since ε > 0 can be arbitrary.

Remark 5. The infimum in (14) is in fact achievable: for any (PZi ), there exists a PX that minimizes
∑m

j=1 cjD(PYj‖µj) subject to the constraints S∗i PX = PZi , i = 1, . . . m, where PYj := T∗j PX, j = 1, . . . , m.
Indeed, since the singleton {PZi} is weak∗-closed and S∗i is weak∗-continuous (Generally, if T : A → B is
a continuous map between two topologically vector spaces, then T∗ : B∗ → A∗ is a weak∗ continuous map
between the dual spaces. Indeed, if yn → y is a weak∗-convergent subsequence in B∗, meaning yn(b)→ y(b)
for any b ∈ B, then, we must have T∗yn(a) = yn(Ta) → y(Ta) = T∗y(a) for any a ∈ A, meaning that
T∗yn converges to T∗y in the weak∗ topology.), the set

⋂l
i=1(S

∗
i )
−1PZi is weak∗-closed inM(X); hence, its

intersection with P(X ) is weak∗-compact in P(X ), because P(X ) is weak∗-compact by (a simple version for
the setting of a compact underlying space X of) the Prokhorov theorem [57]. Moreover, by the weak∗-lower
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semicontinuity of D(·‖µj) (easily seen from the variational formula/Donsker-Varadhan formula of the relative
entropy, cf. [58]) and the weak∗-continuity of T∗j , j = 1, . . . , m, we see that ∑m

j=1 cjD(T∗j PX‖µj) is weak∗-lower
semicontinuous in PX , and hence, the existence of a minimizing PX is established.

Remark 6. Abusing the terminology from min-max theory, Theorem 1 may be interpreted as a “strong duality”
result, which establishes the equivalence of two optimization problems. The 1)⇒2) part is the non-trivial
direction, which requires regularity on the spaces. In contrast, the 2)⇒1) direction can be thought of as a “weak
duality”, which establishes only a partial relation, but holds for more general spaces.

3.2. Noncompact X
Our proof of 1)⇒2) in Theorem 1 makes use of the Hahn-Banach theorem and hence relies crucially

on the fact that the measure space is the dual of the function space. Naively, one might want to extend
the the proof to the case of locally compact X by considering C0(X ) instead of Cb(X ), so that the dual
space is stillM(X ). However, this would not work: consider the case when X = Z1×, . . . ,×Zl and
each Si is the canonical map. Then, Θm+1(u) as defined in (43) is +∞ unless u ≡ 0 (because u ∈ C0(X )

requires that u vanishes at infinity); thus, Θ∗m+1 ≡ 0. Luckily, we can still work with Cb(X ); in this
case, ` ∈ Cb(X )∗ may not be a measure, but we can decompose it into ` = π + R where π ∈ M(X )

and R is a linear functional “supported at infinity”. Below, we use the techniques in [40] (Chapter 1.3)
to prove a particular extension of Theorem 1 to a non-compact case.

Theorem 7. Theorem 1 still holds if

• The assumption that X is a compact metric space is relaxed to the assumption that it is a locally compact
and σ-compact Polish space;

• X = ∏l
i=1 Zi and Si : Cb(Zi)→ Cb(X ), i = 1, . . . , l are canonical maps (see Definition 2).

Proof. The proof of the “weak duality” part 2)⇒1) still works in the noncompact case, so we only
need to explain what changes need to be made in the proof of the 1)⇒2) part. Let Θ0 be defined as
before, in (36). Then, for any ` ∈ Cb(X )∗,

Θ∗0(`) = sup
u≤0

`(u) (72)

which is zero if ` is nonnegative (in the sense that `(u) ≥ 0 for every u ≥ 0), and +∞ otherwise. This
means that when computing the infimum on the left side of (27), we only need to take into account
those nonnegative `.

Next, let Θm+1 be also defined as before. Then, directly from the definition, we have:

Θ∗m+1(`) =

{
0 if `(∑i Siwi) = ∑i PZi (wi), ∀wi ∈ Cb(Zi), i = 1, . . . l;

+∞ otherwise.
(73)

For any ` ∈ C∗b (X ). Generally, the condition in the first line of (73) does not imply that ` is
a measure. However, if ` is also nonnegative, then using a technical result in [40] Lemma 1.25, we can
further simplify:

Θ∗m+1(`) =

{
0 if ` ∈ M(X ) and S∗i ` = PZi , i = 1, . . . , l;

+∞ otherwise.
(74)

This further shows that when we compute the left side of (27), the infimum can be taken over `,
which is a coupling of (PZi ). In particular, if ` is a probability measure, then Θ∗j (`) = cjD(T∗j `‖µj) still
holds with the Θj defined in (38), j = 1, . . . , m. Thus, the rest of the proof can proceed as before.
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Remark 7. The second assumption is made in order to achieve (74) in the proof.

4. Gaussian Optimality

Recall that the conventional Brascamp-Lieb inequality and its reverse ((1) and (2)) state that
centered Gaussian functions exhaust such inequalities, and in particular, verifying those inequalities is
reduced to a finite dimensional optimization problem (only the covariance matrices in these Gaussian
functions are to be optimized). In this section, we show that similar results hold for the forward-reverse
Brascamp-Lieb inequality, as well. Our proof uses the rotational invariance argument mentioned in
Section 1. Since the forward-reverse Brascamp-Lieb inequality has dual representations (Theorem 7),
in principle, the rotational invariance argument can be applied either to the functional representation
(as in Lieb’s paper [29]) or the entropic representation (as in Geng-Nair [48]). Here, we adopt the latter
approach. We first consider a certain “non-degenerate” case where the existence of an extremizer is
guaranteed. Then, Gaussian optimality in the general case follows by a limiting argument (Appendix F),
establishing Theorem 2.

4.1. Non-Degenerate Forward Channels

This subsection focuses on the following case:

Assumption 1.

• Fix Lebesgue measures (µj)
m
j=1 and Gaussian measures (νi)

l
i=1 on R;

• non-degenerate (Definition 3 below) linear Gaussian random transformation (PYj |X)
m
j=1 (where X :=

(X1, . . . , Xl)) associated with conditional expectation operators (Tj)
m
j=1;

• (Si)
l
i=1 are induced by coordinate projections;

• positive (cj) and (bi).

Definition 3. We say (QY1|X, . . . , QYm |X) is non-degenerate if each QYj |X=0 is an nj-dimensional Gaussian
distribution with an invertible covariance matrix.

Given Borel measures PXi on R, i = 1, . . . , l, define:

F0((PXi )) := inf
PX

m

∑
j=1

cjD(PYj‖µj)−
l

∑
i=1

biD(PXi‖νi) (75)

where the infimum is over Borel measures PX that have (PXi ) as marginals. Note that (75) is well
defined since the first term cannot be +∞ under the non-degenerate assumption, and the second term
cannot be −∞. The aim of this subsection is to prove the following:

Theorem 8. sup(PXi
) F0((PXi )), where the supremum is over Borel measures PXi on R, and i = 1, . . . , l, is

achieved by some Gaussian (PXi )
l
i=1, in which case the infimum in (75) is achieved by some Gaussian PX.

Naturally, one would expect that Gaussian optimality can be established when (µj)
m
j=1 and (νi)

l
i=1

are either Gaussian or Lebesgue. We made the assumption that the former is Lebesgue and the latter is
Gaussian so that certain technical conditions can be justified more easily. More precisely, the following
observation shows that we can regularize the distributions by a second moment constraint for free:

Proposition 1. sup(PXi
) F0((PXi )) is finite and there exist σ2

i ∈ (0, ∞), i = 1, . . . , l such that it equals:

sup
(PXi

) : E[X2
i ]≤σ2

i

F0((PXi )). (76)
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Proof. When µj is Lebesgue and PYj |X is non-degenerate, D(PYj‖µj) = −h(PYj) ≤ −h(PYj |X) is
bounded above (in terms of the variance of the additive noise of PYj |X). Moreover, D(PXi‖νi) ≥ 0 when
νi is Gaussian, so sup(PXi

) F0((PXi )) < ∞. Further, choosing (PXi ) = (νi) and using the covariance

matrix to lower bound the first term in (75) show that sup(PXi
) F0((PXi )) > −∞.

To see (76), notice that:

D(PXi‖νi) = D(PXi‖ν′i ) +E[ıν′i‖νi
(X)] (77)

= D(PXi‖ν′i ) + D(ν′i‖νi)

≥ D(ν′i‖νi)

where ν′i is a Gaussian distribution with the same first and second moments as Xi ∼ PXi . Thus,
D(PXi‖νi) is bounded below by some function of the second moment of Xi, which tends to ∞ as the
second moment of Xi tends to ∞. Moreover, as argued in the preceding paragraph, the first term
in (75) is bounded above by some constant depending only on (PYj |X). Thus, we can choose σ2

i > 0,

i = 1, . . . , l large enough such that if E[X2
i ] > σ2

i for some of i, then F0((PXi )) < sup(PXi
) F0((PXi )),

irrespective of the choices of PX1 , . . . , PXi−1 , PXi+1 , . . . , PXl . Then, these σ1, . . . , σl are as desired in the
proposition.

The non-degenerate assumption ensures that the supremum is achieved:

Proposition 2. Under Assumption 1,

1. For any (PXi )
l
i=1, the infimum in (75) is attained by some Borel PX.

2. If (PYj |Xl )m
j=1 are non-degenerate (Definition 3), then the supremum in (76) is achieved by some Borel

(PXi )
l
i=1.

The proof of Proposition 2 is given in Appendix E. After taking care of the existence of the
extremizers, we get into the tensorization properties, which are the crux of the proof:

Lemma 1. Fix (P
X(1)

i
), (P

X(2)
i
), (µj), (Tj), (cj) ∈ [0, ∞)m, and let Sj be induced by coordinate projections.

Then:

inf
P

X(1,2) : S∗⊗2
i P

X(1,2)=P
X(1)

i
×P

X(2)
i

m

∑
j=1

cjD(P
Y(1,2)

j
‖µ⊗2

j ) = ∑
t=1,2

m

∑
j=1

cj inf
P

X(t)
: S∗i P

X(t)
=P

X(t)
i

D(P
Y(t)

j
‖µj) (78)

where for each j,

P
Y(1,2)

j
:= T∗⊗2

j PX(1,2) (79)

on the left side and:

P
Y(t)

j
:= T∗⊗2

j PX(t) (80)

on the right side, t = 1, 2.

Proof. We only need to prove the nontrivial ≥ part. For any PX(1,2) on the left side, choose PX(t) on the
right side by marginalization. Then:

D(P
Y(1,2)

j
‖µ⊗2

j )−∑
t

D(P
Y(t)

j
‖µj) = I(Y(1)

j ; Y(2)
j ) (81)

≥ 0
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for each j.

We are now ready to show the main result of this section.

Proof of Theorem 8.

1. Assume that (P
X(1)

i
) and (P

X(2)
i
) are maximizers of F0 (possibly equal). Let PX1,2

i
:= P

X(1)
i
× P

X(2)
i

.

Define:

X+ :=
1√
2

(
X(1) + X(2)

)
; (82)

X− :=
1√
2

(
X(1) − X(2)

)
. (83)

Define (Y+
j ) and (Y−j ) analogously. Then, Y+

j |{X+ = x+, X− = x−} ∼ QYj |X=x+ is independent

of x−, and Y−j |{X+ = x+, X− = x−} ∼ QYj |X=x− is independent of x+.
2. Next, we perform the same algebraic expansion as in the proof of tensorization:

2

∑
t=1

F0

((
P

X(t)
i

)l

i=1

)
= inf

P
X(1,2) : S∗⊗2

j P
X(1,2)=P

X(1,2)
j

∑
j

cjD(P
Y(1,2)

j
‖µ⊗2

j )−∑
i

biD(P
X(1,2)

i
‖ν⊗2

i ) (84)

= inf
PX+X− : S∗⊗2

j PX+X−=PX+
j X−j

∑
j

cjD(PY+
j Y−j
‖µ⊗2

j )−∑
i

biD(PX+
i X−i
‖ν⊗2

i ) (85)

≤ inf
PX+X− : S∗⊗2

j PX+X−=PX+
j X−j

∑
j

cj

[
D(PY+

j
‖µj) + D(PY−j |X+‖µj|PX+)

]

−∑
i

bi

[
D(PX+

i
‖νi) + D(PX−i |X+

i
‖νi|PX+

i
)
]

(86)

≤∑
j

cj

[
D(P?

Y+
j
‖µj) + D(P?

Y−j |X+‖µj|P?
X+)

]
−∑

i
bi

[
D(P?

X+
i
‖νi) + D(P?

X−i |X+‖νi|P?
X+)
]

(87)

= F0

((
P?

X+
i

)l

i=1

)
+
∫

F0

((
P?

X−i |X+

)l

i=1

)
dP?

X+ (88)

≤
2

∑
t=1

F0

((
P

X(t)
i

)l

i=1

)
(89)

where:

• (84) uses Lemma 1.
• (86) is because of the Markov chain Y+

j − X+ −Y−j (for any coupling).
• In (87), we selected a particular instance of coupling PX+X− , constructed as follows: first,

we select an optimal coupling PX+ for given marginals (PX+
i
). Then, for any x+ = (x+i )l

i=1,
let PX− |X+=x+ be an optimal coupling of (PX−i |X+

i =x+i
) (for a justification that we can select

optimal coupling PX− |X+=x+ in a way that PX− |X+ is indeed a regular conditional probability
distribution, see [7]). With this construction, it is apparent that X+

i − X+ − X−i , and hence:

D(PX−i |X+
i
‖νi|PX+

i
) = D(PX−i |X+‖νi|PX+). (90)

• (88) is because in the above, we have constructed the coupling optimally.

• (89) is because (P(t)
Xi

) maximizes F0, t = 1, 2.
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3. Thus, in the expansions above, equalities are attained throughout. Using the differentiation
technique as in the case of forward inequality, for almost all (bi), (cj), we have:

D(PX−i |X+
i
‖νi|PX+

i
) = D(PX+

i
‖νi) (91)

= D(PX−i
‖νi), ∀i (92)

where (92) is because by symmetry, we can perform the algebraic expansions in a different way to
show that (PX−i

) is also a maximizer of F0. Then, I(X+
i ; X−i ) = D(PX−i |X+

i
‖νi|PX+

i
)−D(PX−i

‖νi) =

0, which, combined with I(X(1)
i ; X(2)

i ), shows that X(1)
i and X(2)

i are Gaussian with the same
covariance. Lastly, using Lemma 1 and the doubling trick, one can show that the optimal coupling
is also Gaussian.

4.2. Analysis of Example 1 Using Gaussian Optimality

We note that Example 1 is a rather simple setting, where (17) can be proven by integrating the
two sides of (18) and applying the change of variables, noting that the absolute value of the Jacobian
equals one. Nevertheless, it is illuminating to give an alternative proof using the Gaussian optimality
result, as a proof of concept. In this section, we only give a proof sketch where certain “technicalities”
are not justified. Details of the justifications are deferred to Appendix F.

Proof sketch for the claim in Example 1. By duality (Theorem 7), it suffices to prove the corresponding
entropic inequality. The Gaussian optimality result in Theorem 8 assumed Gaussian reference measures
on the output and non-degenerate forward channels in order to simplify the proof of the existence of
minimizers; however, supposing that Gaussian optimality extends beyond those technical conditions,
we see that it suffices to prove that for any centered Gaussian (PXi),

l

∑
i=1

h(PXi ) ≤ sup
PXl

l

∑
j=1

h(PYj) (93)

where the supremum is over Gaussian PXl with the marginals PX1 , . . . , PXl and Yj := ∑l
i=1 mjiXi. Let

ai := E[X2
i ], and choose PXl = ∏l

i=1 PXi ; we see that (93) holds if:

l

∑
i=1

log ai ≤
l

∑
j=1

log

(
l

∑
i=1

m2
jiai

)
, ∀ai > 0, i = 1, . . . , l, (94)

where (ai) are the eigenvalues and
(

∑l
i=1 mjiai

)l

i=1
are the diagonal entries of the matrix:

Mdiag(ai)1≤i≤lM
>. (95)

Therefore, (94) holds.

A generalization of Example 1 is as follows.

Proposition 3. For any orthogonal matrix M := (mji)1≤j≤l,1≤i≤l with nonzero entries, we claim that
there exists a neighborhood U of the uniform probability vector ( 1

l , . . . , 1
l ), such that for any (b1, . . . , bl)

and (c1, . . . , cl) in U , the best constant D in the FR-BLinequality (16) equals exp(H(cl)− H(bl)) where H(·)
is the entropy functional.

The proposition generalizes the claim in Example 1. Indeed, observe that there is no loss of
generality in assuming that (b1, . . . , bl) and (c1, . . . , cl) are probability vectors, since by dimensional
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analysis, we see that the best constant is infinite unless ∑l
i=1 bi = ∑l

j=1 cj; and it is also clear that the
best constant is invariant when each bi and cj is multiplied by the same positive number. Moreover,
any orthogonal matrix can be approximated by a sequence of orthogonal M with nonzero entries, for
which the neighborhood U shrinks, but always contains the uniform probability vector ( 1

l , . . . , 1
l ).

Proof sketch for Proposition 3. Note that along the same lines as (94), the best constant in the FR-BL
inequality equals:

D = sup
al∈∆

∏l
i=1 abi

i

supA�0 : Aii=ai
∏l

j=1
[
MAM>

]cj
jj

(96)

where without loss of generality, we assumed al ∈ ∆ is in the probability simplex. We first observe that
if the positive semidefinite constraint A � 0 in (96) were nonexistent, then the sup in the denominator
in (96) would equal ∏l

j=1 c
cj
j , and consequently, (96) would equal exp(H(cl)−H(bl)), for any bl , cl ∈ ∆

not necessarily close to the uniform probability vector. Indeed, fixing Aii = ai, i = 1, . . . , l, the linear
map from the off-diagonal entries to the diagonal entries of MAM> is onto the space of l-vectors
whose entries sum to one; proof of the surjectivity can be reduced to checking the fact that the only
diagonal matrix that commutes with M is a multiple of the identity matrix. Then, the sup in the
denominator is achieved when

[
MAM>

]
jj = cj, j = 1 . . . l, which is independent of al .

Next, we argue that the constraint A � 0 in (96) is not active when bl and cl are close to the
uniform vector. Denote by U (t) the set of l-vectors whose distance (say in total variation) to the
uniform vector ( 1

l , . . . , 1
l ) is at most t. Observe that:

1. There exists t > 0 such that for every al ∈ U (t),

sup
A�0 : Aii=ai

l

∏
j=1

[
MAM>

]
jj
= 1/ll (97)

which follows by continuity and the fact that when al is uniform, the sup (97) is achieved at the
strictly positive definite A = l−1I.

2. When bl = cl = ( 1
l , . . . , 1

l ) is the uniform probability vector, (96) equals one, which is uniquely
achieved by al = ( 1

l , . . . , 1
l ). To see the uniqueness, take A to be diagonal in the denominator

and observe that the denominator is strictly bigger than the numerator when the diagonals of
MAM> are not a permutation of al . Then, since the extreme value of a continuous functions is
achieved on a compact set, we can find ε > 0 such that:

∏l
i=1 a1/l

i

supA�0 : Aii=ai
∏l

j=1
[
MAM>

]1/l
jj

< 1− ε (98)

for any al /∈ U (t/2).
3. Finally, by continuity, we can choose s ∈ (0, t/2) small enough such that for any bl , cl ∈ U (s),

∏l
i=1 abi

i

supA�0 : Aii=ai
∏l

j=1
[
MAM>

]cj
jj

< 1− ε/2, ∀al /∈ U (t/2); (99)

sup
A�0 : Aii=ai

l

∏
j=1

[
MAM>

]cj

jj
= sup

A : Aii=ai

l

∏
j=1

[
MAM>

]cj

jj
, ∀al ∈ U (t/2); (100)

exp(H(cl)− H(bl)) > 1− ε/2. (101)

Taking the neighborhood U (s) proves the claim.
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5. Relation to Hypercontractivity and Its Reverses

As alluded to before and illustrated by Figure 2, the forward-reverse Brascamp-Lieb inequality
generalizes several other inequalities from functional analysis and information theory; a more complete
discussion on these relationships can be found in [7]. In this section, we focus on hypercontractivity
and show how its three cases all follow from Theorem 1. Among these, the case in Section 5.3 can
be regarded as an instance of the forward-reverse inequality that cannot be reduced to either the
forward or the reverse inequality alone. It is also interesting to note that, from the viewpoint of the
forward-reverse Brascamp-Lieb inequality, in each of the three special cases, there ought to be three
functions involved in the functional formulation; however, the optimal choice of one function can be
computed from the other two. Therefore, the conventional functional formulations of the three cases
of hypercontractivity involve only two functions, making it non-obvious to find a unifying inequality.
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1
c1
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1
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2 , ν1 ← QY1Y2 , µ1 ← QY1 , µ2 ← QY2 . Furthermore, put Z1 = X = (Y1, Y2), and let
T1 and T2 be the canonical maps (Definition 2). The measure spaces and the random transformations
are as shown in Figure 3.

P(Y1 ×Y2)P(Z1)

P(Y1)

P(Y2)

∼=
T∗1

T∗2

Figure 3. Diagram for hypercontractivity.

The constraint (12) translates to:

g1(y1, y2) ≤ F1(y1)F2(y2), ∀y1, y2 (102)

and the optimal choice of g1 is when the equality is achieved. We thus obtain the equivalence between:

‖F1‖ 1
c1
‖F2‖ 1

c2
≥ E[F1(Y1)F2(Y2)], ∀F1 ∈ L

1
c1 (QY1), F2 ∈ L

1
c2 (QY2) (103)
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and:

∀PY1Y2 , D(PY1Y2‖QY1Y2) ≥ c1D(PY1‖QY1) + c2D(PY2‖QY2). (104)

By a standard dense-subspace argument, we see that it is inconsequential that F1 and F2 in (103) are
not assumed to be continuous, nor bounded away from zero. It is also easy to see that the nonnegativity
of F1 and F2 is inconsequential for (103).

This equivalence can also be obtained from Theorem 1. By Hölder’s inequality, (103) is equivalent

to saying that the norm of the linear operator sending F1 ∈ L
1
c1 (QY1) to E[F1(Y1)|Y2 = ·] ∈ L

1
1−c2 (QY2)

does not exceed one. The interesting case is 1
1−c2

> 1
c1

, hence the name hypercontractivity.
The equivalent formulation of hypercontractivity was shown in [44] using a different proof via the
method of types/typicality, which requires that |Y1|, |Y2| < ∞. In contrast, the proof based on the
nonnegativity of relative entropy removes this constraint, allowing one to prove Nelson’s Gaussian
hypercontractivity from the information-theoretic formulation (see [7]).

5.2. Reverse Hypercontractivity (Positive Parameters)

By “positive parameters” we mean the b1 and b2 in (107) are positive.
Let QZ1Z2 be a given joint probability distribution, and let G1 and G2 be nonnegative functions

on Z1 and Z2, respectively, both bounded away from zero. In Theorem 1, take l ← 2, m ← 1,

c1 ← 1, d ← 0, g1 ← G
1

b1
1 , g2 ← G

1
b2
2 , µ1 ← QZ1Z2 , ν1 ← QZ1 , ν2 ← QZ2 . Furthermore, put

Y1 = X = (Z1, Z2), and let S1 and S2 be the canonical maps (Definition 2). The measure spaces and the
random transformations are as shown in Figure 4.

P(Z1 ×Z2)

P(Z1)

P(Z2)

P(Y1)

S∗1

S∗2

∼=

Figure 4. Diagram for reverse hypercontractivity.

Note that the constraint (12) translates to:

f1(z1, z2) ≥ G1(z1)G2(z2), ∀z1, z2. (105)

and the equality case yields the optimal choice of f1 for (13). By Theorem 1, we thus obtain the
equivalence between:

‖G1‖ 1
b1
‖G2‖ 1

b2
≤ E[G1(Z1)G2(Z2)], ∀G1, G2 (106)

and:

∀PZ1 , PZ2 , ∃PZ1Z2 , D(PZ1Z2‖QZ1Z2) ≤ b1D(PZ1‖QZ1) + b2D(PZ2‖QZ2). (107)

Note that in this setup, if Z1 and Z2 are finite, then Condition (iv) in Theorem 1 is equivalent to
QZ1Z2 � QZ1 ×QZ2 . The equivalent formulations of reverse hypercontractivity were observed in [59],
where the proof is based on the method of types.

5.3. Reverse Hypercontractivity (One Negative Parameter)

By “one negative parameter” we mean the b1 is positive and −c2 is negative in (111).
In Theorem 1, take l ← 1, m ← 2, c1 ← 1, d ← 0. Let Y1 = X = (Z1, Y2), and let S1 and T2 be

the canonical maps (Definition 2). Suppose that QZ1Y2 is a given joint probability distribution, and
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set µ1 ← QZ1Y2 , ν1 ← QZ1 , µ2 ← QY2 in Theorem 1. Suppose that F and G are arbitrary nonnegative

continuous functions on Y2 and Z1, respectively, which are bounded away from zero. Take g1 ← G
1

b1 ,

f2 ← F−
1
c2 . in Theorem 1. The measure spaces and the random transformations are as shown

in Figure 5.

P(Z1 ×Y2)P(Z1)

P(Y1)

P(Y2)

S∗1
∼=

T∗2

Figure 5. Diagram for reverse hypercontractivity with one negative parameter.

The constraint (12) translates to:

f1(z1, y2) ≥ G(z1)F(y2), ∀z1, y2. (108)

Note that (13) translates to:

‖G‖ 1
b1
≤ QY2Z1( f1)Q

c2
Y2
(F−

1
c2 ) (109)

for all F, G and f1 satisfying (108). It suffices to verify (109) for the optimal choice f1 = GF, so (109) is
reduced to:

‖F‖ 1
−c2
‖G‖ 1

b1
≤ E[F(Y2)G(Z1)], ∀F, G. (110)

By Theorem 1, (110) is equivalent to:

∀PZ1 , ∃PZ1Y2 , D(PZ1Y2‖QZ1Y2) ≤ b1D(PZ1‖QZ1) + (−c2)D(PY2‖QY2). (111)

Inequality (110) is called reverse hypercontractivity with a negative parameter in [45], where the
entropic version (111) is established for |Z1|, |Y2| < ∞ using the method of types. Multiterminal
extensions of (110) and (111) (called the reverse Brascamp-Lieb type inequality with negative
parameters in [45]) can also be recovered from Theorem 1 in the same fashion, i.e., we move all
negative parameters to the other side of the inequality so that all parameters become positive.

In summary, from the viewpoint of Theorem 1, the results in Sections 5.1–5.3 are degenerate
special cases, in the sense that in any of the three cases, the optimal choice of one of the functions in (13)
can be explicitly expressed in terms of the other functions; hence, this “hidden function” disappears in
(103), (106) or (110).
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Appendix A. Recovering Theorem 1 from Theorem 6 as a Special Case

Assume that PX → (PZi ) is surjective. Let 1Zi denote the constant one function on Zi. Define:

C :=

{
(wi) : wi ∈ Cb(Zi),

l

∑
i=1

inf
zi

wi(zi) ≥ 0

}
, (A1)

which is a closed convex cone in Cb(Z1)× · · · × Cb(Zl). Given (gi), we show that ∑l
i=1 biSi log g̃i ≥

∑l
i=1 biSi log gi implies:

(bi log g̃i − bi log gi)
l
i=1 ∈ C. (A2)

Indeed, we can verify that the dual cone:

C∗ :=

{
(πi) :

l

∑
i=1

πi(wi) ≥ 0, ∀(wi) ∈ C
}

(A3)

=
{

λ(PZ1 , . . . , PZl ) : λ ≥ 0
}

.

Under the surjectivity assumption, we see:

l

∑
i=1

πi(bi log g̃i − bi log gi) ≥ 0, ∀(πi) ∈ C∗. (A4)

Now, if (A2) is not true, by the Hahn-Banach theorem (Theorem 5), we find πi ∈ M(Zi),
i = 1, . . . , l such that:

l

∑
i=1

πi(bi log g̃i − bi log gi) < inf
(wi)∈C

l

∑
i=1

πi(wi) (A5)

so the right side of (A5) is not −∞. Since C is a cone containing the origin, the right side of (A5) hence
must be nonnegative, and we conclude that (πi) ∈ C∗. However, then, (A5) contradicts (A4).

Appendix B. Existence of Weakly-Convergent Couplings

This section proves an auxiliary result which will be used in Appendix C.

Lemma A1. Suppose that for each i = 1, . . . , l, PXi is a Borel measure on R and P(n)
Xi

converges weakly to some
absolutely continuous (with respect to the Lebesgue measure) PXi as n→ ∞. If PX is a coupling of (PXi )1≤i≤l ,

then, upon extraction of a subsequence, there exist couplings P(n)
X for (P(n)

Xi
)1≤i≤l that converge weakly to PX as

n→ ∞.

Proof. For each integer k ≥ 1, define the random variable W [k]
i := φk(Xi) where φk : R→ R∪ {e} is

the following “dyadic quantization function”:

φk : x 7→
{
b2kxc |x| ≤ k, x /∈ 2−kZ;
e otherwise,

(A6)
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and let W[k] := (W [k]
i )l

i=1. Denote by W [k] := {−k2k, . . . , k2k − 1, e} the set from which W [k]
i takes

values. Note that since PXi is assumed to be absolutely continuous, the set of “dyadic points” has
measure zero:

PXi

(
∞⋃

k=1

2−kZ
)

= 0, i = 1, . . . , l. (A7)

Since P(n)
Xi
→ PXi weakly and the assumption in the preceding paragraph precluded any positive

mass on the quantization boundaries under PXi , for each k ≥ 1, there exists some n := nk large enough
such that:

P(n)

W[k]
i

(w) ≥
(

1− 1
k

)
P

W[k]
i
(w), (A8)

for each i and w ∈ W [k]. Now, define a coupling P(n)
W[k] compatible with the

(
P(n)

W[k]
i

)l

i=1
induced by(

P(n)
Xi

)l

i=1
, as follows:

P(n)
W[k] :=

(
1− 1

k

)
PW[k] + kl−1

l

∏
i=1

(
P(n)

W[k]
i

−
(

1− 1
k

)
P

W[k]
i

)
. (A9)

Observe that (A9) is a well-defined probability measure because of (A8) and indeed has

marginals
(

P(n)

W[k]
i

)l

i=1
. Moreover, by the triangle inequality, we have the following bound on the

total variation distance: ∣∣∣P(n)
W[k] − PW[k]

∣∣∣ ≤ 2
k

. (A10)

Next, construct P(n)
X (we use P|A to denote the restriction of a probability measure P on measurable

set A, that is P|A(B) := P(A∩ B) for any measurable B):

P(n)
X := ∑

wl∈W [k]×···×W [k]

P(n)
W[k]

(
wl
)

∏l
i=1 P(n)

W[k]
i

(wi)

l

∏
i=1

P(n)
Xi
|
φ−1

k (wi)
. (A11)

Observe that P(n)
X defined in (A11) is compatible with the P(n)

W[k] defined in (A9) and indeed has

marginals (P(n)
Xi

)l
i=1. Since n := nk can be made increasing in k, we have constructed the desired sequence

(P(nk)
X )∞

k=1 converging weakly to PX. Indeed, for any bounded open dyadic cube (that is, a cube whose
corners have coordinates being multiples of 2−k where k is some integer)A, using (A10) and the assumption
(A7), we conclude:

lim inf
k→∞

P(nk)
X (A) ≥ PX(A). (A12)

Moreover, since bounded open dyadic cubes form a countable basis of the topology in Rl , we see
that (A12) actually holds for any open set A. By writing A as a countable union of dyadic cubes, using
the continuity of measure to pass to a finite disjoint union, and then apply (A12), as desired.

Appendix C. Upper Semicontinuity of the Infimum

Using Lemma A1 in Appendix B, we prove the following result, which will be used in Appendix E.
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Corollary A1. Consider non-degenerate (PYj |X). For each n ≥ 1, i = 1, . . . , l, P(n)
Xi

is a Borel measure on R,

whose second moment is bounded by σ2
i < ∞. Assume that P(n)

Xi
converges to some absolutely continuous P?

Xi
for each i. Then:

lim sup
n→∞

inf
PX : S∗i PX=P(n)

Xi

m

∑
j=1

cjD(T∗j PX‖µj) ≤ inf
PX : S∗i PX=P?

Xi

m

∑
j=1

cjD(T∗j PX‖µj). (A13)

Proof. By passing to a convergent subsequence, we may assume that the limit on the left side of (A13)
exists. For any coupling P?

X of (P?
Xi
), by invoking Lemma A1 and passing to a subsequence, we find

a sequence of couplings P(n)
X of (P(n)

Xi
) that converges weakly to P?

X. It is known that under a moment
constraint, the differential entropy of the output distribution of a non-degenerate Gaussian channel enjoys
weak continuity in the input distribution (see, e.g., [48] Proposition 18, [60] Theorem 7, or [61] Theorem 1
and Theorem 2). Thus:

lim
n→∞

m

∑
j=1

cjD(T∗j P(n)
X ‖µj) =

m

∑
j=1

cjD(T∗j PX‖µj) (A14)

and (A13) follows since P?
X was arbitrarily chosen.

Appendix D. Weak Semicontinuity of Differential Entropy under a Moment Constraint

This section proves the following result, which will be used in Appendix E.

Lemma A2. Suppose (PXn) is a sequence of distributions on Rd converging weakly to PX? , and:

E[XnX>n ] � Σ (A15)

for all n. Then

lim sup
n→∞

h(Xn) ≤ h(X?). (A16)

Remark A1. The result fails without the condition (A15). Furthermore, related results when the weak
convergence is replaced with pointwise convergence of density functions and certain additional constraints
were shown in [61] (Theorem 1 and Theorem 2) (see also the proof of [48] (Theorem 5)). Those results are not
applicable here since the density functions of Xn do not converge pointwise. They are applicable for the problems
discussed in [48] because the density functions of the output of the Gaussian random transformation enjoy many
nice properties due to the smoothing effect of the “good kernel”.

Proof. It is well known that in metric spaces and for probability measures, the relative entropy is
weakly lower semicontinuous (cf. [58]). This fact and a scaling argument immediately show that,
for any r > 0,

lim sup
n→∞

h(Xn|‖Xn‖ ≤ r) ≤ h(X?|‖X?‖ ≤ r). (A17)

Let pn(r) := P[‖Xn‖ > r], then (A15) implies:

E[XX>|‖Xn‖ > r] ≤ 1
pn(r)

Σ. (A18)
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Therefore, since the Gaussian distribution maximizes differential entropy given a second moment
upper bound, we have:

h(Xn|‖Xn‖ > r) ≤ 1
2

log
(2π)de|Σ|

pn(r)
. (A19)

Since limr→∞ supn pn(r) = 0 by (A15) and due to Chebyshev’s inequality, (A19) implies that:

lim
r→∞

sup
n

pn(r)h(Xn|‖Xn‖ > r) = 0. (A20)

The desired result follows from (A17), (A20) and the fact that:

h(Xn) = pn(r)h(Xn|‖Xn‖ > r) + (1− pn(r))h(Xn|‖Xn‖ ≤ r) + h(pn(r)). (A21)

Appendix E. Proof of Proposition 2

1. For any ε > 0, by the continuity of measure, there exists K > 0 such that:

PXi ([−K, K]) ≥ 1− ε

l
, i = 1, . . . , l. (A22)

By the union bound,

PX([−K, K]l) ≥ 1− ε (A23)

wherever PX is a coupling of (PXi ). Now, let P(n)
X , n = 1, 2, . . . be such that:

lim
n→∞

m

∑
j=1

cjD(P(n)
Yj
‖µj) = inf

PX

m

∑
j=1

cjD(PYj‖µj) (A24)

where PYj := T∗j PX, j = 1, . . . , m. The sequence (P(n)
X ) is tight by (A23). Thus, invoking the

Prokhorov theorem and by passing to a subsequence, we may assume that (P(n)
X ) converges

weakly to some P?
X. Therefore, P(n)

Yj
converges to P?

Yj
weakly, and by the semicontinuity property

in Lemma A2, we have:

m

∑
j=1

cjD(P?
Yj
‖µj) ≤ lim

n→∞

m

∑
j=1

cjD(P(n)
Yj
‖µj) (A25)

establishing that P?
X is an infimizer.

2. Suppose (P(n)
Xi

)1≤i≤l,n≥1 is such that E[X2
i ] ≤ σ2

i , Xi ∼ P(n)
Xi

, where (σi) is as in Proposition 1 and:

lim
n→∞

F0

(
(P(n)

Xi
)l

i=1

)
= sup

(PXi
) : ΣXi

�σ2
i

F0((PXi )
l
i=1). (A26)

The regularization on the covariance implies that for each i, (P(n)
Xi

)n≥1 is a tight sequence. Thus,

upon the extraction of subsequences, we may assume that for each i, (P(n)
Xi

)n≥1 converges to some
P?

Xi
. We have the moment bound:

E[X2
i ] = lim

K→∞
E[min{X2

i , K}] (A27)
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= lim
K→∞

E[min{(X(n)
i )2, K}] (A28)

≤ σ2
i (A29)

where Xi ∼ P?
Xi

and X(n)
i ∼ P(n)

Xi
. Then, by Lemma A2,

∑
i

biD(P?
Xi
‖νi) ≤ lim

n→∞ ∑
i

biD(P(n)
Xi
‖νi) (A30)

Under the covariance regularization and the nondegenerateness assumption, we showed in
Proposition 1 that the value of (76) cannot be +∞ or−∞. This implies that we can assume (by passing
to a subsequence) that P(n)

Xi
� λ, i = 1, . . . , l, since otherwise F((PXi)) = −∞. Moreover, since(

∑j cjD(P(n)
Yj
‖µj)

)
n≥1

is bounded above under the nondegenerateness assumption, the sequence(
∑i biD(P(n)

Xi
‖νi)

)
n≥1

must also be bounded from above, which implies, using (A30), that:

∑
i

biD(P?
Xi
‖νi) < ∞. (A31)

In particular, we have P?
Xi
� λ for each i. Now, Corollary A1 shows that:

inf
PX : S∗i PX=P?

Xi

∑
j

cjD(T∗j PX‖µj) ≥ lim
n→∞

inf
PX : S∗i PX=P(n)

Xi

∑
j

cjD(T∗j PX‖µj) (A32)

Thus, (A30) and (A32) show that (P?
Xi
) is in fact a maximizer.

Appendix F. Gaussian Optimality in Degenerate Cases: A Limiting Argument

This section proves Theorem 2. We first give a proof for the choice of parameters in Example 1,
merely for the sake of notational simplicity, and then discuss how to extend the argument.

Appendix F.1. Proof of the Claim in Example 1

The proof will be based on Theorem 8, which assumes non-degenerate forward channels and
Gaussian measures on the output of the reverse channels. To that end, we will adopt an approximation
argument. For each j = 1, . . . , l, define the linear operator Tε

j by:

(Tε
j φ)(x1, . . . , xl) := E

[
φ

(
l

∑
i=1

mjixi + Nε

)]
(A33)

for any measurable function φ on R, where Nε ∼ N (0, ε). Let γ 1
ε

:= N (0, ε−1), and note that the

density of
√

2π
ε γ 1

ε
converges pointwise to that of the Lebesgue measure.

Lemma A3. For any ε > 0, let (Tε
j ) be defined as in (A33). Then, for any Borel PXi � λ, i = 1, . . . , l,

l

∑
i=1

D(PXi‖γ 1
ε
)− l

2
log

2π

ε
≥ inf

PXl : S∗i PXl=PXi

{
−

l

∑
j=1

h(Tε∗
j PXl )

}
. (A34)

Proof. By Theorem 8, it suffices to prove (A34) when PXi is Gaussian, and from (A34), it is easy to
see that it suffices to prove the case of the centered Gaussian. Let PXi = N (0, ai), i = 1, . . . , l. We can
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upper bound the right side of (A34) by taking PXl = PX1 × PXl instead of the infimum, so it suffices to
prove that:

ε

2

l

∑
i=1

ai −
1
2

l

∑
i=1

log ai ≥ −
1
2

l

∑
j=1

log

(
l

∑
i=1

m2
jiai + ε

)
(A35)

for any ε, a1, . . . , al ∈ (0, ∞). This is implied by the ε = 0 case, which we proved in (94).

By the duality of the forward-reverse Brascamp-Lieb inequality (Theorem 7) , we conclude from
Lemma A3 that:

Lemma A4. For any ε > 0 and nonnegative continuous ( f j), (gi) satisfying:

l

∑
i=1

log gi(xi) ≤
l

∑
j=1

(Tε
j log f j)

(
xl
)

, ∀xl ∈ Rl , (A36)

we have: (
2π

ε

) l
2 l

∏
i=1

∫
gidγ 1

ε
≤

l

∏
i=1

∫
f j(x)dx. (A37)

Now, suppose that the claim in Example 1 is not true; then there are nonnegative continuous ( f j)

and (gi) satisfying (17) while:

l

∏
i=1

∫
gi(x)dx >

l

∏
i=1

∫
f j(x)dx, (A38)

By the standard approximation argument, we can assume, without loss of generality, that:

gi(x) = 0, ∀x : |x| ≥ R, 1 ≤ i ≤ l; (A39)

f j(x) ≥ δe−x2
, ∀1 ≤ j ≤ l, (A40)

for some R sufficiently large and δ > 0 sufficiently small. Note that for any xl ∈ [−R, R]l ,

l

∑
i=1

mjixi ∈ [−
√

lR,
√

lR]. (A41)

Since log f j is uniformly continuous on [−2
√

lR, 2
√

lR] for each j and since we assumed (A40),
we have:

lim
ε→0

inf
xl∈[−R,R]l

{
l

∑
j=1

(Tε
j log f j)

(
xl
)
−

l

∑
j=1

(T0
j log f j)

(
xl
)}
≥ 0. (A42)

However, since we assumed (17) and (A39), we must also have:

lim
ε→0

ηε ≥ 0 (A43)

where:

ηε := inf
xl∈Rl

{
l

∑
j=1

(Tε
j log f j)

(
xl
)
−

l

∑
i=1

log gi(xi)

}
. (A44)
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Put:

g̃ε
1 := exp(ηε)g1, (A45)

g̃ε
i := gi, i = 1, . . . , l. (A46)

Then, (g̃ε
i ) and ( f j) satisfy the constraint (A36) for any ε > 0. By applying the monotone

convergence theorem and then Lemma A4,

l

∏
i=1

∫
gi(xi)dxi ≤ lim

ε→0

(
2π

ε

) l
2 l

∏
i=1

∫
g̃ε

i dγ 1
ε

(A47)

≤
l

∏
i=1

∫
f j(x)dx (A48)

which violates the hypothesis (A38), as desired.

Appendix F.2. Proof of Theorem 2

The limiting argument can be extended to the vector case to prove Theorem 2. Specifically, for
each j = 1, . . . , m, define Tε

j the same as (A33) except that Nε ∼ N (0, εI), where I is the identity

matrix whose dimension is clear from the context (equal to dim(Ej) here), and let Pε
Yj |X1 ...Xl

be the

dual operator. For each i = 1, . . . , l, let νε
i :=

( 2π
ε

) 1
2 dim(Ei) · N (0, ε−1I), whose density convergences

pointwise to that of ν0
i , defined as the Lebesgue measure on Ei. Define:

dε := sup

{
l

∑
i=1

bi log νε
i (gi)−

m

∑
j=1

cj log
∫

f j

}
(A49)

where the supremum is over nonnegative continuous functions f1, . . . , fm and g1, . . . , gl such that the
summands in (A49) are finite and:

l

∑
i=1

bi log gi(xi) ≤
m

∑
j=1

cj(Tε
j log f j)(x1, . . . , xl), ∀x1, . . . , xl . (A50)

The same limiting argument (A38)–(A48) extended to the vector case shows that:

d0 ≤ lim
ε↓0

dε. (A51)

Next, define Fε
0 (·) for (µj), (νε

i ) and Pε
Yj |X1 ...Xl

, similarly to (75). The entropic⇒functional

argument shows that:

dε ≤ sup
PX1

,...,PXl

Fε
0 (PX1 , . . . , PXl ). (A52)

However, Theorem 8 based on the rotational invariance of the Gaussian measure can be extended
to the vector case, so for any ε > 0,

sup
PX1

,...,PXl

Fε
0 (PX1 , . . . , PXl ) = sup

PX1
,...,PXl

c.G.
Fε

0 (PX1 , . . . , PXl ), (A53)
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where c.G. means that the supremum on the right side is over centered Gaussian measures. The fact
that centered distributions exhaust the supremum follows easily from the definition of F0. Moreover,
from the definitions, it is easy to see that Fε

0 is monotonically decreasing in ε, and in particular:

sup
PX1

,...,PXl
c.G.

Fε
0 (PX1 , . . . , PXl ) ≤ sup

PX1
,...,PXl

c.G.
F0

0 (PX1 , . . . , PXl ). (A54)

To finish the proof with the above chain of inequalities, it only remains to show that the right
side of (A54) equals the supremum in (A49) with ( f j) (gj) taken over center Gaussian functions.
This follows by similar steps as the proof of the functional⇒entropic part of Theorem 1. We briefly
mention how the idea works: suppose A is the linear space defined as the Cartesian product of R and
the set of n× n symmetric matrices. Let Λ(·) be the convex functional on A defined by:

Λ(r, M) := ln
∫

expe

(
r + x>Mx

)
d x (A55)

=

{
r + n

2 ln π − 1
2 ln | −M| M � 0,

+∞ otherwise.
(A56)

The dual space of A is itself, and Λ∗ is given by:

Λ∗(s, H) = sup
r, M�0

{sr + Tr(H>M)−Λ(r, M)}. (A57)

Then, Λ∗(s, H) = +∞ if s 6= 1, and:

Λ∗(1, H) = sup
M�0

{
Tr(H>M)− n

2
ln π +

1
2

ln | −M|
}

. (A58)

The supremum in (A58) equals +∞ if H is not positive-semidefinite. However, if H is
positive-semidefinite, the supremum equals − 1

2 ln 2πe|H|, which is equal to the relative entropy
between N (0, H) and the Lebesgue measure (supremum achieved when M = −(2H)−1). Since the
proof of Theorem 1, in essence, only uses the duality between convex functionals, the same algebraic
steps therein also establish the desired matrix optimization identity.
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