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Abstract—We consider a natural measure of the benefit of
side information: the reduction in optimal estimation risk when
side information is available to the estimator. When such a
measure satisfies a natural data processing property, and the
source alphabet has cardinality greater than two, we show
that it is uniquely characterized by the optimal estimation risk
under logarithmic loss, and the corresponding measure is equal
to mutual information. Further, when the source alphabet is
binary, we characterize the only admissible forms the measure
of predictive benefit can assume. These results unify many
causality measures in the literature as instantiations of directed
information, and present a natural axiomatic characterization
of mutual information without requiring the sum or recursivity
property.

I. INTRODUCTION

In statistical decision theory, it is often a controversial issue
to choose the appropriate loss function in quantifying the
risk for a given application. One popular loss function is the
logarithmic loss, defined as follows. Let X = {x1,x2,...,z,}
be a finite set with |X'| = n, let I';, denote the set of probability
measures on X, and let R denote the extended real line.

Definition 1 (Logarithmic Loss). Logarithmic loss liog: X X
I',, — R is defined by

Elog(‘T,P) = 7]0gP(1')’ (D

where P(x) denotes the probability of © under measure P.

Logarithmic loss has enjoyed numerous applications in
various fields. For instance, its usage in statistics dates back
to Good [1], and it has found a prominent role in learning
and prediction (cf. Cesa-Bianchi and Lugosi [2, Ch. 9]).
Logarithmic loss also assumes an important role in informa-
tion theory, where many of the fundamental quantities (e.g.,
entropy, relative entropy, etc.) can be interpreted as the optimal
estimation risk under logarithmic loss. Recently, Courtade and
Weissman[3] showed that the long-standing open problem
of multiterminal source coding can be completely solved
under logarithmic loss, which demonstrates the specialty of
logarithmic loss in lossy source coding problems. The use
of the logarithm in defining entropy arises due to its various
axiomatic characterizations, the first of which dates back to
Shannon [4].
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The main contribution of this paper is in providing funda-
mental justification for inference using logarithmic loss. In
particular, we show that a single modest and natural Data
Processing requirement mandates the use of logarithmic loss.
We begin by posing the following.

Question 1 (Benefit of Side Information). Suppose X, Z are
jointly distributed random variables. How significant is the
contribution of Z for inference on X ?

II. PROBLEM FORMULATION AND MAIN RESULTS

Toward answering Question 1, let /: X x ) — R be an
arbitrary loss function with reproduction alphabet )/, where
Y is arbitrary. Given (X,Z) ~ Pxz, where Z lies in an
arbitrary measurable space, it’s natural to quantify the benefit
of additional side information Z by computing the difference
between the expected losses in estimating X € X with and
without side information Z, respectively. This motivates the
definition:

C(¢, Pxz) & innyp[E(X,yl)] — inf Ep[(X,Y2)], (2)

Yy1€ Y2(Z)

where y; € ) is deterministic, and Yo = Y5(Z) € Y is
any measurable function of Z. The expectation is taken with
respect to Pxz. We require that indeterminate forms like
00 — oo do not appear in the definition of C'(¢, Pxz). By
taking Z to be independent of X, we obtain for all P € T';,,
| infy1€yEP[£(Xa yl)]‘ < o0.

The formulation (2) has appeared previously in the statistics
literature. In [5], Dawid defined the coherent dependence
function, which is equivalent to (2), and used it to quantify the
dependence between two random variables X, Z. Our frame-
work of quantifying the predictive benefit of side information
is also closely connected to the notion of proper scoring rules
and the literature on probability forecasting in statistics. The
survey by Gneiting and Raftery [6] provides a good overview.

Having introduced the yardstick in (2), we can now refor-
mulate the question of interest: Which loss function(s) ¢ can
be used to define C(¢, Px z) in a meaningful way? Of course,
“meaningful” is open to interpretation, but it is desirable that
C (¢, Pxz) be well-defined, at minimum. This motivates the
following axiom:
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Data Processing Axiom. For all distributions Pxz, the
quantity C(¢, Pxz) satisfies

C(¢,Prz) <C(, Pxz)

whenever T(X) € X is a statistically sufficient transform of
X for Z.

We remind the reader that the statement ‘7" is a statistically
sufficient transform of X for Z’ means that the following two
Markov chains hold:

T-X-2, X-T-2 3)

In other words, T'(X) is a lossless representation of all of the
information X contains about Z.

In words, the Data Processing Axiom stipulates that pro-
cessing the data X — 7' cannot boost the predictive benefit
of the side information'.

To convince the reader that the Data Processing Axiom is a
natural requirement, suppose instead that the Data Processing
Axiom did not hold. Since X and 7' are mutually sufficient
statistics for Z, this would imply that there is no unique value
which quantifies the benefit of side information Z for the
random variable of interest. Thus, the Data Processing Axiom
is needed for the benefit of side information to be well-defined.

Benign as the Data Processing Axiom, it has far-reaching
implications for the form C'(¢, Pxz) can take. This is captured
by our first main result:

Theorem 1. Let n > 3. Under the Data Processing Axiom,
the function C({, Px z) is uniquely determined by the mutual
information,

C(l, Pxz) = 1(X; Z), 4)

up to a multiplicative factor.

The following corollary immediately follows from Theo-
rem 1.

Corollary 1. Let n > 3. Under the Data Processing Axiom,
the benefit of additional side information Z for inference on
X with common side information W, i.e.

inf E X,Y7)] — inf
YII?W) pl(X,Y71)] Y(HZl )

2 )

)EPW(X,E)],

is uniquely determined by the conditional mutual information,

I(X: Z|W), (6)

up to a multiplicative factor.

Thus, up to a multiplicative factor, we see that logarithmic
loss generates the only measure of predictive benefit (defined
according to (2)) which satisfies the Data Processing Axiom.
In other words, Theorem 1 provides a definitive answer to
Question 1 under the framework we have described, and also
highlights the special role that logarithmic loss plays.

UIn fact, the Data Processing Axiom is weaker than this general data pro-
cessing statement since it only addresses statistically sufficient transformations
of X.

Theorem 1 shows that mutual information is natural to
measure the amount of reduction of statistical risk when we
have side information. Incidentally, Erkip and Cover [7] argued
that mutual information was a natural quantity in the context
of portfolio theory, where it emerges as the increase in growth
rate due to the presence of side information.

It is worth mentioning that Theorem 1 is closely connected
to existing results on axiomatic characterizations of informa-
tion measures; see Csiszar [8] for a survey. To emphasize our
contribution, we note that Csiszar [8] names only the axiomatic
result of AcZel, Forte, and Ng [9] as a characterization of
information measures as functions of the underlying probabil-
ity distribution that requires neither recursivity nor the sum
property. However, [9] focuses on entropy characterization,
and the framework therein does not extend to the problem we
consider.

Interestingly, the assumption that n > 3 in Theorem 1 is
essential. The class of solutions for the binary alphabet setting
is characterized by the following theorem.

Theorem 2. Let n = 2. C(¢, Pxz) is of the form
C(l, Pxz) = Ez[G(Px|z)] — G(Px)

Sor a symmetric convex function G((p,1 — p)) : T'y — R if,
and only if, the Data Processing Axiom holds.

We mention in passing that there is an interesting regime of
observations surrounding the characterization of information
measures, which is sensitive to the alphabet size being binary
or larger. This phenomenon is explored in detail in [10].

The rest of this paper is organized as follows. In Section
III, we explore the connections between our results and
the existing literature on causal analysis, including Granger
and Sims causality, Geweke’s measure, transfer entropy, and
directed information. Proof sketches of Theorems 1 and 2 are
provided in Section IV. Details of proofs can be found in [11].

III. CAUSALITY MEASURES: AN AXIOMATIC VIEWPOINT

Inferring causal relationships from observed data plays an
indispensable part in scientific discovery. Granger, in his sem-
inal work [12], proposed a predictive test for inferring causal
relationships. To state his test, let X;,Y;, U; be stochastic
processes, where X, Y; are the processes of interest, and U,
contains all information in the universe accumulated up to time
t. Granger’s causality test asserts that Y; causes X, denoted
by Y; = X,, if we are better able to predict X; using the past
information of U, than by using all past information in Uy
apart from Y;. In Granger’s definition, the quality of prediction
is measured by the squared error risk achieved by the optimal
unbiased least-squares predictor.

In his 1980 paper, Granger [13] introduced a set of oper-
ational definitions which made it possible to derive practical
testing procedures. For example, he assumes that we must be
able to specify U; in order to perform causality tests, which is
slightly different from his original definition which required
knowledge of all information in the universe (which is usually
unavailable).
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Later, Sims [14] introduced a related concept of causality,
which was proved to be equivalent to Granger’s definition in
Sims [14], Hosoya [15], and Chamberlain [16] in a variety of
settings.

Motivated by Granger’s framework for testing causality
using linear prediction, Geweke [17][18] proposed a causality
measure to quantify the extent to which Y is causing X.
Quoting Geweke (emphasis ours):

“The empirical literature abounds with tests of inde-
pendence and unidirectional causality for various pairs of
time series, but there have been virtually no investigations of
the degree of dependence or the extent of various kinds of

feedback. The latter approach is more realistic in the typical
case in which the hypothesis of independence of unidirectional
causality is not literally entertained, but it requires that one
be able to measure linear dependence and feedback.”

In other words, Geweke makes the important distinction
between a causality test which makes a binary decision on
whether one process causes another, and a causality measure
which quantifies the degree to which one process causes
another. Geweke proposed the following measure as a natural
starting point:

0.2(Xt|Xt71)
02(Xt|Xt_1, yt—l)’

Fy_x £ (7N
where 02(X;| X!~ Y*~1) is the variance of the prediction
residue when predicting X; via the optimal linear predic-
tor constructed from observation X*~1 Y¢~1. Note that if
Fy_x > 0, we could conclude Y; = X; according to
Granger’s test.

It has long been observed that the restriction to optimal
linear predictors in testing causality is not necessary. In
fact, Chamberlain [16] proved a general equivalence between
Granger and Sims’ causality tests by replacing linear predic-
tors with conditional independence tests. However, the most
natural generalization of (7) wasn’t clear until Gourieroux,
Monfort, and Renault [19] proposed the so-called Kullback
causality measures in 1987. It is now well-known that Kull-
back causality measures are equivalent to (7) under linear
Gaussian models (cf. Barnett, Barrett and Seth [20]).

Using information theoretic terms, Kullback causality mea-
sures are nothing but the directed information introduced by
Massey [21], and motivated by Marko [22]. Using modern
notation, the directed information from X" to Y™ is defined
as

I(X" = Y™ &Y I(XL Y[yt (8)
=1
=HY"™) - HY"|X"), ©

where H(Y™||X™) is the causally conditional entropy, defined
by

HY™| X" &Y HY|Y"™', X", (10)

i=1

Massey and Massey [23] established the pleasing conserva-
tion law of directed information:

I(X™Y") =I(X" = Y™")+1(Y" ' = X") (1)
_ I(Xn—l N Yn) —I—I(Yn_l — Xn)
+Y XY XY, (12)

i=1
which implies that the extent to which process X; influences
process Y; and vice-versa always sum to the total mutual
information between the two processes. Since I(Y"~1 — X™)
can be expressed as

I(Y" ' = X™) =Y H(X|X') = HXGIX Yy,
i=1

X; being conditionally independent of Y*~! given X*~! is
equivalent to I(Y"~! — X™) = 0. This corresponds precisely
to the definition of general Granger non-causality. Permuter,
Kim, and Weissman [24] showed various applications of
directed information in portfolio theory, data compression, and
hypothesis testing in the presence of causality constraints.

We remark that, for practical applications, the directed
information between stochastic processes can be computed
using the universal estimators proposed in [25], which exhibit
optimal statistical and convergence properties.

Finally, we note that the notion of transfer entropy in the
physics literature, which was proposed by Schreiber [26] in
2000, turns out to be equivalent to directed information.

To connect our present discussion on causality measures to
Theorem 1, we recall that the directed information rate [27]
between a pair of jointly stationary finite-alphabet processes
X4, Y; can be written as:

1
lim —I(Y"™ ! = X™)

n—oo N
= inf E[glog(XO» Tl)] — inf
Ti(X-1) To(X_L,

—oo

» Eliog (X0, T2)].
YZo)

In light of this, we can conclude from Theorem 1 and
Corollary 1 that the directed information rate is the unique
measure of causality which assumes the form (2) and satisfies
the Data Processing Axiom. Thus, our axiomatic viewpoint
explains why the same causality measure has appeared so often
in varied fields including economics, statistics, information
theory, and physics. Except in the binary case, we roughly
have the following: All reasonable causality measures defined
by a difference of predictive risks must coincide.”

IV. PROOF OF MAIN RESULTS

Due to space constraints, we can only sketch the proof
of Theorems 1 and 2 and highlight the key ideas. Complete
details could be found in [11].

2Here, the authors’ interpretation of “reasonable” is reflected by the Data
Processing Axiom. In the context of this section, the Data Processing Axiom
stipulates that any reasonable causality measure should be invariant under
statistically sufficient transformations of the data — a desirable property and
natural criterion.
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To begin, we need to put all estimation risk on the common
footing by eliminating the arbitrary nature of the reconstruc-
tion alphabet ). The following lemma achieves this goal.

Lemma 1. There exists a bounded convex function V : T',, —
R, depending on {, such that

C(l, Pxz) = <ZPZ PX|Z)>—V(PX). (13)

The proof of Lemma 1 follows from defining V' (P) by

V(P) = — inf Ep[¢(X, )], (14)
yey
and its details could be found in [11]. In the statistics literature,
the quantity —V'(P) is usually called the generalized entropy
or Bayes envelope, and we refer to Dawid [28] for details.
The next lemma asserts that we only need to consider
symmetric V' (P).

Lemma 2. Under the Data Processing Axiom, there exists a
symmetric finite convex function G : I';, — R, such that

C(t,Pxz) = (Z Py(z PX|Z)) - G(Px), (15

and G(-) is equal to V(-) in Lemma 1 up to a linear
translation:
G(P)=V(P)+

{c, P), (16)

where ¢ € R™ is a constant vector.

The proof of Lemma 2 follows by applying a permutation
to the space X' and applying the Data Processing Axiom.

Now we are in a position to begin the proof of Theorem 1
in earnest.

A. The case n > 3

It suffices to consider the constrained case when Z € {1, 2},
and show that the Data Processing Axiom in this case man-
dates the usage of logarithmic loss.

Define o £ Pz(1). Take P;?,Pﬁ? to be two probability
vectors on X’ parametrized in the following way:

P(” (17)

(18)

()\1t )\1( ) 7"—)\1,]94,...
= (Aat, Ao(L — 1), 7

where r £ 1 — ZZ>4p“t € [0 1,0 <X <.
Taklng PX\I = P() le2

. Pn)

- A27p47 s 7pn)7

P( ) , we have

C(¢, Pxz)

= aV(P{) + (1 = V(PY) = V(@B + (1 - a)PY).

Note that for any «, ¢, A\1, A2, the following transformation
is a sufficient statistic for Z.

T(X) = 1 X € {z1, 22} (19)
X otherwise

The Data Processing Axiom implies that for all o € [0, 1]
and legitimate A; > 0, A2 > 0, A\ < Ao,

V(P + (1 - a)V(PY) = V(aP? + (1 - a)P))
= aV(PY) + (1—a)V(P{))
V(P + (1-a)P). (20)
Fixing p4, ps, . . ., Pn, we define the function
RO\ 594, D5, - - pn) 2 V(PY), 1)

and further denote R(\, ¢;p4,ps, .- -
plicity.

,Pn) by R(\,t) for sim-

Note that if we define R(\,t) £ R(\,t) — AU(t) — F(t),
where U(t), F'(t) are arbitrary real-valued functions, for all
A1, Ao, t we have

OéR()q, t) =+ (1 — O[)R()\Q, t) — R(O&/\l =+ (1 — (1))\2, t)
= aR(A1,t) + (1 —a)R(Xa,t) — R(a; + (1 — )Xo, ),
which, recalling (20), implies that
C‘{R()‘lv t) + (1 - a)R(AQa )
= aR(A,1) + (1 — a)R(),
— R(aM + (1 — a)Ag, 1).

R(Oé)\l + (1 - Oé))\g,t)
1)

(22)

Taking Ay =0and Ay =7 =1— Zi>4pi, we can choose
the functions U (t), F'(t) in a way such that

ZA(p4,... B(p4,...

where A, B are some functions of (p4, ...
Plugging (23) into (22), we know that

R(0,t) Pn), R(r.t)= Pn)s (23)

,Pn)-

R((l —a)r,t)
—R((1—a)r,1),

7pn) + (1 - O‘)B(p4;---,pn)

CY14(p47 .

= aA(py, ...
which implies that
R((1—a)r,t)

= R((1—a)r,1), Ya € [0,1],t € [0,1]. (24)

In otller words, there exists a function F :
that R(\,t)

[0,1] — R, such
= E(\). Therefore, expressing A,t in terms of

p1, P2, and taking p; = za, p2 = z(1 —a), a € [0,1], p3 =
1 — (32,54 pi) — x yields the expression
V(P)=E(z)+2U (a) + F (a), (25)

where P = (p1,p2,...,Pn). Now, we recall the following

lemma.

Lemma 3 (Gale-Klee-Rockafellar [29]). If D is boundedly
polyhedral and ¢ is a convex function on the relative interior
of D which is bounded on bounded sets, then ¢ has a unique
continuous covex extension on D.

Lemma 3 implies that we must have F' = const in order to
extend V(P) to a continuous function on I'y,, else the limit
of V(P) as x — 0 in (25) depends on how we approach the
boundary. Without loss of generality, we take F' = 0.
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Since G(P) is a symmetric function, we know that if we
exchange p; and p3 in G(P), the value will not change. In
other words, for 7 = p; + p2 + p3, we have

pP1
(v (2

>+EUWH(%mm

:(r—pl)U<Tf3

p1> +E(r—p1)+(cs—c1)p1- (26)

Lemma 4 ([30]). Any measurable solution of
) +-o (125 ) =+ -k (£ @1

for x,y € [0,1) with x +y € [0,1], where f,h :[0,1) - R

1—2x

and g,k : [0,1] — R, has the form
f(z) = aHa(x) + bz + d, (28)
9(y) = aHa(y) + bay + by — bu, (29)
h(z) = aHa(x) + bgx + by + by — by — by + d, 30)
k(y) = aHa(y) + bay + bz — ba, (31)

for x € [0,1),y € [0,1], where Ha(z) = —xlnz — (1 —
x)In(1—x) is the binary Shannon entropy and a, by, ba, b3, by,
and d are arbitrary constants.

After significant algebraic manipulation (which is omitted
due to space constraints), it follows from Lemma 4 and (26)
that

G(P)=A Zpi In p; + const, (32)
i=1
where A is a positive constant. Plugging (32) into Lemma 2

completes the proof for n > 3.

B. The case n = 2

The ‘if’ part of Theorem 2 follows from Lemma 2. Savage’s
representation of proper scoring rules [6] gives the ‘only if’
direction. In particular, the Savage representation asserts, for
a convex function G, we can define a loss function ¢ (z, Q) :
X xT, = Rby

KG(xa Q) £ <G/(Q)7 Q> - G(Q) - G;(Q)v (33)

where G’ (Q) denotes a sub-gradient of G(Q) at @, and G/,(Q)
is the component of G'(Q) corresponding to Q(x) (see, e.g.,
[6] for details). The loss function ¢ (z, Q) also satisfies

Pe jnf Eplta(X,Q). (34)

Substituting loss function {¢(z, Q) into (2) defines a valid
C, Pxz).
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