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Abstract—Four problems related to information divergence
measures defined on finite alphabets are considered. In three
of the cases we consider, we illustrate a contrast which arises
between the binary-alphabet and larger-alphabet settings. This
is surprising in some instances, since characterizations for the
larger-alphabet settings do not generalize their binary-alphabet
counterparts. For example, we show that f-divergences are not
the unique decomposable divergences on binary alphabets that
satisfy the data processing inequality, despite contrary claims in
the literature.

I. INTRODUCTION

Divergence measures play a central role in information the-
ory and other branches of mathematics. Many special classes
of divergences, such as Bregman divergences, f-divergences,
and Kullback-Liebler-type f-distance measures, enjoy various
properties which make them particularly useful in problems
related to learning, clustering, inference, optimization, and
quantization, to name a few. In this paper, we investigate
the relationships between these three classes of divergences,
each of which will be defined formally in due course, and the
subclasses of divergences which satisfy desirable properties
such as monotonicity with respect to data processing. Roughly
speaking, we address the following four questions:

QUESTION 1: If a decomposable divergence satisfies the data
processing inequality, must it be an f-divergence?
QUESTION 2: Is Kullback-Leibler (KL) divergence the unique
KL-type f-distance measure which satisfies the data process-
ing inequality?

QUESTION 3: Is KL divergence the unique Bregman diver-
gence which is invariant to statistically sufficient transforma-
tions of the data?

QUESTION 4: Is KL divergence the unique Bregman diver-
gence which is also an f-divergence?

Of the above four questions, only QUESTION 4 has an
affirmative answer (despite indications to the contrary having
appeared in the literature; a point which we address further in
Section III-A). However, this assertion is slightly deceptive. In-
deed, if the alphabet size n is at least 3, then all four questions
can be answered in the affirmative. Thus, counterexamples
only arise in the binary setting when n = 2.

This is perhaps unexpected. Intuitively, the data processing
inequality is not a stringent requirement. In this sense, the
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answers to the above series of questions imply that the class
of “interesting” divergence measures can be very small when
n > 3 (e.g., restricted to the class of f-divergences, or a
multiple of KL divergence). However, in the binary alphabet
setting, the class of “interesting” divergence measures is strik-
ingly rich, a point which will be emphasized in our results. In
many ways, this richness is surprising since the binary alphabet
is usually viewed as the simplest setting one can consider.
In particular, we would expect that the class of interesting
divergence measures corresponding to binary alphabets would
be less rich than the counterpart class for larger alphabets.
However, as we will see, the opposite is true.

The observation of this dichotomy between binary and
larger alphabets is not without precedent. For example, Fischer
proved the following in his 1972 paper [1].

Theorem 1 Suppose n > 3. If, and only if, f satisfies

> ok k) <D pif(ar) (0
k=1 k=1
Sor all probability distributions P = (p1,p2,...,pn),Q =
(q1,92,---,qn), then it is of the form
f(p)=clogp+b forall pec(0,1), ()

where b and ¢ < 0 are constants.

As implied by his supposition that n > 3 in Theorem 1,
Fischer observed and appreciated the distinction between the
binary and larger alphabet settings when considering so-called
Shannon-type inequalities of the form (1). Indeed, in the same
paper [1], Fischer gave the following result:

Theorem 2 The functions of the form

o= [ G;‘”d% 4c0.1),

with G arbitrary, nonpositive, and satisfying G(1—q) = G(q)
for q € (0,1), are the only absolutely continuous functions'
on (0,1) satisfying (1) when n = 2.

3)

Only in the special case where G is taken to be constant in (3),
do we find that f is of the form (2). We direct the interested
reader to [2, Chap. 4] for a detailed discussion.

In part, the present paper was inspired and motivated by

I'There also exist functions f on (0, 1) which are not absolutely continuous
and satisfy (1). See [1].
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Theorems 1 and 2, and the distinction they draw between
binary and larger alphabets. Indeed, the answers to ques-
tions QUESTION 1 — QUESTION 3 are in the same spirit
as Fischer’s results. For instance, our answer to question
QUESTION 2 demonstrates that the functional inequality (1)
and a data processing requirement are still not enough to
demand f take the form (2) when n = 2. To wit, we prove
an analog of Theorem 2 for this setting (see Section III-B).

This paper is organized as follows. In Section II, we recall
several important classes of divergence measures and define
what it means for a divergence measure to satisfy the data
processing, sufficiency, or separability properties. In Section
III, we investigate each of the questions posed above and state
our main results. The Appendices contain all proofs.

II. PRELIMINARIES: DIVERGENCES, DATA PROCESSING,
AND SUFFICIENCY PROPERTIES

Let R £ [—00, +00] denote the extended real line. Through-
out this paper, we only consider finite alphabets. To this end,
let X = {1,2,...,n} denote the alphabet, which is of size
n, and let I';, = {(p11p21"'7pn) : Z?:lpi = Lp >
0,i = 1,2,...,n} be the set of probability measures on X,
with TV = {(p1,p2,---.pn) @ Doy pi = Lipi > 0,0 =
1,2,...,n} denoting its relative interior.

We refer to a nonnegative function D : I';, x I'), — R
simply as a divergence function (or, divergence measure).
Of course, essentially all common divergences — including
Bregman and f-divergences, which are defined shortly — fall
into this general class. In this paper, we are primarily interested
in divergence measures which satisfy either of two properties:
the data processing property and the sufficiency property.

In the course of defining these properties, we will consider
(possibly stochastic) transformations Py x : X — Y, where
Y € X. That is, Pyx is a Markov kernel with source
and target both equal to X (equipped with the discrete o-
algebra). If X ~ Px, we will write Px — Py|x — Py to
denote that Py is the marginal distribution of Y generated

A

by passing X through the channel Py |x. That is, Py(-) =
> vex Px (@) Pyix ().

Now, we are in a position to formally define the data
processing property.

Definition 1 (Data Processing) A divergence function D sat-
isfies the data processing property if, for all Px,Qx € Ty,
we have

D (Px;Qx) > D (Py;Qy) €]

for any transformation Py|x : X — Y, where Py and Qy
are defined via Px — Py|x — Py and Qx — Py|x — Qy,
respectively.

A weaker version of the data processing inequality is the
sufficiency property. For two arbitrary distributions P, ), we
define a joint distribution Pxz, Z € {1,2}, such that

Pxp=P, Pxp=0Q. )]

A transformation Py |x : X — Y is said to be a sufficient
transformation of X for Z if Y is a sufficient statistic of X
for Z. We remind the reader that Y is a sufficient statistic of
X for Z if the following two Markov chains hold:

Z-X-Y Z-Y-X. (6)

Definition 2 (Sufficiency) A divergence function D satisfies
the sufficiency property if, for all Pxi, Px2 € I'y, and Z €
{1,2}, we have

D(Px1; Px2) = D (Pyp1; Pya) (7

for any sufficient transformation Py|x : X — Y of X for
Z, where Py, is defined by Px|, — Py|x — Py, for z €
{1,2}.

Clearly the sufficiency property is weaker than the data
processing property because our attention is restricted to only
those (possibly stochastic) transformations Py-|x for which Y’
is a sufficient statistic of X for Z. Given the definition of a
sufficient statistic, we note that the inequality in (7) can be
replaced with equality to yield an equivalent definition.

Henceforth, we will simply say that a divergence func-
tion D(-;-) satisfies DATA PROCESSING when it satisfies the
data processing property. Similarly, we say that a divergence
function D(-;-) satisfies SUFFICIENCY when it satisfies the
sufficiency property.

Remark 1 In defining both DATA PROCESSING and SUFFI-
CIENCY, we have required that Y € X. This is necessary since
the divergence function D(-;-) is only defined on T';, X T',.

We make one more definition following [3].

Definition 3 (Decomposibility) A divergence function D is
said to be decomposable (or, separable) if there exists a
bivariate function 6(u,v) : [0,1]?> — R such that

D(P;Q) = d(pi,¢:) ®)
=1

forall P= (p1,...,pn) and Q = (q1, . ..

Having defined divergences in general, we will now recall
three important classes of divergences which will be of inter-
est to us: Bregman divergences, f-divergences, and KL-type
divergences.

s qn) in T

A. Bregman Divergences

Let G(P) : T, — R be a convex function defined
on T, differentiable on T';'. For two probability measures
P = (p1,...,pn) and Q = (q1,...,¢n) in [, the Bregman
divergence generated by G is defined by

DY(P;Q) £ G(P) - G(Q) — (VG(Q),P-Q), (9

where (VG(Q), P — Q) denotes the standard inner product
between VG(Q) and (P — @) (interpreted as vectors in
R™). Note that Bregman divergences can also be defined over
domains other than I',,.
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B. f-Divergences

Csiszar [4], and independently Ali and Silvey [5], intro-
duced the notion of f-divergences, which take the form

D(P;Q) 2 pif (Z) :
i=1 v

where f is a convex function with f(1) = 0. Examples of
f-divergences include Kullback—Leibler divergence, Hellinger
distance, and total variation distance. All f-divergences are
decomposable by definition. Many important properties of f-
divergences can be found in [6] and references therein.

(10)

C. Kullback-Leibler-type f-distance measures

A Kullback-Leibler-type f-distance measure (or, KL-type
f-distance measure) [7] takes the form

LPiQ) =Y pe(fla) — ) 2 0. (D)
k=1

If a particular divergence L(P;(Q) is defined by (11) for a
given f, we say that f generates L(P; (). Theorems 1 and 2
characterize all permissible functions f which generate KL-
type f-distance measures. As with f-divergences, KL-type f-
distance measures are decomposable by definition.

IIT. MAIN RESULTS

In this section, we address each of the questions posed in
the introduction.

A. QUESTION 1: Are f-Divergences the unique decomposable
divergences which satisfy DATA PROCESSING?

Recall that a decomposable divergence D takes the form
given in (8). Theorem 1 in [3] asserts that any decomposable
divergence which satisfies DATA PROCESSING must be an f-
divergence. However, the proof of [3, Theorem 1] only works
when n > 3, a fact which apparently went unnoticed’. The
proof of the same claim in [9, Appendix] suffers from a similar
flaw and also fails when n = 2. Of course, knowing that the
assertion holds for n > 3, it is natural to expect that it also
must hold for n = 2. As it turns out, this is not true. In fact,
counterexamples exist in great abundance.

To this end, take any f-divergence Dy(P;()) and let
k : R — R be an arbitrary nondecreasing function, such that
k(0) = 0. Since all f-divergences satisfy DATA PROCESS-
ING (cf. [6] and references therein), the divergence function
D(P;Q) 2 k(Ds(P;Q)) must also satisfy DATA PROCESS-
ING. 3 It turns out that the divergence function D(P; Q) is also
decomposable in the binary case, which follows immediately
from decomposability of f-divergences and the following
lemma.

2The propagation of this error has led to other claims which are incorrect
in the binary alphabet setting (cf. [8, Theorem 2]).

3However, divergences of the form k (D £ (P; Q)) do not constitute all of
the decomposable divergences satisfying DATA PROCESSING on binary alpha-
bet. A simple counterexample would be k1 (Dy, (P;Q)) + k2(Dy, (P; Q)).
where k1, k2 are two different non-decreasing functions satisfying k;(0) = 0,
i=1,2.

Lemma 1 A divergence function D on the binary alphabet is
decomposable if and only if

D((p,1—p)i(g;1 —q)) = D((1 —p,p); (1 — ¢, q)).

Therefore, if D(P; Q) is not itself an f-divergence, we can
conclude that D(P;Q) constitutes a counterexample to [3,
Theorem 1] for the binary case. Indeed, D(P; Q) is generally
not an f-divergence. For example, if f(z) = |z — 1|, the
generated f-divergence in the binary case reduces to

(12)

Df((p71—p);(q,l—q)) =2|p—q|. (13)
Letting k(x) = 22, we have
D(P;Q)=4(p—q)*=6(p,q) + (1 —p,1—q), (14)

where §(p,q) = 2(p — ¢)%. Since D(P;Q) = 4(p — ¢)% is a
Bregman divergence, we will see later in Theorem 5 that it
cannot also be an f-divergence because it is not proportional to
KL-divergence*. Thus, the answer to QUESTION 1 is negative
for the case n = 2. As mentioned above, [3, Theorem 1]
implies the answer is affirmative when n > 3.

B. QUESTION 2: Is KL divergence the only KL-type f-
distance measure which satisfies DATA PROCESSING?

Recall from Section II that a KL-type f-distance measure
takes the form given in (11). As alluded to in the introduction,
there is a dichotomy between KL-type f-distance measures on
binary alphabets, and those on larger alphabets. In particular,
we have the following result:

Theorem 3 If L(P;Q) is a Kullback-Leibler-type f-distance
measure which satisfies DATA PROCESSING, then
1) If n > 3, L(P;Q) is equal to KL divergence up to a
nonnegative multiplicative factor;
2) If n =2 and the function f(x) that generates L(P; Q)
is continuously differentiable, then f(x) is of the form

f@) = [ s,

X

for x € (0,1), (15)

where G(x) satisfies the following properties:

a) zG(z) = (x — 1h(x) for x € (0,1/2] and
some nonnegative, nondecreasing continuous func-
tion h(zx).

b) G(z) = G(1 —x) for x € [1/2,1).

Conversely, any nonnegative, non-decreasing continuous
function h(x) generates a KL-type divergence in the
manner described above which satisfies DATA PRO-
CESSING.

To illustrate the last claim of Theorem 3, take for example
h(z) = 22,z € [0,1/2]. In this case, we obtain

1
f(z) = §m2 —z+C, Vzelo1], (16)
4The differentiability hypotheses of Theorem 5 are satisfied in this case
due to the smoothness of 4(p — q)2 and convexity of the function f defining
an f-divergence.
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where C' is a constant. Letting P = (p,1 —p),Q = (¢,1—q),
and plugging (16) into (11), we obtain the KL-type divergence
L(P;Q) = (p — q)*/2, which satisfies DATA PROCESSING,
but certainly is not proportional to KL divergence. Thus, the
answer to question QUESTION 2 is negative.

At this point it is instructive to compare with the discus-
sion on question QUESTION 1. In Section III-A, we showed
that a divergence which is decomposable and satisfies DATA
PROCESSING is not necessarily an f-divergence when the
alphabet is binary (contrary to the assertion of [3, Theorem
1]). From the above example, we see that the much stronger
hypothesis — that a divergence is a Kullback-Leibler-type f-
distance measure which satisfies DATA PROCESSING — still
does not necessitate an f-divergence in the binary setting.

C. QUESTION 3: Is KL divergence the unique Bregman diver-
gence which satisfies SUFFICIENCY ?

In this section, we investigate whether KL divergence is
the unique Bregman divergence that satisfies SUFFICIENCY.
Again, the answer to this is affirmative for n > 3, but negative
in the binary case. This is captured by the following theorem.

Theorem 4 If D%(P;Q) is a Bregman divergence which
satisfies SUFFICIENCY and
1) n > 3, then D(P;Q) is equal to the KL divergence
up to a nonnegative multiplicative factor;
2) n =2, then D¥(P;Q) can be any Bregman divergence
generated by a symmetric bivariate convex function
G(P) defined on T's.

The first part of Theorem 4 is possibly surprising, since
we do not assume the Bregman divergence D% (P; Q) to be
decomposable a priori. In an informal statement immediately
following Theorem 2 in [8], a claim similar to first part of our
Theorem 4 was proposed. However, we are the first to give
a complete proof of this result, as no proof was previously
known [10].

We have already seen an example of a Bregman divergence
which satisfies DATA PROCESSING (and therefore SUFFI-
CIENCY) in our previous examples. Letting P = (p,1 —
p), Q@ = (¢,1—q) and defining G(P) = p*>+(1—p)? generates
the Bregman divergence

DY(P;Q) =2(p— q)*.

The second part of Theorem 4 characterizes all Bregman
divergences on binary alphabets which satisfy SUFFICIENCY
as being in precise correspondence with the set of symmetric
bivariate convex functions defined on I's.

a7

D. QUESTION 4: Is KL divergence the unique Bregman di-
vergence which is also an f-divergence?

We conclude our investigation by asking whether Kullback—
Leibler divergence is the unique divergence which is both a
Bregman divergence and an f-divergence. The first result of
this kind was proved in [11] in the context of linear inverse
problems requiring an alphabet size of n > 5, and is hard
to extract as an independent result. Amari has also addressed

question QUESTION 4 in [9], in which he studied divergences
defined on the space of nonnegative measures. Amari showed
that a-divergences (see [9] for a definition) are the unique di-
vergences lying in the intersection of decomposable Bregman
divergences and f-divergences defined on the space of positive
measures. Using methods from information geometry, Amari
showed that the uniqueness of a-divergences implies that KL
divergence is the unique divergence lying in the intersection
of decomposable Bregman divergences and f-divergences
defined on the space of probability measures. Here, we give an
elementary proof of this result without restricting our attention
to decomposable Bregman divergences. Our main result in this
context is the following:

Theorem 5 Suppose D(P; Q) is both a Bregman divergence
and an f-divergence for some n > 2. If f'(x), and f" (1) exist,
then D(P; Q) is equal to KL divergence up to a nonnegative
multiplicative factor.

Remark 2 In the following appendices, we provide very brief
sketches of all the proofs due to space constraints. The
interested reader is referred to an extended version [12] for

complete details.
APPENDIX A

PROOF OF THEOREM 3
It suffices to consider n = 2, since the first part of Theorem
3 follows from Theorem 1. In this case, any transform can be
represented by the following channel:

Py|X(1|1):Ot Py‘X(2‘1):1704, (18)
Pyix(112) =8 Pyx(22) =15, (19)
where «, 8 € [0, 1]. Define p = pa+3(1—p),§ = qa+3(1—
q). The data processing property asserts that
p(fl@)—f@)+ L -p) (f(1=q) - f(1-p))
2p(f(@)—f(P)+ 1 —p) (fF(1—q) — f(1—-p)) (20)
for all p,q,c, 8 € [0,1]. Theorem 2 implies that f’'(p) =
G(p)/p, G(p) <0,G(p) = G(1 —p) for p € (0,1).
Fixing «, 8, p, we know LHS minus RHS of (20) achieves
its minimum (i.e., zero) at ¢ = p, Ve, 5. Hence, 30 > 0 for

which we can take derivatives w.r.t. ¢ on both sides of (20),
plug in f'(p) = G(p)/p, G(p) = G(1 — p), and conclude that

G(g)  (a=pB)%(1—q)
G(@) — q(1-q)
Since (21) does not depend on p, it must hold for all «, 3, gq.
Eliminating «, 3, and exploiting symmetry of G(q), we obtain

forall g € (p,p+4). (21)

q o4
— <
G(Q)l_q _G(Q)l_q,

0<¢<1/2,0<¢<q

(22)

Our claims follow from this inequality.

APPENDIX B
PROOF OF THEOREM 4

The roadmap for case n > 3 is as follows. First we show
SUFFICIENCY implies the convex function G(P) has the form

P1
G(P) = (p1 + p2)U
(P) = (p1 +p2) (plﬂ)2

)+ E(p1 +p2), (23)

354



2014 |IEEE International Symposium on Information Theory

where U(+;p4, ..., pn) and E(-;py, ..., p,) are two univariate
functions with parameters py, . . ., p,. Then, we show the only
symmetric function G(P) taking this form is the negative
Shannon entropy up to nonnegative multiplicative factor by
appealing to the so-called generalized fundamental equation
of information theory (cf. [13]).

Parametrize PA(t as follows: Pft) = (A, A1 —t),r —

Defining g(x)

h(p) = h(q) = h'(q)(p — q) = a9 (Z) +(1—q)g G_p) .

=zf(1/x), we know ¢'(z), g"(1) exists, and

q

Taking derivatives w.r.t. p on both sides, parametrizing p =
at,q =t,a # 1, and letting ¢ | 0, we obtain

lim (h'(at) — h'(t)) = ¢'(a) — ¢'(1). 29
A, D4,y Pn), Where r 2 I—ZZ>4p,,t € [0,1]. For tiO( (at) ) =g(a) =g 1) (29)
0 < A1 < Ag, taking PXH = P>(\1) PX|2 = P( ) , we have We have
! ! . ! _ !
DS(Px1; Pxp2) =G(P\) ~G(P{) — (vG(PY), PO- Py ¢'(@) = ¢'(1) + lim(W (wt) — W' (1)) (30)
Note that the following transform is sufficient for Z. "L, ain ,, m=i
=g/ (1) +lm [ Y W (z 1) =W (z"7t)| B
1 Xe{l,2} "o\t
Y(X) = Y otherwi (24) n ‘
otherwise = g'(1)+ Y lim(W ("™ )W @) ()
Fixing p4, ps, . .., Dn, we define the function i=1
RO 2 RO tpaps, - .pa) 2GR (29) )+ Z (¢ - g ) (33)
Fixing A2, choose functions U(t), F'(t) in the way such that n
? . ( W E® = ng (xl/ ) — (n—1)g'(1). (34)
R(A = R(A2, 1 26
. ® B( 2(’t)) B3, 1), W " (26) Expanding ¢'(x) around x = 1 using Taylor series on the
(VR(A2,t), Py — P\)) = (VR(Xs, 1),P\," = Py,”) (27) RHS and taking n — 0o, we have g(z) = ¢’ (1)z In z+C(z—
where R()‘v £) £ R(\, )= \U(t)— F(t). The fact that R()‘v ) 1). (The authors thank Jingbo Liu for a suggestion contributing

generates the same Bregman divergence as R(\, t) implies that
there exists a function F : [0,1] — R, such that R(\,t) =
E()\). Hence, R(\,t) = F(t) + AU(t) + E(\).

Taking p; = za,ps = z(l —a),a € [0,1],p3 = 1 —
(ZD 4 pi) — x and letting x | 0, convexity of G and the
Gale-Klee-Rockafellar Theorem [14] imply that F'(-) must be
constant, else the limit as = | 0 depends on how we approach
the simplex boundary. This proves (23).

Considering a permutation Y = 7(X), and taking Px|; =
P,Px; = N = (1/n,1/n,...,1/n), it follows from the
sufficiency property that G(P ) (VG( ), P) is a symmetric
function. Re-defining G(P) by G(P) — (VG(N), P), using
the symmetry of G(P), we know for » = p; + ps + p3,

(1]
[2]
[3]

[4]

[7]
(r—p3)U <rﬁlp3) + E(r — p3)
D3 18]
=(r—p)U (r—p1) + E(r —p1). (28)

This functional equation has a known solution [13, Cor.
10.7a]; consequently, we can show that G(P) oc >, p; Inp;.

The n = 2 case follows from a permutation transform and
SUFFICIENCY.

[9]

[10]
[11]

APPENDIX C
PROOF OF THEOREM 5

[12]

[13]

Setting p; = ¢q; = 0,7 > 3, and denoting p; by p, ¢1 by q,
G(p,1—p,0,...,0) by h(p), we have

h(p) —h(q) =W (9)(p —q) = pf (;) +(1—p)f G__q> .

p

[14]
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to this proof.)
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