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Abstract— The problem of performing similarity queries on
compressed data is considered. We focus on the quadratic
similarity measure, and study the fundamental tradeoff between
compression rate, sequence length, and reliability of queries per-
formed on the compressed data. For a Gaussian source, we show
that the queries can be answered reliably if and only if the com-
pression rate exceeds a given threshold—the identification rate—
which we explicitly characterize. Moreover, when compression is
performed at a rate greater than the identification rate, responses
to queries on the compressed data can be made exponentially
reliable. We give a complete characterization of this exponent,
which is analogous to the error and excess-distortion exponents
in channel and source coding, respectively. For a general source,
we prove that, as with classical compression, the Gaussian source
requires the largest compression rate among sources with a given
variance. Moreover, a robust scheme is described that attains this
maximal rate for any source distribution.

Index Terms— Compression, search, databases, error exponent,
identification rate.

I. INTRODUCTION

FOR a database consisting of many long sequences, it is
natural to perform queries of the form: which sequences in

the database are similar to a given sequence y? In this paper,
we study the problem of compressing this database so that
queries about the original data can be answered reliably given
only the compressed version. This goal stands in contrast to the
traditional compression paradigm, where data is compressed so
that it can be reconstructed – either exactly or approximately –
from its compressed form.

Specifically, for each sequence x in the database we only
keep a short signature, denoted T (x), where T (·) is a signature
assignment function. Queries are performed using only
y and T (x) as input, rather than the original (uncompressed)
sequence x. This setting is illustrated in Fig. 1.

As alluded to above, we generally do not require that
the original data be reproducible from the signatures.
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Fig. 1. Answering a query from compressed data.

Therefore the set of signatures is not meant to replace
the database itself. Nevertheless, there are many instances
where such compression is desirable. For example, the set
of signatures can be thought of as a cached version of the
original database (possibly hosted at many locations due
to its relatively small size). By performing queries only on
the cached (i.e., compressed) database, query latency can be
reduced and the computational burden on the server hosting
the uncompressed database can be lessened.

In many scenarios (e.g,. querying a criminal forensic
database), query responses which are false negatives are not
acceptable. A false negative occurs if a query performed on
T (x) and y indicates that x and y are not similar, but they are
in truth. Therefore, we impose the restriction in our model that
false negatives are not permitted. With this in mind, we regard
the query responses from the compressed data as either “no”
or “maybe”. Since minimizing the probability that a query
returns maybe is equivalent to minimizing the probability of
returning a false positive,1 any good compression scheme will
have a corresponding query function which returns maybe
with small probability. We note briefly that a false positive
does not cause an error per se. Rather, it only introduces a
computational burden due to the need for further verification.

In our setting we assume that the query and database
sequences are independent from one another, and all entries
are drawn i.i.d. according to a given distribution. The
setting is closely related to the problem considered by
Ahlswede et al. [1], where the focus was only on discrete
sources. In [1], the authors attempt to attack the more general
problem where both false positives and false negatives are
allowed. In this general case, it was demonstrated in [1] that
the question of ‘achievable rate’ is uninteresting and only the
error exponent is studied (in the current paper, where false

1Complementary to false negatives, a false positive occurs if a query
performed on T (x) and y indicates that x and y are similar (i.e., returns
maybe), but they are not in truth.
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negatives are not allowed, we show that the rate question
becomes interesting again). We should also note that the error
exponent results in [1] are parameterized by an auxiliary
random variable with unbounded alphabet cardinality,
rendering those quantities incomputable, and therefore of
limited practical use. Another closely related work is the one
by Tuncel et al. [2], where the search accuracy was addressed
by a reconstruction requirement with a single-letter distortion
measure that is side-information dependent (and the tradeoff
between compression and accuracy is that of a Wyner-Ziv [3]
type). In contrast, in the current paper the search accuracy is
measured directly by the accuracy of the query answers.

A different line of work attempting to identify the
fundamental performance limits of database retrieval
includes [4] and [5], which characterized the maximum
rate of entries that can be reliably identified in a database.
This line of work was extended independently in [6] and [7]
allowing compression of the database, and in [8] to the case
where sequence reconstruction is also required. In each of
these works, the underlying assumption is that the original
sequences are corrupted by noise before their enrollment in
the database, the query sequence is one of those original
sequences, and the objective is to identify which one. There
are two fundamental differences between this line of work
and ours. First, in our case the query sequence is random
(i.e. generated by nature) and does not need to be a sequence
that has already been enrolled in the database. Second, in our
problem we attempt to identify sequences that are similar to
the query sequence, rather than an exact match.

We should also note that in out setting, the query sequence
is assumed to be statistically independent of the database
sequences (this is the model that is primarily studied in [1]).
In this case, the connection between the query and data-
base sequences is modeled via the distributions themselves.
Statistical dependence between the query and the database
sequences would imply that the query sequence is related
to all the sequences in the database, which is usually not
the case. Moreover, since our formulation does not permit
false negatives with probability 1, any database entries that
are correlated with the query sequence and are similar will be
automatically flagged for retrieval.

Other related ideas in the literature include
Bloom filters [9] (with many subsequent improvements,
see [10]), which are efficient data structures enabling queries
without false negatives. The Bloom filter only applies for
exact matches (where here we are interested in similarity
queries) so it is not applicable to our problem. Nevertheless,
as surveyed in [11], Bloom filters demonstrate the potential
of answering queries from compressed data.

Another related notion is that of Locality Sensitive
Hashing (LSH), which is a framework for data structures and
algorithms for finding similar items in a given set (see [12]
for a survey). LSH trades off accuracy with computational
complexity and space, and false negatives are allowed. Two
fundamental points are different in our approach. First,
we study the information-theoretic aspect of the problem,
i.e., we concentrate on space only (compression rate) and
ignore computational complexity in an attempt to understand

the amount of information relevant to querying that can be
stored in the short signatures. Second, we do not allow false
negatives, which, as discussed above, are inherent for LSH.

Other approaches for similarity search from compressed
data involve dimensionality reduction techniques that preserve
distances, namely those based on Johnson-Lindenstrauss-type
embeddings [13] (see also sketching, [14]). A recent interest-
ing application of this approach involves image retrieval for
an augmented reality setting [15]. However, note that such
mappings generally depend on the elements in the database;
the distance preservation property cannot apply to any query
element outside the database, making the guarantee for zero
false negatives impossible without further assumptions.

This paper is organized as follows. In the next section
we formally define the problem and the quantities we study
(i.e., the identification rate and the identification exponent).
In Section III we state and discuss our main results. Section IV
provides the proofs of these results, and Section V delivers
concluding remarks.

II. PROBLEM FORMULATION

Throughout this paper, boldface notation x denotes a
column vector of elements [x1, ...xn]T . Capital letters denote
random variables (e.g. X, Y ), and X, Y denote random vectors.
Throughout the paper log(·) denotes the base-2 logarithm,
while ln(·) is used for the usual natural logarithm.

We focus on the basic notion of quadratic similarity
(sometimes called mean square error, or MSE). To this end,
for any length-n real sequences x and y define

d(x, y) ! 1
n

n∑

i=1

(xi − yi )
2 = 1

n
∥x − y∥2, (1)

where ∥·∥ denotes the standard Euclidean norm. We say that
x and y are D-similar when d(x, y) ≤ D, or simply similar
when D is clear from context.

A rate-R identification system (T, g) consists of a signature
assignment

T : Rn → {1, 2, . . . , 2nR} (2)

and a query function

g : {1, 2, . . . , 2nR} × Rn → {no,maybe}. (3)

A system (T, g) is said to be D-admissible, if for any x, y
satisfying d(x, y) ≤ D, we have

g(T (x), y) = maybe. (4)

This notion of D-admissibility motivates the use of “no” and
“maybe” in describing the output of g:

• If g(T (x), y) = no, then x and y can not be D-similar.
• If g(T (x), y) = maybe, then x and y are possibly

D-similar.
Stated another way, a D-admissible system (T, g) does not
produce false negatives, i.e., indicate that x and y are not
similar, when they are in truth. Thus, a natural figure of
merit for a D-admissible system (T, g) is the frequency at
which false positives occur (i.e., where g(T (x), y) = maybe
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and d(x, y) > D). To this end, let PX and PY be probability
distributions on R, and assume (X, Y) ∼ ∏n

i=1 PX (xi )PY (yi).
That is, the vectors X and Y are independent of each other
and drawn i.i.d. according to PX and PY respectively. Define
the false positive event

E = {g(T (X), Y) = maybe, d(X, Y) > D}, (5)

and note that, for any D-admissible system (T, g), we have

Pr{g(T (X), Y) = maybe}
= Pr{g(T (X), Y) = maybe|d(X, Y) ≤ D} Pr{d(X, Y) ≤ D}

+ Pr{g(T (X), Y) = maybe, d(X, Y) > D} (6)

= Pr{d(X, Y) ≤ D} + Pr{E}, (7)

where (7) follows since Pr{g(T (X), Y) = maybe|d(X, Y) ≤
D} = 1 by D-admissibility of (T, g). Since Pr{d(X, Y) ≤ D}
does not depend on what scheme is employed,
minimizing the false positive probability Pr{E} over all
D-admissible schemes (T, g) is equivalent to minimizing
Pr{g(T (X), Y) = maybe}. Also note, that the only interesting
case is when Pr{d(X, Y) ≤ D} → 0 as n grows, since
otherwise almost all the sequences in the database will be
similar to the query sequence, making the problem degenerate
(since almost all the database needs to be retrieved, regardless
of the compression). In this case, it is easy to see that Pr{E}
vanishes if and only if the conditional probability

Pr{g(T (X), Y) = maybe|d(X, Y) > D} (8)

vanishes as well. In view of the above, we henceforth restrict
our attention to the behavior of Pr{g(T (X), Y) = maybe}.
In particular, we study the tradeoff between the rate R and
Pr{g(T (X), Y) = maybe}.

This motivates the following definitions:
Definition 1: For given distributions PX , PY and a

similarity threshold D, a rate R is said to be D-achievable
if there exists a sequence of rate-R admissible schemes
(T (n), g(n)) satisfying

lim
n→∞ Pr

{
g(n)

(
T (n)(X), Y

)
= maybe

}
= 0. (9)

Definition 2: For given distributions PX , PY and a
similarity threshold D, the identification rate RID(D, PX , PY )
is the infimum of D-achievable rates. That is,

RID(D, PX , PY ) ! inf{R : R is D-achievable}, (10)

where an infimum over the empty set is equal to ∞.
The above definitions are in the same spirit of the rate dis-

tortion function (the rate above which a vanishing probability
for excess distortion is achievable), and also in the spirit of the
channel capacity (the rate below which a vanishing probability
of error can be obtained). See, for example, Gallager [16].2

Having defined RID(D, PX , PY ), the rate at which
Pr{g(T (X), Y) = maybe} vanishes is also of significant
interest. We expect the vanishing rate to be exponential as in
the traditional source coding setting, motivating the following
definition:

2See, for example, Cover and Thomas [17] for the alternative approach
based on average distortion rather than excess distortion probability.

Definition 3: Fix R ≥ RID(D, PX , PY ). The identification
exponent is defined as

EID(R, D, PX , PY )

! lim sup
n→∞

− 1
n

log inf
g(n),T (n)

Pr
{

g(n)
(

T (n)(X), Y
)
= maybe

}
,

(11)

where the infimum is over all D-admissible systems
(g(n), T (n)) of rate R and blocklength n.

The analogous quantity in source coding is the excess
distortion exponent, first studied by Marton [18] for discrete
sources and by Ihara and Kubo [19] for the Gaussian source
(see also [20], [21] for other sources).

We pause to make a few additional remarks on the connec-
tion between Pr{g(T (X), Y) = maybe} and Pr{E}, where E
is the false positive event defined in (5). If PX and PY have
identical means and finite variances σ 2

X and σ 2
Y , respectively,

then the weak law of large numbers implies

lim
n→∞ Pr{d(X, Y) ≤ D} = 0 (12)

when D < σ 2
X + σ 2

Y . Thus, the relation (7) implies that
vanishing Pr{E} is attainable if and only if R >
RID(D, PX , PY ) when D < σ 2

X +σ 2
Y . Finally, observe that (7)

implies the relationship

EID(R, D, PX , PY )

= lim sup
n→∞

− 1
n

log max
[
Pr{d(X, Y)≤ D}, inf

g(n),T (n)
Pr

{
E (n)

}]
,

(13)

where E (n) is the false positive event defined via (5) for the
system (g(n), T (n)), and the infimum is taken over all
D-admissible systems (g(n), T (n)) of rate R and
blocklength n.

III. MAIN RESULTS

This section delivers our main results; all proofs are given
in Section IV. The Gaussian distribution plays a prominent
role in this section, therefore we use the shorthand notation
PX = N(µ, σ 2) to denote that PX is the Gaussian distribution
on R with mean µ and variance σ 2.

A. The Identification Rate for Gaussian Sources

Theorem 1: If PX = N(µ, σ 2
X ) and PY = N(µ, σ 2

Y ), then

RID(D, PX , PY )

=

⎧
⎪⎨

⎪⎩

0 for 0 ≤ D < (σX − σY )2

log 2σX σY
σ 2

X +σ 2
Y −D

for (σX − σY )2 ≤ D < σ 2
X + σ 2

Y

∞ for D ≥ σ 2
X + σ 2

Y .

(14)

Before proceeding, we make a few observations about
the behavior of RID(D, PX , PY ) under the assumptions of
Theorem 1. First, the fact that RID(D, PX , PY ) = ∞ for
D ≥ σ 2

X + σ 2
Y is not surprising. Indeed, if D ≥ σ 2

X + σ 2
Y , then

X and Y are inherently D-similar. That is, Pr{d(X, Y) ≤ D}
is bounded away from zero (it actually converges to 1),
and therefore (13) reveals that Pr{g(T (X), Y) = maybe}
can never vanish, regardless of what scheme is used.
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Fig. 2. The identification rate RID(D,σ 2
X , σ 2

Y ) ! RID(D, N(µ, σ 2
X ),

N(µ, σ 2
Y )) for different values of σ 2

Y . Here σ 2
X = 1 and D = 0.4. RID(D,σ 2

X )

is shorthand for RID(D,σ 2
X , σ 2

X ).

Fig. 3. The identification rate RID(D) ! RID(D, N(µ, σ 2), N(µ, σ 2)) and
the rate distortion function R(D) for a Gaussian source with variance σ2.

Second, (14) is symmetric with respect to σ 2
X and σ 2

Y .
Though this might be expected, it is not obviously true
from the outset. Finally, for fixed σ 2

X and D < σ 2
X , the

function RID(D, PX , PY ) given by (14) is maximized when
σ 2

Y = σ 2
X − D. In Fig. 2 we plot (14) for different values

of σ 2
Y in order to illustrate some of its properties.

As an immediate corollary to Theorem 1, we obtain
the following concise result for the symmetric case of
PX = PY = N(µ, σ 2).

Corollary 1: If PX = PY = N(µ, σ 2), then

RID(D, PX , PY ) =
{

log
(

2σ 2

2σ 2−D

)
for 0 ≤ D < 2σ 2

∞ for D ≥ 2σ 2.
(15)

We remark that (15) is reminiscent of the Gaussian rate
distortion function R(D) =

[
1
2 log σ 2

D

]+
(see [17]). The

identification rate RID(D, N(µ, σ 2), N(µ, σ 2)) and rate
distortion function R(D) for a Gaussian source are plotted
in Fig. 3, and as seen in the figure, R(D) is monotonically
decreasing in D, while (15) is monotone increasing. This
can be intuitively explained by thinking of the compression
scheme as a quantizer, where all the x sequences mapped to the
same i ∈ {1, 2, . . . , 2nR} define a quantization cell. Since the
scheme must answer maybe for all sequences y similar to x,
it therefore has to answer maybe for all y in the D-expansion
of the quantization cell (all sequences that are at distance D
from any point in the cell). The probability of maybe is,
therefore, the probability that Y falls in the expanded cell,

and this probability increases as either D grows, or as the size
of the quantization cell itself grows (i.e. the rate decreases).

B. The Identification Exponent for Gaussian Sources

Having established the identification rate for Gaussian
sources, we now turn our attention to the identification
exponent. In order to simplify the notation for the identification
exponents, we define the following functions

EZ (ρ) ! 1
2 ln 2

(ρ − 1 − ln ρ) (16)

℘ (R, D, z1, z2) ! − log sin min
[π

2
,
(

arcsin
(

2−R
)

+ arccos
z1 + z2 − D

2
√

z1z2

)]
.

(17)

Theorem 2: Let PX = N(µ, σ 2
X ) and PY = N(µ, σ 2

Y ).
For any fixed rate R > RID(D, PX , PY ),

EID(R, D, PX , PY )

= min
ρX ,ρY

EZ (ρX )+ EZ (ρY ) + ℘ (R, D,ρX σ 2
X ,ρY σ 2

Y ), (18)

where the minimization is over all ρX ,ρY > 0 satisfying
∣∣∣∣
√

ρXσ 2
X −

√
ρY σ 2

Y

∣∣∣∣ <
√

D, ρXσ 2
X + ρY σ 2

Y > D. (19)

Remark 1: We note that, for PX = N(µ, σ 2
X ) and

PY = N(µ, σ 2
Y ), the exponent EID(R, D, PX , PY ) is strictly

positive for R > RID(D, PX , PY ), and is equal to zero at
R = RID(D, PX , PY ). Therefore, the direct part of Theorem 1
is implied by Theorem 2. However, the converse part of
Theorem 1 is not implied by Theorem 2, as the latter does
not exclude the possibility that the probability of maybe can
be made to vanish with a sub-exponential decay rate when
the exponent is equal to zero.

In light of Theorem 2, it is instructive to revisit the
relationship between false-positive and maybe probabilities
specified in (13). To this end, consider the setting where
PX = N(µ, σ 2

X ), PY = N(µ, σ 2
Y ), and D ≤ σ 2

X + σ 2
Y .

In this case, the random variable 1
n(σ 2

X +σ 2
Y )

∥X−Y∥2 has a chi-

squared distribution with n degrees of freedom. Therefore, it
follows by Cramer’s Theorem (see [22, Th. 2.2.3]) that

lim
n→∞ − 1

n
log Pr {d(X, Y) ≤ D} = EZ

(
D

σ 2
X + σ 2

Y

)

. (20)

In this setting, it is a straightforward algebraic exercise to see
that

EID(R, D, PX , PY ) < EZ

(
D

σ 2
X + σ 2

Y

)

(21)

for R < ∞ by putting

ρX = σ 2
X D + σ 2

Y (σ 2
X + σ 2

Y )

(σ 2
X + σ 2

Y )2
,

ρY = σ 2
Y D + σ 2

X (σ 2
X + σ 2

Y )

(σ 2
X + σ 2

Y )2
(22)
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Fig. 4. Plot of EID(R) ! EID(R, D, N(µ, σ 2), N(µ, σ 2)) for D/σ 2 = 1.5.
In this case, RID(D, N(µ, σ 2), N(µ, σ 2)) = 2 bits per symbol.

in (18). Therefore, EID(R, D, PX , PY ) also precisely
characterizes the best-possible exponent corresponding to
the probability of a false positive event in this setting due to
the relation (13).

In the case where PX = PY = N(µ, σ 2), the symmetry
in (18) can be exploited to yield the following corollary.

Corollary 2: Let PX = PY = N(µ, σ 2). For any fixed rate
R > RID(D, PX , PY ),

EID(R, D, PX , PY ) = min
ρ

2EZ (ρ) + ℘ (R, D,ρσ 2,ρσ 2),

(23)

where the minimization is over all ρ satisfying

2σ 2 ≥ 2ρσ 2 ≥ D. (24)
A formal proof is given in Section IV. The identification

exponent (23) for the case of D/σ 2 = 1.5 is illustrated
in Fig. 4.

Before proceeding, we briefly note that the identification
exponent EID(R, D, PX , PY ) can sometimes be strictly
positive at R → 0.3 For instance, if

∣∣∣∣
1√
n

E∥X∥ − 1√
n

E∥Y∥
∣∣∣∣ >

√
D + ϵ (25)

for some ϵ > 0, then the signature T (X) can simply indicate
whether or not

∣∣∣ 1√
n
∥X∥ − 1√

n
E∥X∥

∣∣∣ > ϵ/2 holds, requiring

rate R = 1/n (a single bit per sequence). Then, the query
function g returns maybe only if

∣∣∣∣
1√
n
∥X∥ − 1√

n
E∥X∥

∣∣∣∣ > ϵ/2, or (26)
∣∣∣∣

1√
n
∥Y∥ − 1√

n
E∥Y∥

∣∣∣∣ > ϵ/2. (27)

If neither (26) nor (27) occur, then it is readily verified
that d(X, Y) > D using the triangle inequality. Whenever
the random variables X2 and Y 2 satisfy a large deviations
principle (as in the Gaussian case, and for many other
distributions, see [22]), we see that g returns maybe with
probability exponentially decaying in n, and we can conclude

3Note that whenever R is equal to zero, the probability of maybe is equal
to 1 (unless the supports of PX and PY are disjoint in a way making any two
sequences x and y dissimilar, making the problem degenerate).

that limR→0+ EID(R, D, PX , PY ) > 0. If this is indeed
the case, then it also follows that RID(D, PX , PY ) = 0
by definition. Though this discussion applies for arbitrary
distributions PX , PY , this latter point is concretely reflected
in Theorems 1 and 2 for the case where D ≤ (σX − σY )2.

C. Upper Bounds on the Identification Rate

In the previous two subsections, we focused our attention
primarily to the case where PX and PY were Gaussian
distributions. In the sequel, we consider more general
distributions and show that Gaussian PX , PY constitute an
extremal case in terms of the identification rate.

Theorem 3: Suppose PX and PY are distributions with
finite second moments σ 2

X and σ 2
Y , respectively. Then

RID(D, PX , PY ) ≤ RID(D, PX , PY ) ! inf
PX̂ |X

I (X; X̂), (28)

where the infimum is taken over all conditional distributions
PX̂ |X satisfying

√√√√E
[(√

σX

σY
Y − X̂

)2
]

≥

√√√√E
[(√

σY

σX
X − X̂

)2
]

+
√

D − (σX − σY )2 (29)

for (Y, X, X̂) ∼ PY (y)PX (x)PX̂ |X (x̂ |x). Moreover,

EID(R, D, PX , PY ) > 0 (30)

for any R > RID(D, PX , PY ).
Remark 2: Note that Theorem 3 does not require

PX and PY to have identical means.
Remark 3: Also note, that the achievability result and the

proof technique carry over to general distortion criteria satis-
fying the triangle inequality. We omit the details as the focus
of this paper is on the quadratic similarity criterion.

For general source distributions PX , PY , we lack a
matching lower bound on RID(D, PX , PY ). However, such a
converse was proved in the Gaussian setting (see Theorem 1).
The key ingredient in the proof of Theorem 1 is the
isoperimetric inequality on the surface of a hypersphere – the
set on which the probability of a high dimensional Gaussian
random vector concentrates (see Section IV for details).
In general, precise isoperimetric inequalities are unknown
and therefore establishing a similar general converse appears
to be extremely difficult.4

In spite of this, an application of Theorem 3 reveals the
interesting fact that Gaussian PX and PY correspond to sources
which are “most difficult” to compress for queries. This is
analogous to the setting of classical lossy compression, where
the Gaussian source requires the maximum rate for compres-
sion subject to a quadratic distortion constraint. Formally,

Theorem 4: Suppose PX and PY have identical means and
finite variances σ 2

X and σ 2
Y , respectively. Then

RID(D, PX , PY ) ≤ RID(D, N(0, σ 2
X ), N(0, σ 2

Y )). (31)

4For discrete memoryless sources and general distortion measure, see the
efforts made by Ahlswede et al. [1] and also recently in [23].
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In particular, Gaussian PX and PY demand the largest
identification rate for given variances.

D. Robust Identification Schemes

In addition to the extremal property of Gaussian sources
described in Theorem 4, there exists a sequence of rate-R
identification schemes {T (n), g(n)}n→∞, where (T (n), g(n))
denotes a blocklength-n identification scheme, designed for
Gaussian sources which are robust in the following sense.
Using the construction described in the achievability proof of
Theorem 1, we can construct a sequence of D-admissible,
rate-R schemes {T (n), g(n)}n→∞ which satisfy

lim
n→∞ Pr

{
g(n)

(
T (n)(X), Y

)
= maybe

}
= 0 (32)

when X, Y ∼ ∏n
i=1 PX (xi )PY (yi ), PX = N(0, σ 2

X ),
PY = N(0, σ 2

Y ) and

R > RID

(
D, N(0, σ 2

X ), N(0, σ 2
Y )

)
. (33)

It turns out that this particular sequence {T (n), g(n)}n→∞
is robust to the source distributions in the sense that we also
have

lim
n→∞ Pr

{
g(n)

(
T (n)(X̃), Ỹ

)
= maybe

}
= 0 (34)

when X̃, Ỹ ∼ ∏n
i=1 PX̃ (x̃i )PỸ (ỹi ), and PX̃ , PỸ are zero-mean

distributions with variances σ 2
X and σ 2

Y , respectively.
Moreover, the sequence {T (n), g(n)}n→∞ continues to be
D-admissible for the sources X̃, Ỹ. Thus, roughly speaking,
a scheme (T, g) which is “good” for Gaussian sources
X, Y can be expected to perform well for arbitrary sources
X̃, Ỹ, provided the respective variances match their Gaussian
counterparts and the blocklength n is large. The proof of this
robustness property is given in Section IV-F.

IV. PROOFS

In this section, we prove each of the main results. Proofs
are organized by subsection. We begin with a primer on the
key geometric ideas that are used throughout the proofs.

A. Geometric Preliminaries

For the proofs we require the following definitions related
to n-dimensional Euclidean geometry.

For r > 0, u ∈ Rn , let BALLr (u) ⊆ Rn denote the ball
with radius r centered at u:

BALLr (u) !
{
x ∈ Rn : ∥x − u∥ ≤ r

}
. (35)

BALLr (0) will be denoted BALLr .
Denote by Sr ⊆ Rn the spherical shell with radius r

centered at the origin:

Sr !
{
x ∈ Rn : ∥x∥ = r

}
. (36)

For any two vectors x1, x2 ∈ Rn \ {0}, the angle between
them shall be denoted by

̸ (x1, x2) ! arccos

(
xT

1 x2

∥x1∥∥x2∥

)

∈ [0,π]. (37)

For θ ∈ [0,π] and a point u ∈ Rn \ {0}, define the cone
with half angle θ and axis going through u:

CONE(u, θ) !
{
x ∈ Rn : ̸ (u, x) ≤ θ

}
. (38)

Note that CONE(u, 0) is the half-infinite line {αu : α > 0},
that CONE(u,π/2) is the half-space containing u that is
bordered by the hyperplane orthogonal to u which passes
through the origin, and that CONE(u,π) is the entire
space Rn . Also, note that CONE(u1, θ) = CONE(u2, θ) for
any u1 = λu2, λ > 0.

For r > 0, u ∈ Rn \ {0} and θ ∈ [0,π], denote by
CAPr (u, θ) the spherical cap:

CAPr (u, θ) ! Sr ∩ CONE(u, θ). (39)

Let )(θ) denote the fraction of the (hyper-)surface area
of Sr that is occupied by CAPr (u, θ):

)(θ) ! |CAPr (u, θ)|
|Sr |

. (40)

Note that the value of )(θ) depends neither on r nor on u.
Also note that )(θ) = 1 for all θ ≥ π . The following bounds
on )(θ) will be useful:

Lemma 1 [24, Cor. 3.2]: For 0 < θ <
arccos(1/

√
n) < π

2 , we have

)(θ) <
1√

2π(n − 1)
· 1

cos θ
· sinn−1 θ, (41)

)(θ) >
1

3
√

2πn
· 1

cos θ
· sinn−1 θ . (42)

For positive r1 ≤ r2 ∈ R, let Sr1,r2 ⊆ Rn be a spherical
shell of inner radius r1 and outer radius r2:

Sr1,r2 !
{
x ∈ Rn : r1 ≤ ∥x∥ ≤ r2

}
. (43)

For a given half-angle θ ∈ [0,π], define the (r1, r2)-spherical
cap with half-angle θ and axis going through u as

CAPr1,r2(u, θ) ! CONE(u, θ) ∩ Sr1,r2 . (44)

For a set A ⊆ Rn and D > 0, the D-expansion of A,
denoted *D(A) is defined as

*D(A) ! {y ∈ Rn : ∃x∈Ad(x, y) ≤ D} (45)

= A + BALL√
nD, (46)

where we have used + to denote the Minkowski sum.
We will require the following lemma, which says that

among all sets on the surface of a sphere with equal surface
area, the spherical cap has the smallest expanded set. This
is known as the isoperimetric inequality on the surface of a
sphere, and also as Levy’s lemma (see, [25, Th. 1.1]).

Lemma 2 (Levy’s Lemma): Let A ⊆ Sr , where Sr is the
surface of a sphere of radius r > 0. Let µ(A) be the surface
area occupied by A, and let C ⊆ Sr be a spherical cap with
surface area equal to µ(A). Then,

µ(Sr ∩ *D(C)) ≤ µ(Sr ∩ *D(A)).
We note that the lemma holds also in the case where the

distance is measured by the arc length (or, equivalently, the
angle between two points on the sphere).
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B. Codes That Cover a Spherical Shell

Definition 4: Let Sr ⊆ Rn be the spherical shell with
radius r . We say that a set of points C = {u1, . . . , um :
ui ∈ Rn} is a code that D-covers Sr if

Sr ⊆
⋃

u∈C
BALL√

nD(u). (47)

The rate of C is defined as 1
n log m.

When not explicitly stated, the ambient dimension n of the
code C will be clear from context.

Lemma 3 (Following [26]): Fix σ 2 > 0 and the
dimension n. For any 0 < D0 < σ 2, there exists a code C
that D0-covers S√

nσ 2 with rate

R0 = 1
n

log |C| ≤ 1
2

log
σ 2

D0
+ O

(
log n

n

)
. (48)

Moreover, for all u ∈ C, we have ∥u∥ =
√

n(σ 2 − D0), and

CAP√
nσ 2(u, θ0) = S√

nσ 2 ∩ BALL√
nD0

(u), (49)

where

θ0 ! arcsin(
√

D0/σ 2) <
π

2
. (50)

Proof: Appendix A. "
It is no surprise that the term 1

2 log σ 2

D0
appearing in (48)

is identical to the rate-distortion function for the Gaussian
source with variance σ 2 evaluated at distortion-level D0.
We could have therefore used any standard (random code-like)
construction. However, using Lemma 3 will be more conve-
nient for our purposes since each point in Sr is guaranteed to
be covered, and hence we do not need to account for another
error event. This fact will make the subsequent proofs more
straightforward.

We briefly note that the idea of covering the shell of a
hypersphere can be thought of as the Gaussian counterpart of
the type-covering lemma for discrete sources [27]. A similar
usage of “Gaussian types” of this sort can also be found
in [28, Sec. V-A].

C. Identification Rate
The proof of Theorem 1 is somewhat lengthy, so we first

give the key ideas here before moving onto the formal details.
The proof of the theorem relies on the fact that a high-

dimensional Gaussian random vector – with independent
entries having zero mean and variance σ 2

X – concentrates near

a thin hyper-spherical shell of radius r0 !
√

nσ 2
X , which we

call the typical sphere. The signature assignment constructed
in the direct part of the proof quantizes the surface of the
typical sphere into regions roughly described by spherical
caps. The query function g, knowing which cap X lies in from
the received signature, returns maybe only if Y lies within
Euclidean distance

√
nD of the cap in which X lies. Thus,

the goal in the direct part is to show that, for sufficiently large
rate R, the probability that Y falls into the *D-expansion of
any given cap is vanishing.

The key ingredient in proving the converse is the
isoperimetric inequality on the surface of the hypersphere,

known as Levy’s lemma (see Lemma 2 above). In a nutshell,
we apply Levy’s lemma to prove that any given identification
system (T, g) requires a rate that is essentially as large as an
identification system that uniquely assigns caps on the typical
sphere to signatures (as is done by the achievability scheme).
The apparent need for a refined isoperimetric inequality to
prove the converse distinguishes our problem from the class
of standard rate-distortion problems.

Proof of Theorem 1: Before beginning the proof, we
first note that it is sufficient to consider D in the interval
(σX − σY )2 < D < σ 2

X + σ 2
Y . The claims that

RID(D, PX , PY ) = 0 for D ≤ (σX − σY )2, and
RID(D, PX , PY ) = ∞ for D ≥ σ 2

X + σ 2
Y then follow from

monotonicity of RID(D, PX , PY ) in D.

Direct Part: Fix a small ϵ > 0, and define rX !
√

nσ 2
X

(i.e., the radius of the typical sphere). Let D be a desired
similarity threshold in the interval (σX −σY )2 < D < σ 2

X +σ 2
Y ,

and let η > 0 be sufficiently small so that

(1 − ϵ)

[
σ 2

X + σ 2
Y − D

2σX σY

]2

<

⎡

⎣ σ 2
X + σ 2

Y − 2η − D

2
√

(σ 2
X + η)(σ 2

Y + η)

⎤

⎦
2

.

(51)

Next, define a constant D0 > 0 satisfying

(1 − ϵ)σ 2
X

⎡

⎣ σ 2
X + σ 2

Y − 2η − D

2
√

(σ 2
X + η)(σ 2

Y + η)

⎤

⎦
2

< D0

< σ 2
X

⎡

⎣ σ 2
X + σ 2

Y − 2η − D

2
√

(σ 2
X + η)(σ 2

Y + η)

⎤

⎦
2

. (52)

The motivation behind the choices of η and D0 satisfying
(51) and (52) will become clear as the proof proceeds.

By our assumption that D > (σX − σY )2, it follows that
0 < D0 < σ 2

X . By Lemma 3, there exists a code C which
D0-covers SrX with rate R0 bounded by

R0 ≤ 1
2

log
σ 2

X

D0
+ O

(
log n

n

)
. (53)

Let T0 : SrX → C be the quantization operation defined
by

T0(x) = arg min
u∈C

∥x − u∥ for x ∈ SrX . (54)

That is, the function T0(x) maps x ∈ SrX to the closest
reconstruction point u ∈ C. Since C is a code that
D0-covers SrX , it follows that

∥T0(x) − x∥ ≤ ρ0 !
√

nD0 for all x ∈ SrX . (55)

Denote the points in SrX that are mapped to u by T −1
0 (u).

With this notation, it follows by construction that

T −1
0 (u) ⊆ CAPrX (u, θ0), (56)

where θ0 ! arcsin(
√

D0/σ 2
X ) courtesy of Lemma 3. The set

CAPrX (u, θ0) is illustrated in Fig. 5.
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Fig. 5. Illustration of a single cap CAPrX (u, θ0) (denoted in grey).

Define Styp
X to be the set of all vectors x ∈ Rn

s.t. σ 2
X − η ≤ 1

n ∥x∥2 ≤ σ 2
X + η. In other words,

Styp
X ! Sr−,r+ , (57)

where r± !
√

n(σ 2
X ± η). Note that Pr{X /∈ Styp

X } vanishes5

with n, which motivates the notation Styp
X .

Next, we construct a mapping T : Styp
X → C defined as

follows:

T (x) = T0

⎛

⎝x ·

√
nσ 2

X

∥x∥

⎞

⎠. (58)

Since T −1
0 (u) is contained in CAPrX (u, θ0), we similarly have

that the inverse map T −1 satisfies

T −1(u) ⊆ CAPr−,r+(u, θ0). (59)

The signature assignment for our identification scheme for
x ∈ Styp

X shall be given by the function T (·) defined above.
For x /∈ Styp

X we define T (x) = e, where e is an additional
“erasure” symbol, denoting the fact that the signature does not
convey any information about x in this case (and the decision
function g(·, ·) must output maybe). Note that the additional
rate incurred by the erasure symbol is negligible and we still
have that the signature assignment’s rate R is bounded by

R = 1
n

log (|C| + 1) (60)

≤ 1
2

log
σ 2

X

D0
+ O

(
log n

n

)
(61)

≤ log
2σXσY

σ 2
X + σ 2

Y − D
+ log

1
1 − ϵ

+ O
(

log n
n

)
, (62)

where the final inequality follows from (51) and (52).
The query function g(·, ·) is defined to be the optimal one

given the signature mapping T (·):

g(t, y) =

⎧
⎨

⎩

maybe If t = e,
or if ∃x′ ∈ T −1(t) s.t. d(x′, y) ≤ D

no otherwise.
(63)

Using the shorthand notation

Pr{maybe} ! Pr{g(T (X), Y) = maybe}, (64)

5This can easily be shown by the weak law of large numbers for the average
1
n ∥X∥2 = 1

n
∑n

i=1 X2
i . In fact, the vanishing is exponential with n, a fact that

be shown, e.g. using the Chernoff bound.

we analyze Pr{maybe} as follows. First, define a typical set
for the Y-sequences:

Styp
Y ! Sr−

Y ,r+
Y
, (65)

where r±
Y !

√
n(σ 2

Y ± η), and write

Pr{maybe} ≤ Pr{maybe|X ∈ Styp
X , Y ∈ Styp

Y }
+ Pr{X /∈ Styp

X } + Pr{Y /∈ Styp
Y }. (66)

Note that the latter two terms in (66) vanish as n grows
large, thus we focus on bounding the first term. To this end,
we require the following lemma.

Lemma 4: Let C and η be as defined above. For any u ∈ C,
we have

*D
(

T −1(u)
)

∩ Styp
Y ⊆ CONE(u, θ ′), (67)

where

θ ′ ! θ0 + θ1 <
π

2
, (68)

and the angles θ0 and θ1 are given by

θ0 ! arcsin

(√
D0

σ 2
X

)

(69)

θ1 ! arccos

⎛

⎝ σ 2
X + σ 2

Y − 2η − D

2
√

(σ 2
X + η)(σ 2

Y + η)

⎞

⎠. (70)

Proof: Appendix B. "
Fig. 6 illustrates the claim in the lemma.
Let θ ′ be as defined in Lemma 4 above. We continue

with

Pr{maybe|X ∈ Styp
X , Y ∈ Styp

Y }
(a)= Pr

{
Y ∈ *D

(
T −1(T (X))

)
|X ∈ Styp

X , Y ∈ Styp
Y

}

(b)
≤ Pr

{
Y ∈ CONE(T (X), θ ′)|X ∈ Styp

X , Y ∈ Styp
Y

}

(c)= )(θ ′)
(d)≤ 1√

2π(n − 1)
· 1

cos θ ′ · sinn−1 θ ′. (71)

Identity (a) follows by definition of the query function g(·, ·).
Inequality (b) follows from Lemma 4. Equality (c) follows
since Y is uniformly distributed within each shell Sr of radius
r > 0 (due to the spherical symmetry of the Gaussian
distribution), and the probability of falling in a cap of a
given half-angle θ ′ is precisely the fraction of the surface that
is occupied by the cap, )(θ ′). Inequality (d) follows since
θ ′ ≤ arccos(1/

√
n) for sufficiently large n, and therefore (41)

applies.
Since θ ′ < π/2, we have sin θ ′ < 1, and it therefore follows

from (71) that the probability Pr{maybe|X ∈ Styp, Y ∈ Styp
Y }

vanishes with n. Thus, since ϵ was arbitrary, recalling (62)
completes the direct part of the proof.

Remark 4: The alert reader will observe that the direct part
also follows from the direct part of Theorem 2. However, we
have chosen to include an explicit proof here to introduce the
notations and ideas crucial for proving Theorem 2.
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Fig. 6. Illustration for Lemma 4. The black region marks CAPr−,r+ (u, θ0). The grey area denotes *D
(

CAPr−,r+ (u, θ0)
)

, and the dark grey region marks

the intersection *D
(

CAPr−,r+ (u, θ0)
)

∩ Styp
Y .

Converse Part: Let η > 0 and define Styp
X as in (57).

Let T : Rn → {1, . . . , 2nR} be a given signature function
corresponding to a D-admissible system (T, g), and assume
that

Pr{g(T (X), Y) = maybe} ≤ 1
4

(72)

since we are only interested in D-achievable rates R.
As before, we will use the shorthand notation Pr{maybe} !
Pr{g(T (X), Y) = maybe} to simplify the presentation.

We shall restrict our attention to the typical sphere. To this
end, define the mapping T̃ : Styp

X → {1, . . . , 2nR}, where
T̃ (x) = T (x) for x ∈ Styp

X . Let T̃ −1(·) denote the inverse
mapping of T̃ (·), i.e.

T̃ −1(i) ! {x ∈ Styp
X : T (x) = i} (73)

= T −1(i) ∩ Styp
X . (74)

Let pi ! Pr{X ∈ T̃ −1(i)|X ∈ Styp
X }. Clearly, we have

∑2nR

i=1 pi = 1. Define the set Ai ⊆ SrX to be projection of
T̃ −1(i) onto the sphere SrX :

Ai =
{

rX
x

∥x∥ : x ∈ T̃ −1(i)
}
. (75)

Let αi denote the fraction of the surface area of SrX that is
occupied by Ai . By the spherical symmetry of the pdf of X,
αi is also equal to the probability that the projection of X
onto Sr0 lies in Ai . Therefore αi ≥ pi , with equality if and

only if T̃ −1(i) is a thick cap with inner and outer radii r± !√
n(σ 2

X ± η).

Let D′ ! (
√

D +
√

σ 2
X − η −

√
σ 2

X )2 < D. It can easily be
verified that

*D′
(Ai ) ⊆ *D

(
T̃ −1(i)

)
. (76)

Now let D′′ ! (
√

D′+
√

σ 2
Y − η−

√
σ 2

Y )2, and let the set Bi

denote the D′′-expansion of Ai , restricted to the sphere SrY ,
i.e.

Bi ! *D′′
(Ai ) ∩ SrY . (77)

The set Bi can also be thought of an expansion of a set
Ãi ! σY

σX
· Ai , with the alternative distance measure d̆(·, ·)

defined over the sphere SrY that measures the arc-length
between the two points (i.e., the geodesic distance). Also note
that αi = |Ai |

|SrX | = | Ãi |
|SrY | where | · | is used to denote the (hyper-)

surface area. Let βi = |Bi |
|SrY | denote the fraction of SrY that is

occupied by Bi .
Let the set Ci denote the r−

Y , r+
Y thickening of Bi as follows:

Ci =
{

y ∈ Styp
Y : rY

y
∥y∥ ∈ Bi

}
. (78)

Next, it can also be verified that

Ci ⊆ *D′
(Ai ). (79)
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Suppose that x ∈ Styp
X and that T (x) = i . Then we have:

Pr{maybe|X = x ∈ Styp
X } ≥ Pr

{
Y ∈ *D

(
T −1(i)

)}

(a)
≥ Pr

{
Y ∈ *D

(
T̃ −1(i)

)}

(b)
≥ Pr

{
Y ∈ *D′

(Ai )
}

(c)
≥ Pr {Y ∈ Ci },

where (a) follows since T̃ −1(i) ⊆ T −1(i), and (b) and (c)
follow from (76) and (79) respectively.

Let fY be the density of Y. Then, we continue with

Pr {Y ∈ Ci } =
∫

Ci

fY(y)dy = βi · Pr{Y ∈ Styp
Y },

where the second equality follows from the spherical
symmetry of fY(y).

We now arrive at the main step in proving the converse.
The key ingredient we require is the isoperimetric inequality
on the surface of a hypersphere (Lemma 2, see also
[25, Th. 1.1]) which states that, among all subsets of
the hypersphere with a given surface area, spherical caps have
minimum D-expansion measured under geodesic distance.
As noted before, the set Bi ⊆ SrY is an expansion of the set
Ãi ⊆ SrY with the arclength (i.e., geodesic) distance measure.
Therefore, it follows from the isoperimetric inequality that

|Bi | =
∣∣∣*D′′

(Ai ) ∩ SrY

∣∣∣ ≥
∣∣∣*D′′ (

CAPrX (u, θi )
)
∩ SrY

∣∣∣

=
∣∣CAPrY (u, θi + θD′′)

∣∣, (80)

where u is an arbitrary point and

θi ! )−1(αi ) (81)

θD′′ ! arccos

(
σ 2

X + σ 2
Y − D′′

2σX σY

)

. (82)

Therefore, we can conclude that if x ∈ Styp
X and T (x) = i , then

Pr{maybe|X = x} ≥ Pr{Y ∈ Styp
Y } · )

(
θD′′ + )−1(αi )

)
.

Now, the average quantity Pr{maybe|X ∈ Styp
X } is bounded

as follows

Pr{maybe|X ∈ Styp
X }

=
2nR∑

i=1

Pr{T (X) = i |X ∈ Styp
X }

× Pr{maybe|T (X) = i, X ∈ Styp
X }

≥
2nR∑

i=1

pi · Pr{Y ∈ Styp
Y } · )

(
θD′′ + )−1(αi )

)
(83)

≥ Pr{Y ∈ Styp
Y } ·

2nR∑

i=1

pi · )
(
θD′′ + )−1(pi )

)
, (84)

where the last inequality follows since αi ≥ pi and the
function )(θD′′ + )−1(·)) is monotone increasing.

If the scheme at hand were to satisfy pi = 2−nR

for all i , then we could simply continue with analyzing

)
(
θD′′ + )−1(2−nR)

)
. However, in general this might not be

the case. We therefore require the following lemma:
Lemma 5: Let 0 < )∗ < 1 and 0 < c < 1 be

given constants. Define p∗ to be the solution to
)(θD′′ + )−1(p)) = )∗. Then if

2nR∑

i=1

pi · )
(
θD′′ + )−1(pi )

)
≤ c · )∗, (85)

then

R ≥ 1
n

log
1 − c

p∗ . (86)

Proof: Appendix C. "
For our purposes6 we set )∗ = 1

2 so that )(θD′′ +
)−1(p∗)) = 1

2 . Now use (41) to upper bound )(·) and
evaluate p∗:

p∗ = )
(π

2
− θD′′

)

≤ 1√
2π(n − 1)

· 1
cos

(
π
2 − θD′′

) · sinn−1
(π

2
− θD′′

)

≤ 1√
2π(n − 1)

· cosn−1 (θD′′) .

Recalling the definition of θD′′ , we have

cos (θD′′) = σ 2
X + σ 2

Y − D′′

2σX σY
,

therefore
1
n

log
1
p∗ = log

2σXσY

σ 2
X + σ 2

Y − D′′ + O
(

log n
n

)
. (87)

Our goal, now, is to show that the rate R must be lower
bounded by the identification rate from (14). Recalling (72),
it follows that

1
4

≥ Pr{maybe} (88)

= Pr{X ∈ Styp
X } · Pr{maybe|X ∈ Styp

X } (89)
+ Pr{X /∈ Styp

X } · Pr{maybe|X /∈ Styp
X } (90)

≥ Pr{X ∈ Styp
X } · Pr{maybe|X ∈ Styp

X } (91)
≥ Pr{X ∈ Styp

X } · Pr{Y ∈ Styp
Y }

·
2nR∑

i=1

pi · )
(
θD′′ + )−1(pi)

)
, (92)

where the final inequality is simply (84).
Since Pr{Y ∈ Styp

Y } and Pr{X ∈ Styp
X } both approach 1 as

n grows, we may assume that both probabilities are above 3
4

(for large enough n). Then, we can now invoke Lemma 5
with c = 8/9 and )∗ = 1/2, combined with (87), to conclude
that

R ≥ log
2σXσY

σ 2
X + σ 2

Y − D′′ + O
(

log n
n

)
. (93)

As η can be taken to be arbitrarily small, D′′ can be arbitrarily
close to D, completing the proof of the converse. "

6We shall use Lemma 5 again for proving the identification exponent results,
but with a different )∗.
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D. Identification Exponent

As with Theorem 1, the proof of Theorem 2 is rather
involved, so we first sketch the main ideas before moving
on to the formal proof. Characterizing the optimal exponent
requires a slightly more sophisticated scheme than character-
izing the identification rate, but the proofs are very similar in
spirit.

The achievability proof builds upon that of Theorem 1 in
the sense that we refine the signature assignment to quantize
x/∥x∥ and ∥x∥ separately. Intuitively, we can think of our
scheme as quantizing the direction and amplitude of the
vector x (similarly to ‘shape-gain’ quantizers [29, Ch. 12]).
Similar to the achievability proof of Theorem 1, the set
of vectors x/∥x∥ are quantized by covering the unit sphere
with regions roughly described by caps. It will turn out that
the achievable identification exponent emerges through the
analysis of quantizing the amplitudes x.

For the converse proof, we take the ρ∗
X ,ρ∗

Y to minimize (18),
and focus on the case where X lies in a spherical shell
with radius

√
nρ∗

X σ 2
X and small, nonzero thickness. Then,

the converse proceeds similar to that of Theorem 1, in the
sense that the “typical shell” is replaced by the new shell that
depends on ρ∗

X .
Proof of Theorem 2:
Direct Part: We will rely on the code construction given in

the achievability proof of Theorem 1, and hence we adopt the
notation previously defined there. To this end, let (T, g) be
the rate-R, D-admissible identification system defined in the
achievability proof of Theorem 1. Recall that

̸
(

T
(

rX
x

∥x∥

)
,

x
∥x∥

)
≤ θ0, (94)

where θ0 was defined as (69).
In a variation on the scheme used previously, we describe

the amplitude ∥x∥ by quantization as follows. Let σ 2
max(n) !

n · σ 2
X , and recall that η was chosen to be a small positive

constant. Define the spherical shells S(i) as follows:

S(i) ! Sr(i) ,r(i+1) , (95)

where r (i) ! √
n · i · η.

The modified signature assignment T ′ then describes the
“direction” and “amplitude” of x as follows:

• If 1
n ∥x∥2 ≤ σ 2

max(n), then T ′(x) =
(

T
(

rX
x

∥x∥
)

, i
)

,

where i is chosen to satisfy x ∈ S(i).
• If 1

n ∥x∥2 > σ 2
max(n), then the signature T ′(x) is defined

to be the erasure symbol e.
The overall rate of the modified signature assignment T ′

described above is R (i.e., the rate of T (·)), plus an additional
1
n log σ 2

max(n)
η = O( log n

n ) (required for the quantization of ∥x∥),
and therefore remains essentially unchanged. Therefore, the
upper bound (62) also upper bounds the rate of the modified
signature assignment function. Let g′ be the optimal query
function corresponding to T ′ (defined in an analogous
manner to (63)).

Thus, we only need to analyze the exponent attained by
the proposed scheme. To this end, let Z be a Chi-square

random variable with n degrees of freedom. The pdf of Z is
given by

fZ (z) = z
n
2 −1e− z

2

2n/2*( n
2 )

, (96)

where * in (96) is the usual Gamma function, and should
not be confused with the set-expansion operator *D defined
previously. Now, define the random variables Z X ! 1

σ 2
X
∥X∥2

and ZY ! 1
σ 2

Y
∥Y∥2. Note that both Z X and ZY are distributed

according to (96). In order to proceed, we require the following
lemma.

Lemma 6: The probability Pr
{ 1

n ∥X∥2 > σ 2
max(n)

}
vanishes

super-exponentially with n.
Proof: Appendix D. "

Now, we are in a position to analyze Pr {maybe}, where
we again employ the shorthand notation Pr{maybe} !
Pr{g′(T ′(X), Y) = maybe} to simplify the presentation.

Pr{maybe}

≤ Pr
{
maybe,

1
n
∥X∥2 ≤ σ 2

max(n),
1
n
∥Y∥2 ≤ σ 2

max(n)

}

+ Pr
{

1
n
∥X∥2 > σ 2

max(n)

}
+ Pr

{
1
n
∥Y∥2 > σ 2

max(n)

}
.

By Lemma 6, and a similar argument for
Pr

{ 1
n ∥Y∥2 > σ 2

max(n)
}
, the last two terms of the above

expression vanish super-exponentially and do not affect the
exponent of Pr{maybe}. We therefore concentrate on the first
term.

We can now write

Pr
{
maybe,

1
n
∥X∥2 ≤ σ 2

max(n),
1
n
∥Y∥2 ≤ σ 2

max(n)

}
(97)

= Pr

{

maybe, Z X ≤ n2, ZY ≤ σ 2
Y

σ 2
X

n2

}

(98)

=
∫ n2

0

∫ σ2
Y

σ2
X

n2

0
Pr {maybe | Z X = zX , ZY = zY }
· fZ (zX ) fZ (zY )dzY dzX (99)

≤ σ 2
Y

σ 2
X

n4 max
0≤zX ≤n2

0≤zY ≤n2σ2
Y /σ2

X

Pr {maybe | Z X = zX , ZY = zY }

· fZ (zX ) fZ (zY ) (100)

≤ σ 2
Y

σ 2
X

n4 max
0≤ρX ,ρY

Pr {maybe | Z X = nρX , ZY = nρY }

· fZ (nρX ) fZ (nρY ), (101)

where ρX ! zX/n and ρY ! zY /n.
The event {maybe} coincides with the event {Y ∈

*D(T ′−1(T ′(X)))}. Let U = T (rX X/∥X∥), and observe that
if 1

n ∥X∥2 ≤ σ 2
max(n), then

*D(T ′−1(T ′(X))) ⊆ *D(CAPr(i),r(i+1) (U, θ0)) (102)

⊆ *D′
(CAP∥X∥(U, θ0))), (103)

where (102) follows from similar arguments leading to (59),
and (103) follows with D′ ! (

√
D + √

η)2. We therefore
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continue with

Pr {maybe | Z X = nρX , ZY = nρY }

≤ Pr
{

Y ∈ *D′
(CAP∥X∥(U, θ0))

∣∣∣∣
1
n
∥X∥2 = ρXσ 2

X ,
1
n
∥Y∥2 = ρY σ 2

Y

}

= Pr
{

Y ∈ *D′
(CAP√

nρX σ 2
X
(U, θ0)) | 1

n
∥Y∥2 = ρY σ 2

Y

}

(104)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if |
√

ρXσ 2
X −

√
ρY σ 2

Y | ≥
√

D′

1 if
√

ρXσ 2
X +

√
ρY σ 2

Y ≤
√

D′

)(θ0 + θ ′
1) otherwise,

(105)

where (104) follows by spherical symmetry of the Gaussian
distribution, and

θ ′
1 ! arccos

ρxσ 2
X + ρY σ 2

Y − D′

2
√

ρXσ 2
X · ρY σ 2

Y

∈ [0,π]. (106)

Note that the condition
√

ρXσ 2
X +

√
ρY σ 2

Y ≤
√

D′ is
not the only case in which the probability is equal
to one. The other case is when θ0 + θ ′

1 ≥ π ,
so )(θ0 + θ ′

1) = 1.
The identity (106) follows from the law of cosines. The

geometric image now is similar to that depicted in Fig. 6,
where here rX !

√
nσ 2ρX and rY !

√
nσ 2ρY denote the

actual radii of the vectors X and Y (as opposed to their average
value in the proof of Theorem 1).

Next, using the bound (41) we have

1
n

log
1

)(θ)
≥

{
− log sin θ + c

n log n, 0 < θ < arccos( 1√
n
);

0, otherwise.
(107)

where c is a universal constant.
Combined with (107), we compactly write the exponent

corresponding to expression (105) as

E)(θ0, D′, σ 2
X , σ 2

Y ,ρX ,ρY ) !

=

⎧
⎪⎪⎨

⎪⎪⎩

∞, if |
√

ρXσ 2
X −

√
ρY σ 2

Y | ≥
√

D′

0, if ρX σ 2
X + ρY σ 2

Y ≤ D′

− log sin min
[
π
2 , θ0 + θ ′

1

]
, otherwise.

(108)

with θ ′
1 given in (106). Note that the case of D′ ∈

[ρXσ 2
X + ρY σ 2

Y , (
√

ρXσ 2
X +

√
ρY σ 2

Y )2] corresponds to
the case of θ ′

1 ∈ [π/2,π], so )(θ0 + θ ′
1) → 1 as n

grows. In the case of D′ > (
√

ρXσ 2
X +

√
ρY σ 2

Y )2 it
follows from (105) that the probability is equal to zero
(for all n). Hence the simplified condition ρXσ 2

X +ρY σ 2
Y ≤ D′

in (108).
Before we plug the above result into (101), we note

that by Stirling’s approximation we may write, for any

fixed ρ > 0:

fZ (nρ) = 1
nρ

(nρ
2

)n/2
exp(−nρ/2)

1
*(n/2)

= 1
nρ

(nρ
2

)n/2
exp(−nρ/2)

1
√

4π
n

( n
2e

)n/2

(
1+O

(
1
n

))

= exp
[
−n

(
ρ

2
− 1

2
− 1

2
log ρ

)]
1

ρ
√

4πn

(
1+O

(
1
n

))

≤ 2−nEZ (ρ) · nc, (109)

where EZ (·) was defined in (16) and c is a universal
constant.

Finally, we plug (108) and (109) into the upper bound (101)
on the (conditional) probability for maybe and conclude that
the following exponent is achievable:

min
ρX ,ρY ≥0

EZ (ρX ) + EZ (ρY ) + E)(θ0, D′, σ 2
X , σ 2

Y ,ρX ,ρY ).

(110)

Since η is arbitrarily small we may replace D′ with D in
the above. We may therefore rewrite the achievable exponent
as

min
ρX ,ρY ≥0

EZ (ρX ) + EZ (ρY )

+ E)

(
arcsin(2−R), D, σ 2

X , σ 2
Y ,ρX ,ρY

)
. (111)

In order to simplify matters further, note that in (111), the
minimizing (ρX ,ρY ) must satisfy:

∣∣∣∣
√

ρXσ 2
X −

√
ρY σ 2

Y

∣∣∣∣ <
√

D (112)

ρX σ 2
X + ρY σ 2

Y > D. (113)

The condition (112) must hold because otherwise the term E)

is infinite [see (108)].
To prove that (113) must hold, assume, for contradiction,

that (111) is minimized for (ρ∗
X ,ρ∗

Y ) that satisfy

ρXσ 2
X + ρY σ 2

Y ≤ D′ (114)

In this case, the value of (111) at the minimizing point is
EZ (ρ∗

X )+EZ (ρ∗
Y ). If, say ρ∗

X > 1, then we may replace it with
another value 0 < ρ∗∗

X < 1 that satisfies EZ (ρ∗∗
X ) = EZ (ρ∗

X )
that is guaranteed to exist (see the definition of EZ (·)).
The same argument holds for ρ∗

Y , and therefore we may
assume that in this case both ρ∗

X ,ρ∗
Y ∈ (0, 1]. Next, since

EZ (ρ) is monotone decreasing for ρ ∈ (0, 1), we may increase
ρ∗

X and ρ∗
Y , while still in (0, 1]2, until (113) is met with an

equality. Since the value of the objective function decreases,
we arrive at a contradiction, meaning that (113) must hold for
any minimizing ρX ,ρY .

Therefore the achievable exponent can be simplified to
the expression (18) and the proof of the direct part is
concluded.

Converse Part: Let ρ∗
X ,ρ∗

Y denote the minimizers of (18)
(in light of the discussion above, we can assume without
loss of generality that ρ∗

X ,ρ∗
Y satisfy (19)). The proof of the
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converse proceeds by focusing on values of X and Y that
satisfy 1

n ∥X∥2 ∼= ρ∗
Xσ 2

X and 1
n ∥Y∥2 ∼= ρ∗

Y σ 2
Y . The details are

as follows:
Let 0 < η < min(ρ∗

X ,ρ∗
Y ) be a small but fixed value. Define

the following spherical caps:

S∗
X ! Sr−

X ,r+
X
, S∗

Y ! Sr−
Y ,r+

Y
, (115)

where r±
X !

√
nσ 2

X (ρ∗
X ± η) and r±

Y !
√

nσ 2
Y (ρ∗

Y ± η).
We then write the following:

Pr{maybe} ≥ Pr
{
maybe, X ∈ S∗

X , Y ∈ S∗
Y
}

= Pr
{
maybe|X ∈ S∗

X , Y ∈ S∗
Y
}

· Pr{X ∈ S∗
X } · Pr{Y ∈ S∗

Y }. (116)

Consider the term Pr{X ∈ S∗
X }:

Pr
{
X ∈ S∗

X
}

= Pr

{
1

nσ 2
X

∥X∥2 ∈ (ρ∗
X − η,ρ∗

X + η)

}

(117)

=
∫ n(ρ∗

X +η)

n(ρ∗
X −η)

fZ (z)dz (118)

≥ 2nη min
z∈[n(ρ∗

X −η),n(ρ∗
X +η)]

fZ (z) (119)

≥ 2nη · nc · 2
−n maxρX ∈[ρ∗

X −η,ρ∗
X +η] EZ (ρX )

, (120)

where (120) follows from Stirling’s approximation similar
to (109). A similar derivation applies for Pr{Y ∈ S∗

Y }. Thus,
it follows from (116) and continuity of EZ (·) that

− 1
n

log Pr{maybe} ≤ − 1
n

log
[
Pr

{
maybe|X ∈ S∗

X , Y ∈ S∗
Y
}]

+ EZ (ρ∗
X ) + EZ (ρ∗

Y ) + η′

+ O
(

log n
n

)
, (121)

where η′ is a quantity tending to zero as η → 0.
We now concentrate on the term

Pr
{
maybe|X ∈ S∗

X , Y ∈ S∗
Y

}
, and proceed in a manner

similar to the converse proof of Theorem 1. To this
end, let T : Rn → {1, . . . , 2nR} denote the signature
assignment for the scheme at hand. Define the mapping
T̃ : S∗

X → {1, . . . , 2nR} as T̃ (x) = T (x) for all x ∈ S∗
X . That

is, T̃ (·) is the restriction of T (·) to S∗
X . Let T̃ −1(·) denote the

inverse mapping of T̃ (·):
T̃ −1(i) ! {x ∈ S∗

X : T (x) = i} (122)

= T −1(i) ∩ S∗
X . (123)

Let pi ! Pr{X ∈ T̃ −1(i)|X ∈ S∗
X }, so

∑2nR

i=1 pi = 1. Define

rX !
√

nσ 2
Xρ∗

X , and let the set Ai ⊆ SrX denote the projection

of T̃ −1(i) onto the sphere SrX . In other words,

Ai =
{

rX
x

∥x∥ : x ∈ T̃ −1(i)
}
. (124)

Let αi denote the fraction of the surface area of SrX that is
occupied by Ai . By the spherical symmetry of the distribution
of X, αi is also equal to the probability that the projection

of X onto SrX lies in Ai . Therefore αi ≥ pi , with equality if
and only if T̃ −1(i) is a thick cap with inner and outer radii
r−

X and r+
X respectively.

Let D′ ! (
√

D +
√

σ 2
X (ρ∗

X − η)−
√

σ 2
Xρ∗

X )2. As in (76) we
have

*D′
(Ai ) ⊆ *D

(
T̃ −1(i)

)
. (125)

Now let D′′ ! (
√

D′ +
√

σ 2
Y (ρ∗

Y − η) −
√

σ 2
Y ρ∗

Y )2, and let
the set Bi ⊆ SrY denote the D′′-expansion of Ai , restricted to

the sphere SrY , where rY !
√

nσ 2
Y ρ∗

Y , i.e.

Bi ! *D′′
(Ai ) ∩ SrY . (126)

Let βi denote the fraction of SrY that is occupied by Bi .
Let the set Ci denote the r−

Y , r+
Y thickening of Bi as

follows:

Ci =
{

y ∈ S∗
Y : rY

y
∥y∥ ∈ Bi

}
. (127)

As in (79) we have

Ci ⊆ *D′
(Ai ). (128)

Suppose that X = x ∈ S∗
X and that T (x) = i . Then we

have, with the aid of (125) and (128):

Pr{maybe|X = x ∈ S∗
X , Y ∈ S∗

Y }

≥ Pr
{

Y ∈ *D
(

T −1(i)
)

|Y ∈ S∗
Y

}
(129)

≥ Pr
{

Y ∈ *D
(

T̃ −1(i)
)

|Y ∈ S∗
Y

}
(130)

≥ Pr
{

Y ∈ *D′
(Ai) |Y ∈ S∗

Y

}
(131)

≥ Pr
{
Y ∈ Ci |Y ∈ S∗

Y
}

(132)
= βi , (133)

where the last equality follows from the spherical symmetry
of the pdf of Y.

As in the proof of the converse of Theorem 1, we apply
the isoperimetric inequality on the sphere (Lemma 2) for
the sets Ai and Bi . We get that the set A∗

i that minimizes
βi for given αi is the set CAPrX (u, θi ), where u is an
arbitrary point, θi ! )−1(αi ), and B∗

i is the set CAPrY (u, θ ′
i ),

defined by

θ ′
i ! θi + θD′′ (134)

where7

θD′′ ! arccos
ρ∗

X σ 2
X + ρ∗

Y σ 2
Y − D′′

2
√

ρ∗
X σ 2

X · ρ∗
Y σ 2

Y

. (135)

Therefore the (normalized) surface area of B∗
i is given by

β∗
i = )(θ ′

i ). It follows that

Pr{maybe|X = x ∈ S∗
X , Y ∈ S∗

Y } ≥ )(θD′′ + )−1(pi )),

(136)

7Note that since ρ∗
X and ρ∗

Y satisfy (19), cannot be outside the
region [−1, 1].
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and the average (conditional) probability Pr{maybe|X ∈
S∗

X , Y ∈ S∗
Y } is bounded by

Pr{maybe|X ∈ S∗
X , Y ∈ S∗

Y } (137)

=
2nR∑

i=1

Pr{T (X) = i |X ∈ S∗
X }

× Pr{maybe|T (X) = i, X ∈ S∗
X , Y ∈ S∗

Y } (138)

≥
2nR∑

i=1

pi · )
(
θD′′ + )−1(pi )

)
. (139)

Now, let 0 < c < 1, and invoke Lemma 5 to conclude that

R ≥ 1
n

log
1 − c

p∗ , (140)

where p∗ is the solution to

)(θD′′ + )−1(p)) = c−1 Pr{maybe|X ∈ S∗
X , Y ∈ S∗

Y }. (141)

Since )(·) is monotone increasing, so is )−1(·). Therefore,
(140) and (141) imply the inequality

Pr{maybe|X ∈ S∗
X , Y ∈ S∗

Y }
≥ c · )

(
θD′′ + )−1

(
(1 − c)2−nR

))
. (142)

It is a straightforward exercise to verify (e.g., by Taylor series
expansion) that

)−1
(
(1 − c)2−nR

)
= arcsin

(
2−R

)
+ O

(
log n

n

)
. (143)

If θD′′ + arcsin
(
2−R) ≥ π/2, then (142) and the definition

of )(·) yield

Pr{maybe|X ∈ S∗
X , Y ∈ S∗

Y } ≥ c/2, (144)

which, combined with (121), yields the desired upper bound

− 1
n

log Pr{maybe} ≤ − log sin
(π

2

)
+ EZ (ρ∗

X ) + EZ (ρ∗
Y )

+ η′ + O
(

log n
n

)
. (145)

On the other hand, if θD′′ + arcsin
(
2−R)

< π/2, then the
hypothesis of Lemma 1 is satisfied for n sufficiently large,
and the estimate (42) gives

− 1
n

log Pr{maybe|X ∈ S∗
X , Y ∈ S∗

Y }

≤ − log sin
(
θD′′ + )−1

(
(1 − c)2−nR

))
+ O

(
log n

n

)
.

(146)

By letting η be arbitrarily small we can infer from
(145) and (146) that any sequence of identification schemes
{g(n), T (n)}n→∞ must satisfy

lim sup
n→∞

− 1
n

log Pr{g(n)(T (n)(X), Y) = maybe}
≤ EZ (ρ∗

X ) + EZ (ρ∗
Y )

− log sin min
[
π

2
, arcsin

(
2−R

)
+arccos

ρ∗
Xσ 2

X + ρ∗
Y σ 2

Y − D

2
√

ρ∗
Xσ 2

X · ρ∗
Y σ 2

Y

]
,

as desired. "

Proof of Corollary 2: Let ρX ,ρY satisfy (19). We claim that
the quantity

EZ (ρX ) + EZ (ρY ) + ℘ (R, D,ρX σ 2,ρY σ 2) (147)

can not increase if ρX and ρY are both replaced by their
average ρ ! (ρX + ρY )/2, which continues to satisfy (19).
To see that this is indeed the case, note that EZ (·) is convex,
and therefore Jensen’s inequality implies

EZ (ρX ) + EZ (ρY ) ≥ 2EZ (ρ). (148)

Next, the inequality of arithmetic and geometric means implies

ρX σ 2 + ρY σ 2
Y − D

2σ 2√ρX ρY
≥ 2ρσ 2 − D

2ρσ 2 , (149)

and therefore, since arccos(x) is monotone decreasing
on x ∈ [0, 1],

arccos
ρXσ 2 + ρY σ 2

Y − D
2σ 2√ρXρY

≤ arccos
2ρσ 2 − D

2ρσ 2 . (150)

Since − log sin(x) is decreasing on x ∈ [0,π/2], (150) implies

℘ (R, D,ρX σ 2,ρY σ 2) ≥ ℘ (R, D,ρσ 2,ρσ 2), (151)

which proves that (147) can not increase if ρX and ρY are
both replaced by their average ρ. The observation that

2EZ (ρ) + ℘ (R, D,ρσ 2,ρσ 2) (152)

is monotone increasing for ρ > 1 completes the proof. "

E. General Sources and the Extremal Property of the Gaussian

The proof of Theorem 3 can be accomplished by restricting
our attention to the setting where X and Y are discrete random
variables. Therefore, the usual typicality machinery will be
useful to us, and we review a few facts before beginning the
proof of Theorem 3. We should also note that the method
of types is used in the proofs in [1], but the proof here,
which is similar in spirit, is significantly simpler and shorter,
partially because we are only interested in the achievable rate
(and not in the exponent). To this end, let T (n)

ϵ denote the usual
ϵ-typical set (see [30, Ch. 2]). That is, we define the empirical
pmf of w ∈ Wn as

π(w|w) = |i : wi = w|
n

for w ∈ W , (153)

and, for W ∼ PW , the set of ϵ-typical n-sequences is
defined by

T (n)
ϵ (W ) = {w : |π(w|w) − PW (w)| ≤ ϵPW (w)

for all w ∈ W} . (154)

Observe that if W ∼ ∏n
i=1 PW (wi ), then the union of events

bound and Hoeffding’s inequality imply

Pr
{

W /∈ T (n)
ϵ (W )

}

≤
∑

w∈W
Pr {|π(w|W) − PW (w)| > ϵPW (w)} (155)

≤
∑

w∈W :
PW (w)>0

2 exp
(
−n (ϵPW (w))2

)
. (156)
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Therefore, if |W| < ∞,

Pr
{

W /∈ T (n)
ϵ (W )

}
≤ exp (−nδ(ϵ)), (157)

where δ(ϵ) denotes a positive quantity satisfying
limϵ→0 δ(ϵ) = 0.

One useful fact is the so-called Typical Average
Lemma [30, Sec. 2.4]:

Lemma 7 (Typical Average Lemma): If w ∈ T (n)
ϵ (W ), then

(1 − ϵ)E[ f (W )] ≤ 1
n

n∑

i=1

g(wi ) ≤ (1 + ϵ)E[ f (W )]

for any nonnegative function f (w) on W .
Now, we state a simple variant of the Covering

Lemma [30, Lemma 3.3]:
Lemma 8: Let PW V be a joint probability distribution on

the finite alphabet W × V , with corresponding marginals
PW and PV . Let W ∼ ∏n

i=1 PW (wi ) and let V(m),
m ∈ {1, 2, . . . , 2nR}, be random sequences, independent
of each other and of W, each distributed according to∏n

i=1 PV (vi ). Then, for n sufficiently large, there exists
positive functions δ(ϵ), δ̃(ϵ) satisfying limϵ→0 δ(ϵ) =
limϵ→0 δ̃(ϵ) = 0 and

Pr
{
(W, V(m)) /∈ T (n)

ϵ (W, V ) for all m
}

≤ exp (−nδ(ϵ)) + exp
(
−2n(R−I (W ;V )−δ̃(ϵ))

)
.

Proof: The proof follows that of [30, Lemma 3.3]
verbatim, invoking (157) where appropriate. "

We require one more result before moving on to the proof
of Theorem 3.

Lemma 9: Let PW and PV be probability distributions
with finite second moments σ 2

W and σ 2
V , respectively.

If w ∈ T (n)
ϵ (W ), v ∈ T (n)

ϵ (V ), and 1
n ∥w − v∥2 ≤ D, then

1
n

∥∥∥∥

√
σV

σW
w −

√
σW

σV
v
∥∥∥∥

2

≤ D − (σW − σV )2 + ϵ|σ 2
W − σ 2

V |.
(158)

Proof: Without loss of generality, assume σV ≥ σW . Note
that the assumption 1

n ∥w − v∥2 ≤ D implies

− 2
n

wT v ≤ D − 1
n
∥w∥2 − 1

n
∥v∥2. (159)

Moreover, Lemma 7 implies the following inequalities

1
n
∥w∥2 ≤ (1 + ϵ)σ 2

W (160)

1
n
∥v∥2 ≥ (1 − ϵ)σ 2

V . (161)

Therefore, it follows that

1
n

∥∥∥∥

√
σV

σW
w −

√
σW

σV
v
∥∥∥∥

2

= 1
n

(
σV

σW
∥w∥2 + σW

σV
∥v∥2 − 2wT v

)

≤ D + 1
n

((
σV

σW
− 1

)
∥w∥2 +

(
σW

σV
− 1

)
∥v∥2

)

≤ D + (1 + ϵ)σ 2
W

(
σV

σW
− 1

)
+ (1 − ϵ)σ 2

V

(
σW

σV
− 1

)

= D − (σW − σV )2 + ϵ(σ 2
V − σ 2

W ).

Considering the symmetric case where σV ≤ σW gives

1
n

∥∥∥∥

√
σV

σW
w −

√
σW

σV
v
∥∥∥∥

2

≤ D − (σW − σV )2 + ϵ(σ 2
W − σ 2

V ),

completing the proof. "
Proof of Theorem 3: We can assume that X and Y are

discrete random variables with finite alphabet X ⊂ R.
The extension to continuous distributions with finite second
moments follows by the usual quantization arguments and
continuity of ∥·∥. Fix ϵ > 0 and a conditional pmf PX̂ |X (x̂ |x),

where the alphabet X̂ is an arbitrary subset of R with
finite support. Throughout, the random variables (Y, X, X̂) are
drawn according to the joint distribution

PY X X̂ (y, x, x̂) = PY (y)PX X̂ (x, x̂)

= PY (y)PX (x)PX̂ |X (x̂ |x).

Random Signature Assignment: Randomly and indepen-
dently generate 2nR sequences x̂(t), t ∈ {1, 2, . . . , 2nR}, each
according to

∏n
i=1 PX̂ (x̂i ). Given a sequence x, find an index t

such that (x, x̂(t)) ∈ T (n)
ϵ (X, X̂) and put T (x) = t . If there

is more than one such index, break ties arbitrarily. If there
is no such index, put T (x) = e. Observe that the rate R is
negligibly affected by the addition of the additional “erasure”
signature e (as in the proofs of Theorems 1 and 2).

Definition of the Query Function: In order to simplify
notation, define the quantity

. !

√√√√(1 + ϵ)E
[(√

σY

σX
X − X̂

)2
]

+
√

D − (σX − σY )2 + ϵ|σ 2
X − σ 2

Y |. (162)

For a signature t ∈ {1, 2, . . . , 2nR} ∪ {e} and a sequence y,
define

g(t, y) !

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maybe if

⎧
⎪⎨

⎪⎩

y /∈ T (n)
ϵ (Y ), or

t = e, or
1√
n

∥∥∥
√

σX
σY

y − x̂(t)
∥∥∥ ≤ . and t ̸= e

no otherwise.

Scheme Analysis: First, we check to ensure that g(·, ·) does
not produce any false negatives; that is, we need to verify that
(T, g) is D-admissible. Note that g(T (x), y) returns maybe
if y /∈ T (n)

ϵ (Y ) or T (x) = e. Therefore, we only need to show
that g(T (x), y) returns maybe if y ∈ T (n)

ϵ (Y ), (x, x̂(T (x))) ∈
T (n)

ϵ (X, X̂), and 1
n ∥x − y∥2 ≤ D.

Under these assumptions, note that Lemma 7 implies

1
n

∥∥∥∥

√
σY

σX
x − x̂(t)

∥∥∥∥
2

≤ (1 + ϵ)E
[(√

σY

σX
X − X̂

)2
]

.

(163)

Next, recall that (x, x̂(T (x))) ∈ T (n)
ϵ (X, X̂) implies

x ∈ T (n)
ϵ (X). Hence, under the assumption that
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1
n ∥x − y∥2 ≤ D, Lemma 9 implies

1
n

∥∥∥∥

√
σY

σX
x −

√
σX

σY
y
∥∥∥∥

2

≤ D − (σX − σY )2 + ϵ|σ 2
X − σ 2

Y |.
(164)

Combining the triangle inequality, (163), (164), and (162), we
have

1√
n

∥∥∥∥

√
σX

σY
y − x̂(t)

∥∥∥∥

≤ 1√
n

∥∥∥∥

√
σY

σX
x − x̂(t)

∥∥∥∥ + 1√
n

∥∥∥∥

√
σY

σX
x −

√
σX

σY
y
∥∥∥∥

≤ ..

Hence, g(T (x), y) returns maybe if y ∈ T (n)
ϵ (Y ),

(x, x̂(T (x))) ∈ T (n)
ϵ (X, X̂), and 1

n ∥x − y∥2 ≤ D. Therefore,
(T, g) is D-admissible as desired.

Next, we check to ensure that Pr{g(T (X), Y) = maybe} is
small. To this end, consider the events

E0 =
{

y /∈ T (n)
ϵ (Y )

}
,

E1 = {T (X) = e},
E2 =

{
1√
n

∥∥∥∥

√
σX

σY
Y − X̂(T (X))

∥∥∥∥ ≤ .

}
,

and observe that Pr{g(T (X), Y) = maybe} ≤ Pr{E0} +
Pr{E1} + Pr{E2} by the union of events bound.

We have already seen in (157) that

Pr{E0} ≤ exp (−nδ(ϵ)) (165)

for some positive δ(ϵ) satisfying limϵ→0 δ(ϵ) = 0.
Next, Lemma 8 implies that, for n sufficiently large,

ET [Pr{E1}] ≤ exp (−nδ(ϵ)) + exp
(
−2n(R−I (X;X̂)−δ̃(ϵ))

)
,

(166)

where ET [Pr{E1}] denotes the value of Pr(E1) averaged over
the random choice of the signature assignment T (·).

Let X̂ be distributed according to
∏n

i=1 PX̂ (x̂i ), independent
of Y ∼ ∏n

i=1 PY (yi ). An application of Hoeffding’s inequality
implies

Pr

⎛

⎝ 1√
n

∥∥∥∥

√
σX

σY
Y − X̂

∥∥∥∥ ≤

√√√√E
[(√

σX

σY
Y − X̂

)2
]

− ϵ

⎞

⎠

≤ exp(−nδ(ϵ)). (167)

Since the sequence Y is independent of X, and is therefore
also independent of X̂(T (X)), (167) implies that

ET [Pr{E2}] ≤ exp (−nδ(ϵ)) (168)

if

. ≤

√√√√E
[(√

σX

σY
Y − X̂

)2
]

− ϵ. (169)

Therefore, if (169) holds, we have

ET [Pr{g(T (X), Y) = maybe}]
≤ 3 exp (−nδ(ϵ)) + exp

(
−2n(R−I (X;X̂)−δ̃(ϵ))

)
, (170)

implying the existence of a sequence of D-admissible, rate
R > I (X; X̂) schemes for which Pr{g(T (X), Y) = maybe}
is exponentially small in n. Since ϵ was arbitrary, the proof is
complete. "

Proof of Theorem 4: Since d(·, ·) is translation invariant, we
can assume without loss of generality that PX and PY have
mean zero. Also, note that it is sufficient to consider D in the
interval (σX −σY )2 ≤ D ≤ σ 2

X +σ 2
Y . Indeed, if D > σ 2

X +σ 2
Y ,

then the theorem asserts that RID(D, PX , PY ) ≤ ∞, which is
trivially true. The other case of D < (σX − σY )2 will follow
from the monotonicity of RID(D, PX , PY ) in D and from the
fact that RID((σX − σY )2, PX , PY ) = 0 (which is proved in
the main case).

Therefore, assume (σX −σY )2 < D ≤ σ 2
X +σ 2

Y and consider
the conditional distribution PX̂ |X defined by X̂ = ρ

√
σY
σX

X+Z ,

where Z ∼ N(0, σ 2
Z ) is independent of X and ρ, σ 2

Z are
given by

ρ = (σX + σY )2 − D
(2σX σY )

σ 2
Z = ((σX + σY )2 − D)(σ 2

X + σ 2
Y − D)2

4σXσY (D − (σX − σY )2)
.

With PX̂ |X defined in this way, the following identities are
readily verified

√√√√E
[(√

σX

σY
Y − X̂

)2
]

=
√

σXσY (1 + ρ2) + σ 2
Z

= 2σXσY√
D − (σX − σY )2

(171)
√√√√E

[(√
σY

σX
X − X̂

)2
]

=
√

σXσY (1 − ρ)2 + σ 2
Z

= σ 2
X + σ 2

Y − D
√

D − (σX − σY )2
. (172)

Therefore, (171) and (172) yield the identity
√√√√E

[(√
σX

σY
Y − X̂

)2
]

=

√√√√E
[(√

σY

σX
X − X̂

)2
]

+
√

D − (σX − σY )2.

Since X̂ has density and the Gaussian distribution maximizes
differential entropy for a given variance (see [17]), we have the
inequality h(X̂) ≤ 1

2 log
(
2πe(ρ2σX σY + σ 2

Z )
)
. It follows that

I (X; X̂) ≤ 1
2

log

(
ρ2σX σY + σ 2

Z

σ 2
Z

)

= log

(
2σXσY

σ 2
X + σ 2

Y − D

)

= RID(D, N(0, σ 2
X ), N(0, σ 2

Y )).

Thus, for D ̸= (σX − σY )2, an application of Theorem 3
implies that

RID(D, PX , PY ) ≤ RID(D, N(0, σ 2
X ), N(0, σ 2

Y )). (173)
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To handle the case where D = (σX − σY )2, we
note that RID(D, PX , PY ) is nondecreasing in D.
Since

lim
D↓(σX−σY )2

RID(D, N(0, σ 2
X ), N(0, σ 2

Y )) = 0, (174)

inequality (173) implies that we must have
RID(D, PX , PY ) = 0 at D = (σX − σY )2. This completes the
proof. "

F. Robust Identification Schemes

Fix R > RID
(
D, N(0, σ 2

X ), N(0, σ 2
Y )

)
and consider the

setup described in section III-D. Specifically, let PX̃ , PỸ be
zero-mean distributions with variances σ 2

X and σ 2
Y ,

respectively. Recall that, for a given blocklength n,
the argument in the achievability proof of Theorem 1
constructs a signature assignment function T (n) : x̃ → Rn

for which the query g(n)
(
T (n)(x̃), ỹ

)
returns “maybe”

only if
1) The angle ̸ (ỹ, T (n)(x̃)) is at most θ ′, where θ ′ < π/2

is a fixed constant defined in (68), and
2) We have x̃ ∈ Styp

X , where Styp
X is the “typical shell” of x̃

vectors defined in (57).
We remark that the gap between π/2 − θ ′ and the thickness
of the shell Styp

X depend on the parameter η > 0, which is a
function of the gap between R and
RID

(
D, N(0, σ 2

X ), N(0, σ 2
Y )

)
.

In light of the conditions under which g(n)
(
T (n)(x̃), ỹ

)

returns “maybe”, the probability of the event{
g(n)

(
T (n)(X̃), Ỹ

)
= maybe

}
is bounded by

Pr
{

g(n)
(

T (n)(X̃), Ỹ
)

= maybe
}

≤ Pr
{

̸ (Ỹ, T (n)(X̃)) ≤ θ ′
}

+ Pr
{

X̃ /∈ Styp
X

}
.

The term Pr
{

X̃ /∈ Styp
X

}
vanishes by the weak law of large

numbers as n → ∞. Therefore, since X̃ and Ỹ are indepen-
dent, it is sufficient to show that Pr

{
̸ (Ỹ,α) ≤ θ ′

}
vanishes

for any given unit vector α = (α1,α2, . . . ,αn) and constant
θ ′ ∈ (0,π/2). To this end, define βn ! σY

2
√

n, and observe
that

Pr
{

̸ (Ỹ,α) ≤ θ ′
}

= Pr

{
n∑

i=1

αi Ỹi ≥ ∥Ỹ∥ cos θ ′
}

≤ Pr

{
n∑

i=1

αi Ỹi ≥ βn cos θ ′
}

+ Pr
{
∥Ỹ∥ ≤ βn

}
.

First, note limn→∞ Pr
{
∥Ỹ∥ ≤ βn

}
= 0 by the weak law

of large numbers. Next, since α is a unit vector, we have∑n
i=1 α2

i = 1, and it follows that

VAR

(
n∑

i=1

αi Ỹi

)

= σ 2
Y . (175)

Since E[Ỹi ] = 0, Chebyshev’s inequality implies

Pr

{
n∑

i=1

αi Ỹi ≥ βn cos θ ′
}

≤ σ 2
Y

β2
n cos2 θ ′ = 4

n cos2 θ ′ , (176)

proving that Pr
{

g(n)
(

T (n)(X̃), Ỹ
)

= maybe
}

→ 0 as

desired. Since the D-admissibility of the scheme (T (n), g(n))
did not depend on the Gaussianity assumption in the proof
of Theorem 1, the scheme (T (n), g(n)) continues to be
D-admissible for the sources X̃, Ỹ.

Therefore, we can conclude that a sequence of rate-R,
D-admissible schemes {T (n), g(n)}n→∞ constructed as
described in the proof of Theorem 1 exhibit the robustness
property explained in Section III-D.

V. CONCLUDING REMARKS

We studied the problem of answering similarity queries
from compressed data from an information-theoretic
perspective. We focused on the setting where the similarity
criterion is the (normalized) quadratic distance. For the case
of i.i.d. Gaussian data, we gave an explicit characterization of
the minimal compression rate which permits reliable queries
(i.e., the identification rate). Furthermore, we characterized
the best exponential rate at which the probability for false
positives can be made to vanish.

For general sources, we derived an upper bound on the
identification rate, and proved that it is at most that of
the Gaussian source of the same variance. Finally, we pre-
sented a single, robust, scheme that compresses any source
at the Gaussian identification rate, while permitting reliable
responses to queries.

The identification rate and exponent, studied in this paper,
are asymptotic in nature, i.e. correspond to the case of infinite
(or growing) dimension n. Extensions of this work to the non-
asymptotic case, as well as constructive achievability schemes,
can be found in [31].

APPENDIX A
COVERING A SHELL WITH SPHERES

Proof of Lemma 3: According to [26, Th. 1], for any
r > ρ > 0 there exists a covering of Sr with balls of radius ρ,
with density ϑ upper bounded by

ϑ ≤ (n − 1) log(n − 1)

(
1
2

+ 2 log log(n − 1) + 5
log(n − 1)

)
(177)

≤ n log(n), (178)

where (177) holds for all n ≥ 4, and (178) holds for n large
enough so that 2 log log(n−1)+5

log(n−1) ≤ 1
2 . This translates to k balls

of radius ρ that cover Sr , where

k ≤ n log(n)

)(θ)
, (179)

and θ ! arcsin(ρ/r).
We choose r = r0 =

√
nσ 2 and ρ = ρ0 = √

nD0,
so θ = θ0 = arcsin(

√
D0/σ 2) < π/2 and is independent

of n. When n is large enough s.t. θ ≤ arccos(1/
√

n), we may
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use (42) and get an upper bound on the covering size:

k ≤ n log(n)

)(θ0)
(180)

≤ n log(n)
1

3
√

2πn cos θ0
sinn−1 θ0

(181)

≤ 3
√

2πn3/2 log(n)(ρ0/r0)
n−1, (182)

which proves (48).
Note that for a code that covers a spherical shell, the

biggest covering by any single point u ∈ C is obtained

when the point u is located at distance
√

r2
0 − ρ2

0 from the
origin. We therefore can assume, without altering the covering
property of C, that ∥u∥ =

√
r2

0 − ρ2
0 for all u ∈ C (see also

[26, eq. (1)] and the discussion that follows). The inter-
section of BALLρ0(u) and Sr0 is precisely given by
CAPr0(u, θ0). "

APPENDIX B

Proof of Lemma 4: Let y ∈ *D
(
T −1(u)

)
∩ Styp

Y . Our goal
is to show that y ∈ CONE(u, θ ′). In other words, we need to
show that

̸ (u, y) ≤ θ ′. (183)

Since y ∈ *D T −1(u), there exists x ∈ T −1(u)
s.t. d(x, y) ≤ D. By the triangle inequality for the angle
operator (which is proportional to the geodesic metric in
spherical geometry) we can write

̸ (u, y) ≤ ̸ (u, x) + ̸ (x, y). (184)

Since T −1(u) ⊆ CAPr−,r+(u, θ0), we know that ̸ (u, x) ≤ θ0.
Further, by the law of cosines for the triangle (x, y, 0) we can
write

̸ (x, y) = arccos
[∥x∥2 + ∥y∥2 − ∥x − y∥2

2∥x∥∥y∥

]
(185)

(a)≤ arccos

⎡

⎣ σ 2
X + σ 2

Y − 2η − nD

2
√

(σ 2
X + η)(σ 2

Y + η)

⎤

⎦ (186)

= θ1, (187)

where (a) follows since x ∈ Styp
X , y ∈ Styp

Y and
d(x, y) ≤ D. Therefore by definition we have y ∈
CONE(u, θ ′). All there’s left to show is that θ ′ < π

2 . This
follows immediately since D0 satisfies (52) by definition, and
from the fact that arcsin(φ) + arccos(φ) = π

2 . "

APPENDIX C

Proof of Lemma 5: Define I as the set of indices i for which
pi ≥ p∗:

I ! {i : pi ≥ p∗}. (188)

Clearly )
(
θD′′ + )−1(pi )

)
≥ )∗ if and only if i ∈ I, so I

can be thought of as the set of ‘bad’ values for i , i.e. those
that contribute a lot to the sum in (85).

Consider the following sequence of inequalities:

c · )∗ ≥
2nR∑

i=1

pi · )
(
θD′′ + )−1(pi )

)

≥
∑

i∈I
pi · )

(
θD′′ + )−1(pi )

)

≥ )∗ ∑

i∈I
pi . (189)

On the other hand,

1 =
∑

i

pi

=
∑

i∈I
pi +

∑

i /∈I
pi

(a)
≤ c +

∑

i /∈I
pi

(b)≤ c +
∑

i /∈I
p∗

≤ c + p∗2nR .

(a) follows from (189). (b) follows from the definition of I.
Eq. (86) follows immediately. "

APPENDIX D

Proof of Lemma 6: For any t > 0 and a > 0 we have

Pr{∥X∥2 > a}
(a)
≤ e−t ·aE

[
exp

(
t · ∥X∥2

)]

(b)= e−t ·a(1 − 2tσ 2
X )−n/2.

(a) is the Chernoff bound. (b) follows since the moment
generating function of Z is given by

E
[
et Z

]
= (1 − 2t)−n/2, for t <

1
2

. (190)

Here it holds for any t < 1
2σ 2

X
. We choose t = 1

4σ 2
X

and write:

Pr{∥X∥2 > a} ≤ e
− a

4σ2
X · 2n/2. (191)

Choosing a = nσ 2
max(n) = n2σ 2

X results in

Pr{∥X∥2 > nσ 2
max(n)} ≤ e− 1

4 n2+o(n2). (192)

"
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