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Abstract—Let X,Y be jointly Gaussian vectors, and con-

sider random variables U, V that satisfy the Markov constraint

U � X � Y � V . We prove an extremal inequality relating the

mutual informations between all

�
4
2

�
pairs of random variables

from the set (U,X,Y, V ). As a first application, we show

that the rate region for the two-encoder quadratic Gaussian

source coding problem follows as an immediate corollary of the

the extremal inequality. In a second application, we establish

the rate region for a vector-Gaussian source coding problem

where L

¨

owner-John ellipsoids are approximated based on rate-

constrained descriptions of the data.

I. INTRODUCTION

In this paper, we prove the following extremal result, which
can be viewed as an entropy power inequality for long Markov
chains:

Theorem 1. For n⇥ n positive definite matrices ⌃

X

,⌃

Z

, let
X ⇠ N(µ

X

,⌃

X

) and Z ⇠ N(µ

Z

,⌃

Z

) be independent n-
dimensional Gaussian vectors, and define Y = X + Z. For
any U, V such that U �X�Y�V form a Markov chain, the
following inequality holds:

2

� 2
n

(I(Y;U)+I(X;V )) � |⌃
X

|1/n

|⌃
X

+ ⌃

Z

|1/n
2

� 2
n

(I(X;U)+I(Y;V ))

+ 2

� 2
n

(I(X;Y)+I(U ;V ))
. (1)

This result is motivated by multiterminal settings where
such Markov chains often arise, but appropriate extremal
inequalities for handling them do not exist. Indeed, we will
argue shortly that (1) can lead to straightforward solutions of
multiterminal Gaussian source coding problems, as the classi-
cal entropy power inequality does in point-to-point settings.

In the simplest case, where Y = ⇢X + Z, ⌃
X

= I

n

and
⌃

Z

= (1� ⇢

2
)I

n

, Theorem 1 implies

2

� 2
n

(I(Y;U)+I(X;V )) � ⇢

2
2

� 2
n

(I(X;U)+I(Y;V ))

+ (1� ⇢

2
)2

� 2
n

I(V ;U)
. (2)

If V is degenerate, (2) further simplifies to an inequality
shown by Oohama in [1], which proved to be instrumental
in establishing the rate-distortion region for the one-helper
quadratic Gaussian source coding problem. Together with
Oohama’s work, the sum-rate constraint established by Wagner
et al. in their tour de force [2] completely characterized the
rate-distortion region for the two-encoder quadratic Gaussian
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source coding problem. It turns out that the sum-rate constraint
of Wagner et al. can be recovered as an immediate corollary
to (2), thus unifying the works of Oohama and Wagner et al.
under a common inequality. The entire argument is given as
follows.

First Application: Recovery of the scalar-Gaussian sum-rate
constraint

Using the Markov relationship U � X � Y � V , we
can rearrange the exponents in (2) to obtain the equivalent
inequality

2

� 2
n

(I(X;U,V )+I(Y;U,V ))

� 2

� 2
n

I(X,Y;U,V )
⇣

1� ⇢

2
+ ⇢

2
2

� 2
n

I(X,Y;U,V )
⌘

. (3)

The left- and right-hand sides of (3) are monotone decreasing
in 1

n

(I(X;U, V ) + I(Y;U, V )) and 1
n

I(X,Y;U, V ), respec-
tively. Therefore, if

1

n

(I(X;U, V ) + I(Y;U, V )) � 1

2

log

1

D

and (4)

1

n

I(X,Y;U, V )  R (5)

for some pair (R,D), then we have D �
2

�2R
�

1� ⇢

2
+ ⇢

2
2

�2R
�

, which is a quadratic inequality
with respect to the term 2

�2R. This is easily solved using the
quadratic formula to obtain:

2

�2R  2D

(1� ⇢

2
)�(D)

) R � 1

2

log

(1� ⇢

2
)�(D)

2D

, (6)

where �(D) , 1+

q

1 +

4⇢2
D

(1�⇢

2)2 . Note that Jensen’s inequal-
ity and the maximum-entropy property of Gaussians imply

1

n

(I(X;U, V ) + I(Y;U, V ))

� 1

2

log

1

mmse(X|U, V )mmse(Y|U, V )

, (7)

where mmse(X|U, V ) , 1
n

kX � E[X|U, V ]k2, and
mmse(Y|U, V ) is defined similarly. Put U = f

x

(X) and V =

f

y

(Y), where f
x

: Rn ! [1 : 2

nR

x

] and f

y

: Rn ! [1 : 2

nR

y

].
Supposing mmse(X|U, V )  d

x

and mmse(Y|U, V )  d

y

,
inequalities (4)-(7) together imply

R

x

+R

y

� 1

2

log

(1� ⇢

2
)�(d

x

d

y

)

2d

x

d

y

, (8)

which is precisely the sum-rate constraint for the two-encoder
quadratic Gaussian source coding problem.
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Fig. 1: Computation of covering-ellipsoids from compressed descriptions of the observed data points (k = 4). Note the decoder
only computes the ellipsoids E(A

x

, b

x

), E(A
y

, b

y

). The data points at the output of the decoder are only shown for reference.

Second Application: Distributed compression of minimal-
volume ellipsoids

Above, recovery of the quadratic Gaussian sum-rate con-
straint (8) demonstrated the utility of Theorem 1 in proving
nontrivial results. Now, we consider a new problem which,
the the authors’ knowledge, is not a consequence of known
results in the literature. In particular, we study the problem of
compressing ellipsoids that cover a set of points which, subject
to rate constraints, have approximately minimal volume. Such
ellipsoids are similar to Löwner-John ellipsoids, which are
defined as the (unique) ellipsoid of minimal volume that covers
a finite set of points [3]. These minimum-volume ellipsoids
and their approximations play a prominent role in the fields
of optimization, data analysis, and computational geometry
(e.g., [4]).

To begin, we recall that an n-dimensional ellipsoid E can
be parameterized by a positive semidefinite matrix A 2 Rn⇥n

and a vector b 2 Rn as follows:

E = E(A, b) = {x 2 Rn

: kAx� bk  1} .

The volume of E(A, b) is related to the determinant of A by

vol (E(A, b)) = c

n

|A| ,

where c

n

⇠ 1p
n⇡

�

2⇡e
n

�

n/2 is the volume of the n-dimensional
unit ball.

Fix ⇢ 2 (0, 1), and let {⌃
n

: n � 1} be a sequence of posi-
tive definite n⇥n matrices. Suppose (X1,Y1), . . . , (Xk

,Y
k

)

are k independent pairs of jointly Gaussian vectors, each equal
in distribution to (X,Y), where E[XXT

] = E[YYT

] = ⌃

n

,
and E[XYT

] = ⇢⌃

n

.

A (n,R

x

, R

y

, ⌫

x

, ⌫

y

, k,⌃

n

, ✏)-code consists of encoding
functions f

x

: Rkn ! {1, 2, . . . , 2knRx} and f

y

: Rkn !
{1, 2, . . . , 2knRy}, and a decoding function

 : (f

x

(X1, . . . ,Xk

), f

y

(Y1, . . . ,Yk

)) 7! (A

x

, A

y

, b

x

, b

y

)

which satisfies the error-probability constraints

max

1ik

Pr {X
i

/2 E(A
x

, b

x

)} < ✏

max

1ik

Pr {Y
i

/2 E(A
y

, b

y

)} < ✏,

and the volume constraints
⇣

vol(E(A
x

, b

x

))

⌘1/n
 (1 + ✏)c

1/n
n

q

n⌫

x

|⌃
n

|1/n
⇣

vol(E(A
y

, b

y

))

⌘1/n
 (1 + ✏)c

1/n
n

q

n⌫

y

|⌃
n

|1/n.

We remark that
p
nc

1/n
n

!
p
2⇡e as n ! 1 by Stirling’s

approximation, which explains the normalization factor of
p
n

in the volume constraint.

Definition 1. For a sequence {⌃
n

: n � 1} of posi-
tive definite n ⇥ n matrices, a tuple (R

x

, R

y

, ⌫

x

, ⌫

y

, k) is
{⌃

n

: n � 1}-achievable if there exists a sequence of
(n,R

x

, R

y

, ⌫

x

, ⌫

y

, k,⌃

n

, ✏

n

) codes satisfying ✏

n

! 0 as
n ! 1.

If (R

x

, R

y

, ⌫

x

, ⌫

y

, k) is a Pareto-optimal {⌃
n

: n � 1}-
achievable point, the corresponding ellipsoids
E(A

x

, b

x

), E(A
y

, b

y

) can be viewed as the best approximations
to Löwner-John ellipsoids subject to rate-constrained
descriptions of the data. That is, the two ellipsoids cover
the k points observed at their respective encoders, and are
(essentially) the minimum-volume such ellipsoids that can be
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computed from rate-constrained descriptions of the data. The
general problem setup is illustrated in Figure 1.

Theorem 2. For any sequence {⌃
n

: n � 1} of positive
definite n ⇥ n matrices, a tuple (R

x

, R

y

, ⌫

x

, ⌫

y

, k) is {⌃
n

:

n � 1}-achievable if and only if

R

x

� 1

2

log



1

⌫

x

�

1� ⇢

2
+ ⇢

2
2

�2R
y

�

�

R

y

� 1

2

log



1

⌫

y

�

1� ⇢

2
+ ⇢

2
2

�2R
x

�

�

R

x

+R

y

� 1

2

log

(1� ⇢

2
)�(⌫

x

⌫

y

)

2⌫

x

⌫

y

,

where �(z) , 1 +

q

1 +

4⇢2
z

(1�⇢

2)2 .

The direct part of Theorem 2 follows from an application
of the achievability scheme for the two-encoder quadratic
Gaussian source coding problem. However, the converse result
does not appear to be a similar consequence since the matrices
A

x

, A

y

describing the principal axes of the ellipsoids are
allowed to depend on the source realizations. Nonetheless,
with Theorem 1 at our disposal, the proof of the converse
is fairly routine. Since the primary goal of this paper is to
give a treatment of the extremal inequality (1), the proof of
Theorem 2 has been omitted due to space constraints and can
be found in the full paper [5].

The remainder of this paper is organized as follows: a
treatment of the scalar version of (1) is given in Section II, and
the vector generalization is considered in Section III. Closing
remarks are provided in Section IV.

II. SCALAR SETTING

We begin the journey toward our main result by studying
the scalar version of Theorem 1. Most of our effort will carry
over to the vector setting, but the notation in the scalar case is
less cumbersome. Therefore, for the remainder of this section,
we will assume that X,Y are jointly Gaussian, each with unit
variance and correlation ⇢. Our main result in this section is
the following rearrangement of (1).

Theorem 3. Suppose X,Y are jointly Gaussian, each with
unit variance and correlation ⇢. Then, for any U, V satisfying
U �X � Y � V , the following inequality holds:

2

�2(I(Y ;U)+I(X;V |U)) � (1� ⇢

2
) + ⇢

2
2

�2(I(X;U)+I(Y ;V |U))
.

(9)

A. Proof of Theorem 3

Instead of working directly with inequality (9), it will be
convenient to consider a dual form. For � � 0, define

F (�) , inf

U,V :U�X�Y�V

n

I(X;U)� �I(Y ;U)

+ I(Y ;V |U)� �I(X;V |U)

o

. (10)

The remainder of this section is devoted to characterizing the
function F (�), which we split into a series of lemmas to
highlight the main steps. We remark that that the infimum in

(10) is attained for any �. The proof of this is routine, and can
be found in the full paper [5]. The bulk of the work ahead is
devoted to establishing the existence of valid minimizers U, V
for which X|{U = u} is normal for almost every u.

To accomplish this, we now describe a simple construction
that will be used throughout much of the sequel. This con-
struction was first introduced for proving extremal inequalities
in [6]. Suppose U,X, Y, V satisfy the Markov relationship
U � X � Y � V , and consider two independent copies of
U,X, Y, V , which will be denoted by the same variables with
subscripts 1 and 2. Define

ˆ

X1 =

X1 +X2p
2

ˆ

X2 =

X1 �X2p
2

. (11)

In a similar manner, define ˆ

Y1,
ˆ

Y2. Note that ( ˆX1,
ˆ

X2,
ˆ

Y1,
ˆ

Y2)

and (X1, X2, Y1, Y2) are equal in distribution. Let g : R2 !
R be a one-to-one measurable transformation1. Define ˆ

U =

g(U1, U2) and ˆ

V = g(V1, V2).

Lemma 1. If U,X, Y, V minimize the functional (10), and
ˆ

X1,
ˆ

X2,
ˆ

Y1,
ˆ

Y2,
ˆ

U,

ˆ

V are constructed as above, then
1) For almost every y, ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

V conditioned on { ˆY2 =

y} is a valid minimizer of (10).
2) For almost every y, ˆ

U,

ˆ

X2,
ˆ

Y2,
ˆ

V conditioned on { ˆY1 =

y} is a valid minimizer of (10).

Proof. We can assume � > 1, else the data processing
inequality implies that F (�) � 0, which is easily attained.

Let �1 be such that ˆ

X1,
ˆ

Y1 are independent of �1 and ˆ

U �
ˆ

X1 � ˆ

Y1 � ˆ

V conditioned on �1. Valid assignments of �1
include any nonempty subset of ˆ

X2,
ˆ

Y2. Let �2 be defined
similarly. Now, observe that we can write:

2I(X;U) = I(

ˆ

X1,
ˆ

X2;
ˆ

U) = I(

ˆ

X1;
ˆ

U) + I(

ˆ

X2;
ˆ

U | ˆX1)

= I(

ˆ

X1;
ˆ

U) + I(

ˆ

X2;
ˆ

U) + I(

ˆ

X2;
ˆ

X1| ˆU)

= I(

ˆ

X1;
ˆ

U |�1) + I(

ˆ

X2;
ˆ

U |�2)� I(

ˆ

X1;�1| ˆU)

� I(

ˆ

X2;�2| ˆU) + I(

ˆ

X1;
ˆ

X2| ˆU).

Similarly,

2I(Y ;U) = I(

ˆ

Y1;
ˆ

U |�1) + I(

ˆ

Y2;
ˆ

U |�2)
� I(

ˆ

Y1;�1| ˆU)� I(

ˆ

Y2;�2| ˆU) + I(

ˆ

Y1;
ˆ

Y2| ˆU)

Also, we have

2I(Y ;V |U)

= I(

ˆ

Y1,
ˆ

Y2;
ˆ

V | ˆU) = I(

ˆ

Y1;
ˆ

V | ˆU) + I(

ˆ

Y2;
ˆ

V | ˆU)

� I(

ˆ

Y2;
ˆ

Y1| ˆU) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

= I(

ˆ

Y1;�1,
ˆ

V | ˆU) + I(

ˆ

Y2;�2,
ˆ

V | ˆU)

� I(

ˆ

Y1;�1| ˆU,

ˆ

V )� I(

ˆ

Y2;�2| ˆU,

ˆ

V )

� I(

ˆ

Y2;
ˆ

Y1| ˆU) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

= I(

ˆ

Y1;
ˆ

V | ˆU,�1) + I(

ˆ

Y2;
ˆ

V | ˆU,�2)

� I(

ˆ

Y1;�1| ˆU,

ˆ

V )� I(

ˆ

Y2;�2| ˆU,

ˆ

V ) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

+ I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU).

1Every uncountable Polish space is Borel isomorphic to R [7].
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And, similarly,

2I(X;V |U)

= I(

ˆ

X1;
ˆ

V | ˆU,�1) + I(

ˆ

X2;
ˆ

V | ˆU,�2)

� I(

ˆ

X1;�1| ˆU,

ˆ

V )� I(

ˆ

X2;�2| ˆU,

ˆ

V ) + I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

+ I(

ˆ

X1;�1| ˆU) + I(

ˆ

X2;�2| ˆU)� I(

ˆ

X1;
ˆ

X2| ˆU).

Assume U, V minimize the functional (10) subject to the
Markov constraint U�X�Y �V , the existence of such U, V

is established in [5]. Then, combining above, we have

2F (�)

=I(

ˆ

X1;
ˆ

U |�1) + I(

ˆ

X2;
ˆ

U |�2)� I(

ˆ

X1;�1| ˆU)

� I(

ˆ

X2;�2| ˆU) + I(

ˆ

X1;
ˆ

X2| ˆU)

� �

⇣

I(

ˆ

Y1;
ˆ

U |�1) + I(

ˆ

Y2;
ˆ

U |�2)� I(

ˆ

Y1;�1| ˆU)

� I(

ˆ

Y2;�2| ˆU) + I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

+ I(

ˆ

Y1;
ˆ

V | ˆU,�1) + I(

ˆ

Y2;
ˆ

V | ˆU,�2)

� I(

ˆ

Y1;�1| ˆU,

ˆ

V )� I(

ˆ

Y2;�2| ˆU,

ˆ

V ) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

+ I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU)

� �

⇣

I(

ˆ

X1;
ˆ

V | ˆU,�1) + I(

ˆ

X2;
ˆ

V | ˆU,�2)

� I(

ˆ

X1;�1| ˆU,

ˆ

V )� I(

ˆ

X2;�2| ˆU,

ˆ

V ) + I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

+ I(

ˆ

X1;�1| ˆU) + I(

ˆ

X2;�2| ˆU)� I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

=I(

ˆ

X1;
ˆ

U |�1)� �I(

ˆ

Y1;
ˆ

U |�1)
+ I(

ˆ

Y1;
ˆ

V | ˆU,�1)� �I(

ˆ

X1;
ˆ

V | ˆU,�1)

+ I(

ˆ

X2;
ˆ

U |�2)� �I(

ˆ

Y2;
ˆ

U |�2)
+ I(

ˆ

Y2;
ˆ

V | ˆU,�2)� �I(

ˆ

X2;
ˆ

V | ˆU,�2)

� (�+ 1)

⇣

I(

ˆ

X1;�1| ˆU)� I(

ˆ

X2;�2| ˆU) + I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

+ (�+ 1)

⇣

I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

� I(

ˆ

Y1;�1| ˆU,

ˆ

V )� I(

ˆ

Y2;�2| ˆU,

ˆ

V ) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

+ �

⇣

I(

ˆ

X1;�1| ˆU,

ˆ

V ) + I(

ˆ

X2;�2| ˆU,

ˆ

V )� I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

⌘

�2F (�)

� (�+ 1)

⇣

I(

ˆ

X1;�1| ˆU)� I(

ˆ

X2;�2| ˆU) + I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

+ (�+ 1)

⇣

I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

� I(

ˆ

Y1;�1| ˆU,

ˆ

V )� I(

ˆ

Y2;�2| ˆU,

ˆ

V ) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

+ �

⇣

I(

ˆ

X1;�1| ˆU,

ˆ

V ) + I(

ˆ

X2;�2| ˆU,

ˆ

V )� I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

⌘

.

The last inequality follows since ˆ

U� ˆ

X1� ˆ

Y1� ˆ

V conditioned
on �1 is a candidate minimizer of the functional, and same for
ˆ

U � ˆ

X2� ˆ

Y2� ˆ

V conditioned on �2. Hence, we can conclude

that the following must hold

(�+ 1)

⇣

I(

ˆ

X1;�1| ˆU) + I(

ˆ

X2;�2| ˆU)� I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

+ I(

ˆ

Y1;�1| ˆU,

ˆ

V ) + I(

ˆ

Y2;�2| ˆU,

ˆ

V )� I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

� (�+ 1)

⇣

I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)�I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

(12)

+ �

⇣

I(

ˆ

X1;�1| ˆU,

ˆ

V ) + I(

ˆ

X2;�2| ˆU,

ˆ

V )� I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

⌘

.

Now, set �1 =

ˆ

X2,�2 =

ˆ

Y1. The LHS of (12) is given by

(�+ 1)

⇣

I(

ˆ

X1;�1| ˆU) + I(

ˆ

X2;�2| ˆU)� I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

+ I(

ˆ

Y1;�1| ˆU,

ˆ

V ) + I(

ˆ

Y2;�2| ˆU,

ˆ

V )� I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

=(�+ 1)

⇣

I(

ˆ

X1;
ˆ

X2| ˆU) + I(

ˆ

X2;
ˆ

Y1| ˆU)� I(

ˆ

X1;
ˆ

X2| ˆU)

⌘

+ I(

ˆ

Y1;
ˆ

X2| ˆU,

ˆ

V ) + I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )� I(

ˆ

Y2;
ˆ

Y1| ˆU,

ˆ

V )

=(�+ 1)I(

ˆ

Y1;
ˆ

X2| ˆU) + I(

ˆ

Y1;
ˆ

X2| ˆU,

ˆ

V ).

Also, the RHS of (12) can be expressed as

(�+ 1)

⇣

I(

ˆ

Y1;�1| ˆU) + I(

ˆ

Y2;�2| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

+ �

⇣

I(

ˆ

X1;�1| ˆU,

ˆ

V ) + I(

ˆ

X2;�2| ˆU,

ˆ

V )� I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

⌘

= (�+ 1)

⇣

I(

ˆ

Y1;
ˆ

X2| ˆU) + I(

ˆ

Y2;
ˆ

Y1| ˆU)� I(

ˆ

Y1;
ˆ

Y2| ˆU)

⌘

+ �

⇣

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

V ) + I(

ˆ

X2;
ˆ

Y1| ˆU,

ˆ

V )� I(

ˆ

X2;
ˆ

X1| ˆU,

ˆ

V )

⌘

= (�+ 1)I(

ˆ

Y1;
ˆ

X2| ˆU) + �I(

ˆ

Y1;
ˆ

X2| ˆU,

ˆ

V ).

Substituting into (12), we find that (�� 1)I(

ˆ

Y1;
ˆ

X2| ˆU,

ˆ

V ) 
0 ) I(

ˆ

Y1;
ˆ

X2| ˆU,

ˆ

V ) = 0. Therefore, (12) is met with equality,
and it follows that:

F (�) = I(

ˆ

X1;
ˆ

U | ˆX2)� �I(

ˆ

Y1;
ˆ

U | ˆX2)

+ I(

ˆ

Y1;
ˆ

V | ˆU,

ˆ

X2)� �I(

ˆ

X1;
ˆ

V | ˆU,

ˆ

X2)

= I(

ˆ

X2;
ˆ

U | ˆY1)� �I(

ˆ

Y2;
ˆ

U | ˆY1)

+ I(

ˆ

Y2;
ˆ

V | ˆU,

ˆ

Y1)� �I(

ˆ

X2;
ˆ

V | ˆU,

ˆ

Y1).

Since ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

V 1 conditioned on { ˆY1 = y} is a candidate
minimizer of (10), the second assertion of the claim follows.
By a symmetric argument, if we set �1 =

ˆ

Y2,�2 =

ˆ

X1, the
roles of the indices are reversed, and we find that

F (�) = I(

ˆ

X1;
ˆ

U | ˆY2)� �I(

ˆ

Y1;
ˆ

U | ˆY2)

+ I(

ˆ

Y1;
ˆ

V | ˆU,

ˆ

Y2)� �I(

ˆ

X1;
ˆ

V | ˆU,

ˆ

Y2)

= I(

ˆ

X2;
ˆ

U | ˆX1)� �I(

ˆ

Y2;
ˆ

U | ˆX1)

+ I(

ˆ

Y2;
ˆ

V | ˆU,

ˆ

X1)� �I(

ˆ

X2;
ˆ

V | ˆU,

ˆ

X1).

This establishes the first assertion of the claim and completes
the proof.

Lemma 2. If U

�

, V

�

are valid minimizers of the functional
(10) for parameter �, then

I(Y ;U

�

) + I(X;V

�

|U
�

) = �F

0
(�) for a.e. �. (13)

Proof. To begin, let U

�+�, V�+� be arbitrary, valid mini-
mizers of the functional (10) for parameter � + �, and let
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U

���, V��� be arbitrary, valid minimizers of the functional
(10) for parameter ���. Next, note that F (�) is concave and
(strictly) monotone decreasing in �, and hence F

0
(�) exists for

a.e. �. Thus, for any � > 0,

F (�+�)� F (�)

�

=

1

�

⇣

I(X;U

�+�) + I(Y ;V

�+�|U�+�)

� (�+�) (I(Y ;U

�+�) + I(X;V

�+�|U�+�))

⌘

� 1

�

⇣

I(X;U

�

) + I(Y ;V

�

|U
�

)

� � (I(Y ;U

�

) + I(X;V

�

|U
�

))

⌘

=�
⇣

I(Y ;U

�+�) + I(X;V

�+�|U�+�)

⌘

+

1

�

⇣

I(X;U

�+�) + I(Y ;V

�+�|U�+�)

� � (I(Y ;U

�+�) + I(X;V

�+�|U�+�))

⌘

� 1

�

⇣

I(X;U

�

) + I(Y ;V

�

|U
�

)

� � (I(Y ;U

�

) + I(X;V

�

|U
�

))

⌘

��
⇣

I(Y ;U

�+�) + I(X;V

�+�|U�+�)

⌘

,

where the last inequality follows since U

�+�, V�+� is a
candidate minimizer of (10) with parameter �.

Similarly,

F (�)� F (���)

�

=

1

�

⇣

I(X;U

�

) + I(Y ;V

�

|U
�

)

� � (I(Y ;U

�

) + I(X;V

�

|U
�

))

⌘

� 1

�

⇣

I(X;U

���) + I(Y ;V

���|U���)

� (���) (I(Y ;U

���) + I(X;V

���|U���))

⌘

=�
⇣

I(Y ;U

���)� I(X;V

�+�|U�+�)

⌘

+

1

�

⇣

I(X;U

�

) + I(Y ;V

�

|U
�

)

� � (I(Y ;U

�

) + I(X;V

�

|U
�

))

⌘

� 1

�

⇣

I(X;U

���) + I(Y ;V

���|U���)

� � (I(Y ;U

���) + I(X;V

���|U���))

⌘

�
⇣

I(Y ;U

���) + I(X;V

���|U���)

⌘

,

where the last inequality follows since U

���, V��� is a
candidate minimizer of (10) with parameter �. Recalling
concavity of F (�), we have shown

I(Y ;U

�+�) + I(X;V

�+�|U�+�)

� �F

0
(�)

� I(Y ;U

���) + I(X;V

���|U���).

As F

0 is monotone and well-defined up to a set of measure
zero, we are justified in writing

� lim

z!�

+
F

0
(z) � I(Y ;U

�

) + I(X;V

�

|U
�

) � � lim

z!�

�
F

0
(z).

Since F

0 is monotone, it is almost everywhere continuous, and
so the LHS and RHS above coincide with �F

0
(�) for almost

every �.

Since the derivative F

0
(�) is just a function of F itself, and

not of a particular minimizer, we have the following

Corollary 1. If U
�

, V

�

are valid minimizers of the functional
(10) for parameter �, then

I(X;U

�

|Y ) + I(Y ;V

�

|X) = F (�)� (�� 1)F

0
(�) (14)

for a.e. �.

Proof. Suppose U

�

, V

�

are valid minimizers. Then, we can
write:

F (�)

= I(X;U

�

)� �I(Y ;U

�

) + I(Y ;V

�

|U
�

)� �I(X;V

�

|U
�

)

= I(X;U

�

)� �I(Y ;U

�

) + I(Y ;V

�

)

� �I(X;V

�

) + (�� 1)I(U

�

;V

�

)

= I(X;U

�

|Y ) + I(Y ;V

�

|X)

+ (�� 1)

⇣

I(U

�

;V

�

)� I(Y ;U

�

)� I(X;V

�

)

⌘

= I(X;U

�

|Y ) + I(Y ;V

�

|X) + (�� 1)F

0
(�),

where the last line follows from Lemma 2.

Lemma 3. If U, V are valid minimizers of the functional (10),
and ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

X2,
ˆ

Y2,
ˆ

V are constructed as described above,
then there exist valid minimizers e

U,

e

V such that

I(X;U |Y ) � I(X;

e

U |Y ) +

1

2

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2). (15)

Proof. To begin, note that:

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2)

= I(

ˆ

X1;
ˆ

X2,
ˆ

U | ˆY1,
ˆ

Y2)� I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2)

= I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2,
ˆ

X2)� I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2)

= I(

ˆ

X1,
ˆ

X2;
ˆ

U | ˆY1,
ˆ

Y2)�I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2)�I(

ˆ

X2;
ˆ

U | ˆY1,
ˆ

Y2)

= 2I(X;U |Y )� I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2)� I(

ˆ

X2;
ˆ

U | ˆY1,
ˆ

Y2).

Thus, without loss of generality (relabeling indices 1 and 2 if
necessary), we can assume

I(X;U |Y ) � I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2) +
1

2

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2).

Lemma 1 asserts that, for almost every y, the tuple
ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

V conditioned on { ˆY2 = y} is a valid minimizer
of (10). Hence, there must exist a y

⇤ such that

I(X;U |Y ) � I(

ˆ

X1;
ˆ

U | ˆY1,
ˆ

Y2 = y

⇤
) +

1

2

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2),

and ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

V conditioned on { ˆY2 = y

⇤} is a valid
minimizer of (10). Therefore, the claim follows by letting
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e

U,X, Y,

e

V be equal in distribution to ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

V condi-
tioned on { ˆY2 = y

⇤}.

Corollary 2. There exist U, V which are valid minimizers of
the functional (10), and satisfy

I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2) = 0, (16)

where ˆ

U,

ˆ

X1,
ˆ

Y1,
ˆ

X2,
ˆ

Y2,
ˆ

V are constructed as described
above.

Proof. Applying Lemma 3, we can inductively construct a
sequence of valid minimizers {U (k)

, X, Y, V

(k)}
k�1 which

satisfy

I(X;U

(k)|Y ) � I(X;U

(k+1)|Y ) +

1

2

I(

ˆ

X1;
ˆ

X2| ˆU (k)
,

ˆ

Y1,
ˆ

Y2)

for k = 1, 2, . . . , where ˆ

U

(k)
,

ˆ

X1,
ˆ

Y1,
ˆ

X2,
ˆ

Y2,
ˆ

V

(k) are con-
structed from two independent copies of U (k)

, X, Y, V

(k). By
Corollary 1, we must also have

I(X;U

(k)|Y ) + I(Y ;V

(k)|X) = F (�)� (�� 1)F

0
(�)

for all k = 1, 2, . . . . Therefore, for any n, we have:

F (�)� (�� 1)F

0
(�)

=

1

n

n

X

k=1

I(X;U

(k)|Y ) + I(Y ;V

(k)|X)

� 1

n

n

X

k=2

⇣

I(X;U

(k)|Y ) + I(Y ;V

(k)|X)

⌘

+

1

n

⇣

I(X;U

(n+1)|Y ) + I(Y ;V

(1)|X)

⌘

+

1

2n

n

X

k=1

I(

ˆ

X1;
ˆ

X2| ˆU (k)
,

ˆ

Y1,
ˆ

Y2)

� n� 1

n

⇣

F (�)� (�� 1)F

0
(�)

⌘

+

1

2n

n

X

k=1

I(

ˆ

X1;
ˆ

X2| ˆU (k)
,

ˆ

Y1,
ˆ

Y2),

and thus
n

X

k=1

I(

ˆ

X1;
ˆ

X2| ˆU (k)
,

ˆ

Y1,
ˆ

Y2)  2

⇣

F (�)� (�� 1)F

0
(�)

⌘

.

Hence, the sum on the LHS above must converge as n ! 1,
implying

lim

k!1
I(

ˆ

X1;
ˆ

X2| ˆU (k)
,

ˆ

Y1,
ˆ

Y2) = 0.

Arguing carefully (see the full paper [5]), we can conclude that
there exists an optimizer U, V for which I(

ˆ

X1;
ˆ

X2| ˆU,

ˆ

Y1,
ˆ

Y2)

is exactly zero.

Lemma 4. [8] Let A1 and A2 be mutually independent n-
dimensional random vectors. If A1 + A2 is independent of
A1 �A2, then A1 and A2 are normally distributed.

Corollary 3. There exist optimizers U, V such that X|{U =

u} is Gaussian for a.e. u.

Proof. By construction and Corollary 2, we can conclude that
there exist optimizers U, V for which

I(X1;X2|U1, U2, Y1, Y2) = I(

ˆ

X1;
ˆ

X2|U1, U2, Y1, Y2) = 0.

Therefore, by Lemma 4, there exist optimizers U, V such that
X|{U, Y = u, y} is Gaussian for a.e. u, y.

Letting P (x, y, u, v) denote the joint distribution of the
above X,Y, U, V , we can use Markovity to write:

P (x, y, u, v) = P (u)P (y|u)P (x|u, y)P (v|y) (17)
= P (u)P (x|u)P (y|x)P (v|y). (18)

Taking logarithms and rearranging, we have the identity

log(P (x|u)) = log(P (y|u)) + log(P (x|u, y))� log(P (y|x)).
(19)

Since X|{U, Y = u, y} is Gaussian for a.e. u, y, and X,Y are
jointly Gaussian by assumption, the RHS of (19) is a quadratic
function of x for a.e. u, y. Hence, log(P (x|u)) is quadratic in
x for a.e. u, and the claim follows.

Lemma 5. [1] For any U satisfying U�X�Y , the following
inequality holds:

2

�2I(Y ;U) � 1� ⇢

2
+ ⇢

2
2

�2I(X;U)
. (20)

Proof. Consider any U satisfying U � X � Y . Let Y

u

, X

u

denote the random variables X,Y conditioned on U = u. By
Markovity and definition of X,Y , we have that Y

u

= ⇢X

u

+Z,
where Z ⇠ N(0, 1 � ⇢

2
) is independent of X

u

. Hence, the
conditional entropy power inequality implies that

2

2h(Y |U) � ⇢

2
2

2h(X|U)
+ 2⇡e(1� ⇢

2
)

= 2⇡e⇢

2
2

�2I(X;U)
+ 2⇡e(1� ⇢

2
).

From here, the lemma easily follows.

Lemma 6.

inf

U :U�X�Y

n

I(X;U)� �I(Y ;U)

o

(21)

=

(

1
2

h

log

⇣

⇢

2(��1)
1�⇢

2

⌘

� � log

⇣

��1
�(1�⇢

2)

⌘i

If � � 1/⇢

2

0 If 0  �  1/⇢

2.

Proof. The claim follows from Lemma 5 and elementary
calculus. Details can be found in the full paper [5].

Lemma 7.

F (�) = inf

U :U�X�Y

n

I(X;U)� �I(Y ;U)

o

.

Proof. We will assume � � 1/⇢

2. The claim that F (�) = 0 for
0  � < 1/⇢

2 follows immediately by monotonicity of F (�).
To this end, let U, V be optimizers such that X|{U = u} is
Gaussian for a.e. u. The existence of such U, V is guaranteed
by Corollary 3. Let X

u

, Y

u

denote the random variables X,Y

conditioned on U = u. By Markovity, X

u

, Y

u

are jointly
Gaussian with

Y

u

= ⇢X

u

+ Z,
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where Z ⇠ N(0, 1� ⇢

2
) is independent of X

u

. Letting �2
u

be
the variance of X

u

, the variance of Y

u

is ⇢2�2
u

+ (1 � ⇢

2
).

Moreover, the squared linear correlation of X
u

and Y

u

is given
by

⇢

2
u

, ⇢

2
�

2
u

⇢

2
�

2
u

+ (1� ⇢

2
)

.

By Lemma 6,

inf

V :V�Y

u

�X

u

n

I(Y

u

;V )� �I(X

u

;V )

o

=

1

2



log

✓

⇢

2
u

(�� 1)

1� ⇢

2
u

◆

� � log

✓

�� 1

�(1� ⇢

2
u

)

◆�

(22)

whenever � � 1/⇢

2
u

, and the infimum is equal to zero
otherwise.

By definition, we have

F (�) = I(X;U)� �I(Y ;U) + I(Y ;V |U)� �I(X;V |U)

=

Z

⇣

h(X)� h(X|u)� �(h(Y )� h(Y |U = u))

+ I(Y ;V |U = u)� �I(X;V |U = u)

⌘

dP

U

(u)

=

Z

⇣

� 1

2

log �

2
u

+

�

2

log(⇢

2
�

2
u

+ (1� ⇢

2
)) (23)

+ I(Y ;V |U = u)� �I(X;V |U = u)

⌘

dP

U

(u).

If � � 1/⇢

2
u

, we can apply (22) to bound the integrand in (23)
as follows

�1

2

log �

2
u

+

�

2

log(⇢

2
�

2
u

+ (1� ⇢

2
))

+ I(Y ;V |U = u)� �I(X;V |U = u)

�� 1

2

log �

2
u

+

�

2

log(⇢

2
�

2
u

+ (1� ⇢

2
))

+

1

2



log

✓

⇢

2
u

(�� 1)

1� ⇢

2
u

◆

� � log

✓

�� 1

�(1� ⇢

2
u

)

◆�

=

1

2



log

✓

⇢

2
(�� 1)

1� ⇢

2

◆

� � log

✓

�� 1

�(1� ⇢

2
)

◆�

.

On the other hand, if �  1/⇢

2
u

, then we can bound the
integrand in (23) by

�1

2

log �

2
u

+

�

2

log(⇢

2
�

2
u

+ (1� ⇢

2
))

+ I(Y ;V |U = u)� �I(X;V |U = u)

�� 1

2

log �

2
u

+

�

2

log(⇢

2
�

2
u

+ (1� ⇢

2
))

�1

2



log

✓

⇢

2
(�� 1)

1� ⇢

2

◆

� � log

✓

�� 1

�(1� ⇢

2
)

◆�

,

where the final inequality follows since �  1/⇢

2
u

) �

2
u


1�⇢

2

⇢

2(��1) , and � 1
2 log �

2
u

+

�

2 log(⇢

2
�

2
u

+(1�⇢2)) is monotone

decreasing in �

2
u

for �

2
u

 1�⇢

2

⇢

2(��1) . Therefore, we have
established the inequality

F (�) � 1

2



log

✓

⇢

2
(�� 1)

1� ⇢

2

◆

� � log

✓

�� 1

�(1� ⇢

2
)

◆�

.

The definition of F (�) together with Lemma 6 implies the
reverse inequality, completing the proof.

Since (21) is a dual characterization of the inequality (20),
we have proved Theorem 3.

Remark 1. Although Lemma 7 implies that the functional
(10) is minimized when either U or V is degenerate, there are
also minimizers for which this is not the case. For example, if
�1  ⇢

u

, ⇢

v

 1 satisfy

(1� ⇢

2
)(1� ⇢

2
⇢

2
u

⇢

2
v

) = ⇢

2
(�� 1)(1� ⇢

2
u

)(1� ⇢

2
v

),

then U, V defined according to

U = ⇢

u

X + Z

u

V = ⇢

v

Y + Z

v

,

where Z

u

⇠ N(0, 1 � ⇢

2
u

) and Z

v

⇠ N(0, 1 � ⇢

2
v

) are
independent of everything else, also minimize (10).

III. VECTOR SETTING

Now, we turn our attention to the vector case. Through-
out the remainder of this section, let ⌃

X

,⌃

Z

be positive
definite n ⇥ n matrices. Suppose X ⇠ N(µ

X

,⌃

X

) and
Z ⇠ N(µ

Z

,⌃

Z

) are independent n-dimensional Gaussian
vectors, and define Y = X + Z. We recall the statement of
Theorem 1 here, along with conditions for equality:
Theorem 1. For any U, V such that U �X�Y � V ,

2

� 2
n

(I(Y;U)+I(X;V |U)) (24)

� |⌃
X

|1/n

|⌃
X

+ ⌃

Z

|1/n
2

� 2
n

(I(X;U)+I(Y;V |U))
+ 2

� 2
n

I(X;Y)
.

Moreover, equality holds iff X|{U = u} ⇠ N(µ

u

,⌃

X|U ) for
all u, where µ

u

, E[X|U = u], and ⌃

X|U is proportional to
⌃

Z

.

A. Proof of Theorem 1

Instead of working directly with inequality (24), it will be
convenient to consider a dual form. As before, for � � 0,
define

F(�) , inf

U,V :U�X�Y�V

n

I(X;U)� �I(Y;U)

+ I(Y;V |U)� �I(X;V |U)

o

(25)

The remainder of this section is devoted to bounding the
function F(�).

To begin, we remark that the extension of the results up to
Lemma 5 for the scalar setting immediately generalize to the
present vector case by repeating the proofs verbatim. Namely,
we have the key observation:

Corollary 4. There exist U, V which minimize the functional
(25) such that X|{U = u} is Gaussian for a.e. u.

Therefore, we pick up at this point and sketch a proof of
Theorem 1, beginning with a vector version of Lemma 5.
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Lemma 8. For any U such that U �X�Y,

2

�2I(Y;U)/n � |⌃
X

|1/n

|⌃
X

+ ⌃

Z

|1/n
2

�2I(X;U)/n
+ 2

�2I(X;Y)/n
.

Moreover, equality holds iff X|{U = u} ⇠ N(µ

u

,⌃) for all
u, where µ

u

, E[X|U = u], and ⌃ / ⌃

Z

.

The proof is a straightforward generalization of the scalar
version given for Lemma 5, and has been omitted due to space
constraints. Details can be found in the full paper [5].

Lemma 9. Let U be such that U �X�Y.
1) If � � 1 + |⌃�1

X

⌃

Z

|1/n, then

I(X;U)� �I(Y;U) � n

2

log

✓

|⌃
X

|1/n(�� 1)

|⌃
Z

|1/n

◆

(26)

� �n

2

log

✓

|⌃
X

+ ⌃

Z

|1/n(�� 1)

|⌃
Z

|1/n�

◆

.

2) If 0  �  1 + |⌃�1
X

⌃

Z

|1/n, then

I(X;U)��I(Y;U)� ��n
2

log

✓

|⌃
X

+ ⌃

Z

|1/n

|⌃
X

|1/n + |⌃
Z

|1/n

◆

. (27)

Proof. The claim follows from the Minkowski determinant
theorem [9], Lemma 8 and elementary calculus. Complete
details can be found in the full paper [5].

Note that the lower bound (26) is achieved if U can be
chosen such that X|{U = u} ⇠ N(µ

u

,⌃

X|U ) for each u,
and ⌃

X|U = ↵⌃

Z

. The lower bound (27) is only attainable if
⌃

X

and ⌃

Z

are proportional. In this case, the RHS of (27) is
precisely zero.

Lemma 10.

1) If � � 1 + |⌃�1
X

⌃

Z

|1/n, then

F(�) � n

2

"

log

✓

|⌃
X

|1/n(�� 1)

|⌃
Z

|1/n

◆

(28)

� � log

✓

|⌃
X

+ ⌃

Z

|1/n(�� 1)

|⌃
Z

|1/n�

◆

#

.

2) If 0  �  1 + |⌃�1
X

⌃

Z

|1/n, then

F(�) � ��n
2

log

✓

|⌃
X

+ ⌃

Z

|1/n

|⌃
X

|1/n + |⌃
Z

|1/n

◆

. (29)

The proof of Lemma 10 is similar to that of Lemma 7,
except we require Lemma 9 in place of Lemma 6. A complete
proof is omitted due to space constraints; full details can be
found in [5].

To conclude, observe that Lemma 10 bounds the dual form
(25) of the desired inequality (24). It is a straightforward
exercise in calculus to show that this bound is sufficient to
prove Theorem 1. Details can be found in [5, Appendix C].

IV. CLOSING REMARKS

The focus of this paper was on the extremal result asserted
by Theorem 1, and not on operational coding problems.
However, since the entropy-power-like inequality of Theorem
1 leads to what is arguably the simplest solution for the
two-encoder quadratic Gaussian source coding problem (an
archetypical problem in network information theory), we have
little doubt that it will find other interesting applications.
We provided Theorem 2 as one such example. As another
example, Theorem 3 can be applied to show that jointly
Gaussian auxiliaries exhaust the rate region for multiterminal
source coding under logarithmic loss [10] when the sources
are Gaussian. This leads to yet another solution for the two-
encoder quadratic Gaussian source coding problem, and unifies
the two problems under the paradigm of compression under
logarithmic loss.
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