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Abstract—We consider the multivariate linear regression model
with shuffled data and additive noise, which arises in various
correspondence estimation and matching problems. We focus
on the denoising problem and characterize the minimax error
rate up to logarithmic factors. We also analyze the performance
of two versions of a computationally efficient estimator that
are consistent for a large range of input parameters. Finally,
we provide an exact algorithm for the noiseless problem and
demonstrate its performance on an image point-cloud matching
task. Our analysis also extends to datasets with missing data.

I. INTRODUCTION

The linear model is a ubiquitous and well-studied tool for
predicting responses yi from covariates ai using n samples of
data {ai, yi}ni=1. In this paper, we consider the multivariate
version of the model with vector-valued response variables
yi ∈ Rm, and covariates ai ∈ Rd. However, our input consists
of shuffled or permuted data {ai, yπi}ni=1, where π represents
an unknown permutation. In other words, stacking up each
data point as a row of a matrix, we consider the model

Y = Π∗AX∗ +W, (1)

where Y ∈ Rn×m is the matrix of responses, Π∗ is an
unknown n×n permutation matrix, A ∈ Rn×d is the matrix of
covariates, X∗ ∈ Rd×m is an unknown matrix of parameters,
and W is the additive observation noise1. When m = 1, this
reduces to the vector linear regression model with an unknown
permutation, given by

y = Π∗Ax∗ + w, (2)

which we refer to as the shuffled vector model.
More precisely, we analyze the multivariate model (1) with

a fixed design matrix A, and Gaussian2 noise Wij
i.i.d.∼

N (0,σ2). We evaluate an estimator (Π̂, X̂) based on its
“denoising” capability, which we capture using the normal-
ized prediction error 1

nm∥Π̂AX̂ − Π∗AX∗∥2F . Our primary
objective in this paper is to characterize the prediction error
in a minimax sense, and we analyze the quantity

inf
Π̂∈Pn

X̂∈Rd×m

sup
Π∗∈Pn

X∗∈Rd×m

E
[

1

nm
∥Π̂AX̂ −Π∗AX∗∥2F

]
, (3)

where the expectation is taken over the noise W , and any ran-
domness in the estimator (Π̂, X̂). We also provide algorithms
having small worst-case prediction error.

The observation model (1) arises in multiple applications,
which are discussed in detail for the shuffled vector model (2)
in our earlier work [1]. In this paper, we focus on two

This work was supported in part by NSF grants CCF-1528132 and CCF-
0939370.

1We refer to the setting W = 0 a.s. as the noiseless case.
2Our results also extend to the case of i.i.d. sub-Gaussian noise.

Fig. 1. Example of pose and correspondence estimation for 2D images.
The image coordinates are related by an unknown resizing and rotation X .
The unknown permutation represents the correspondence between keypoints
(white circles) obtained via corner-detection. The matrices Y and A represent
coordinates of all keypoints, and approximately obey the relation (1) because
all the keypoints detected in the two images are not the same.

applications relevant to the multivariate setting, which we use
as running examples throughout the paper.

The first is the problem of pose and correspondence estima-
tion in images [2], closely related to point-cloud matching in
graphics [3]. In this application, we are given two images of a
similar object, with the coordinates of one image arising from
an unknown linear transformation of the coordinates of the
second. In order to determine the linear transformation, key-
points are detected in each of the images individually and then
matched. An example is provided in Figure 1. We emphasize
that in practice, the keypoint detection algorithm also returns
features that help in finding the matching permutation Π∗, but
our goal here is to analyze whether there are procedures that
are robust to such features being missing or corrupted.

The second application is that of header-free communication
in large communication networks [1]. Here, an underlying
matrix parameter X∗ is measured by multiple sensors, each of
which takes a noisy linear observation of the form a⊤i X

∗+w⊤
i .

In very large networks for Internet of Things applications, for
example, it is often seen that the bandwidth between a sensor
and fusion center is mainly dominated by a header containing
identity information, i.e., a bitstring that identifies sensor i to
the fusion center [4]. One possible solution to this problem is
header-free communication, which corresponds to introducing
the unknown permutation matrix as in our model. If we are still
able to achieve similar statistical performance without these
headers, then such an approach is clearly preferable from a
bandwidth standpoint.

In both the aforementioned applications, estimators with
small minimax prediction error are of interest. In the pose and
correspondence estimation problem, this amounts to obtaining
near-identical keypoint locations on both images; in the sensor
network example, we are interested in obtaining a set of noise-
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free linear functions of the input signal. It is important to
note that depending on the application, multiple regimes of
the parameters n, d and m are of interest. Therefore, in this
paper, we focus on capturing the dependence of denoising
error rates on all of these parameters.

Our work contributes to the growing bodies of literature
on regression problems with unknown permutations and fits
within a broader framework of row-space perturbation prob-
lems like blind deconvolution [5], phase retrieval [6], and
dictionary learning [7]. It is also related to problems of
signal recovery from unions of subspaces [8]. Regression
problems with unknown permutations have been considered
in the context of statistical seriation and univariate isotonic
matrix recovery [9], and non-parametric ranking from pairwise
comparisons [10], which involves bivariate isotonic matrix
recovery. Moreover, the prediction error is used to evaluate
estimators in both these applications.

Specializing to our setting, the shuffled vector model (2)
was first considered in the context of compressive sensing
with a sensor permutation [11]. The first theoretical results
were provided by Unnikrishnan et al. [12], who studied the
conditions needed to recover an adversarially chosen x∗ in
the noiseless model with a random design matrix A. Also in
the random design setting, our own previous work [1] focused
on the complementary problem of recovering Π∗ in the noisy
model, and showed necessary and sufficient conditions on
the SNR under which exact and approximate recovery were
possible. An efficient algorithm to compute the maximum
likelihood estimate was also provided for the case d = 1.

A. Notation
We use Pn to denote the set of permutation matrices. Let

Id denote the identity matrix of dimension d. We use ∥M∥F
and ∥M∥∗ to denote the Frobenius and nuclear norms of a
matrix M , and c, c1, c2 to denote universal constants that may
change from line to line.

B. Contributions
First, we characterize the minimax prediction error of

multivariate linear model with an unknown permutation up
to a logarithmic factor, by analyzing the maximum likelihood
estimator. Since the maximum likelihood estimate is NP-hard
to compute in general [1], we then propose a computationally
efficient estimator based on singular value thresholding and
sharply characterize its performance, showing that it achieves
vanishing prediction error over a restricted range of parame-
ters. We also propose a variant of this estimator that achieves
the same error rates, but with the advantage that it does not
require the noise variance to be known. Third, we propose
an efficient spectral algorithm for the noiseless problem that
is exact provided certain natural conditions are met. We
demonstrate this algorithm on an image point cloud matching
task. Finally, we extend our results to a richer class of models
that allows for duplicates and missing data in the dataset.

In the next section, we collect our main theorems and dis-
cuss their consequences. We sketch the proof of the minimax
lower bound of Theorem 1 in Section III; the remaining proofs
can be found in the full version [13].

II. MAIN RESULTS

In this section, we discuss our main results under four head-
ings – minimax rates, polynomial time estimators, efficient
procedures for the noiseless problem, and an extension of the
model (1) that allows for duplicates.

A. Minimax rates of prediction
The noise W is i.i.d. Gaussian, so the maximum likelihood

estimate (MLE) of the parameters (Π∗, X∗) is given by

(Π̂ML, X̂ML) = arg min
Π∈Pn

X∈Rd×m

∥Y −ΠAX∥2F . (4)

We upper bound the prediction error achieved by the maximum
likelihood estimator, which shows a distinct dependence on
both unknown parameters Π∗ and X∗. In general, however,
we cannot prove a matching lower bound that captures both
of these dependences for all matrices A. As an extreme
example, consider the matrix A with identical rows, in which
the unknown permutation Π∗ plays no role in the observations,
and so the denoising error should have no dependence on it.

Consequently, we derive lower bounds that apply provided
the matrix A lies in a restricted class, in order to define which
we require some additional notation. For a vector v, let vs

denote the vector sorted in decreasing order, and let B2,n(1)
denote the n-dimensional ℓ2-ball of unit radius centered at 0.
Define the matrix class

A(γ, ξ) =
{
A ∈ Rn×d | ∃a ∈ range(A) ∩ B2,n(1) with

as⌊γn⌋ ≥ as⌊γn⌋+1 + ξ
}
.

This defines matrices that are not “flat”, in that there is some
vector in their range obeying the (γ, ξ)-separation condition
defined above. Loosely speaking, flat matrices that do not obey
such a separation condition comprise almost identical rows. It
can be verified that a matrix A with i.i.d. sub-Gaussian entries
lies in the class A(C1, C2/

√
n) with high probability for fixed

constants C1, C2. We are now ready to state the theorem.

Theorem 1. For any matrix A, and for all parameters X∗ ∈
Rd×m and Π∗ ∈ Pn, we have

∥Π̂MLAX̂ML −Π∗AX∗∥2F
nm

≤ c1σ
2

(
rank(A)

n
+

1

m
min {log n,m}

)
, (5a)

with probability greater than 1− e−c(n logn+m rank(A)).
Furthermore, if the matrix A ∈ A(C1, C2/

√
n), then for

any estimator (Π̂, X̂), we have

sup
Π∗∈Pn

X∗∈Rd×m

E
[
∥Π̂AX̂ −Π∗AX∗∥2F

nm

]
≥ c2σ

2

(
rank(A)

n
+

1

m

)
.

(5b)

In the statement of Theorem 1, the constant c2 depends on
the value of the pair (C1, C2), but is independent of other
problem parameters.

Theorem 1 characterizes the minimax rate up to a factor
that is at most logarithmic in n. It shows that the MLE is
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minimax optimal for prediction error up to logarithmic factors
for all matrices that are not too flat. The bounds have the
following interpretation, similar to the results of Flammarion
et al. [9] on prediction error for unimodal columns. The first
term corresponds to a rate achieved even if the estimator knows
the true permutation Π∗; the second term quantifies the price
paid for the combinatorial choice among n! permutations. As
a result, we see that if m ≫ log n, then the permutation
does not play much of a role in the problem, and the rates
resemble those of standard linear regression. Such a general
behaviour is expected, since a large m means that we get
multiple observations with the same unknown permutation,
and this should allow us to estimate Π̂ better.

Clearly, a flat matrix is not influenced by the unknown
permutation, and so the second term of the upper bound need
not apply. As we demonstrate in the proof, it is likely that
the flatness of A can also be incorporated in order to prove
a tighter upper bound in this case, but we choose to state the
upper bound as holding uniformly for all matrices A, with the
loss of a logarithmic factor. It is also worth mentioning that
the logarithmic factor in the second term is shown to be nearly
tight for the problem of unimodal matrix estimation with an
unknown permutation [9], suggesting that a similar factor may
also appear in a tight version of our lower bound (5b). For the
specific case where m = 1 however, which corresponds to the
shuffled vector model (2), our bounds are tight up to constant
factors, and summarized by the following corollary.

Corollary 1. If m = 1 and A ∈ A(C1, C2/
√
n), then

c2σ
2 ≤ inf

Π̂∈Pn

x̂∈Rd

sup
Π∗∈Pn

x∗∈Rd

E
[
1

n
∥Π̂Ax̂−Π∗Ax∗∥22

]
≤ c1σ

2.

In other words, the normalized minimax prediction error for
the shuffled vector model does not decay with the parameters
n or d, and so no estimator achieves consistent prediction for
every parameter choice (Π∗, X∗). Again, this is a consequence
of the fact that we do not get independent observations with
the permutation staying fixed unlike when m is large, and
herein lies the difficulty of the problem.

Both Theorem 1 and Corollary 1 provide non-adaptive
minimax bounds. An interesting question is whether the least
squares estimator is minimax optimal over finer classes of Π∗

and X∗, i.e., whether it is adaptive in some interesting way.
One would expect that the estimator adapts to the number of
distinct entries in the matrix AX∗, similarly to the problem
of monotone parameter recovery [9].

B. Polynomial time estimators
We now analyze a polynomial time estimator of the quantity

Π∗AX∗, given by a singular value thresholding operation. In
particular, given a matrix M having the singular value decom-
position M =

∑r
i=1 σiuiv⊤i , its singular value thresholded

version at level λ is given by Tλ(M) =
∑r

i=1 σiI(σi ≥
λ)uiv⊤i , where I(·) is the indicator function of its argument.

The singular value thresholding (SVT) operation serves the
purpose of denoising the observation matrix, and has been
analyzed in the context of more general matrix estimation
problems, e.g., Cai et al. [14] and Chatterjee [15].

Theorem 2. For any choice of parameters Π∗ and X∗, the
SVT estimate with λ = 1.1σ(

√
n+

√
m) satisfies

1

nm
∥Tλ(Y )−Π∗AX∗∥2F ≤ c1σ

2 rank(A)

(
1

n
+

1

m

)
(6a)

with probability greater than 1− e−cnm.
Furthermore, provided rank(A) ≤ m, there exist parameters

Π0 and X0 (depending on the matrix A) such that for any
value of the threshold λ, we have

1

nm
∥Tλ(Y )−Π0AX0∥2F ≥ c2σ

2 rank(A)

(
1

n
+

1

m

)
, (6b)

with probability greater than 1− e−cnm.

Comparing inequalities (5b) (which holds for any denoised
matrix, not just those having the form Π̂AX̂) and (6b), we see
that the SVT estimator, while computationally efficient, may
be statistically sub-optimal. However, it is consistent in the
case where rank(A) is sufficiently small compared to m and n,
and minimax optimal when rank(A) is a constant. Intuitively,
the rate it attains is a result of treating the full matrix Π∗A
as unknown, and so it is likely that better, efficient estimators
exist that take the knowledge of A into account.

A concern is that the SVT estimator is required to know the
noise variance σ2. This can be taken care of via the square-
root LASSO trick [16], which ensures a self-normalization that
obviates the necessity for a noise-dependent threshold level.
In particular, we define the estimate

Ŷsr(λ) = argmin
Y ′

∥Y − Y ′∥F + λ∥Y ′∥∗. (7)

Theorem 3. If rank(A)
(
1
n + 1

m

)
≤ 1/20, then for any choice

of parameters Π∗ and X∗, the square-root LASSO estimate (7)
with λ = 2.1

(
1√
n
+ 1√

m

)
satisfies

1

nm
∥Ŷsr(λ)−Π∗AX∗∥2F ≤ c1σ

2 rank(A)

(
1

n
+

1

m

)

with probability greater than 1− 2e−cnm.

We prove Theorem 3 in the full version [13] for complete-
ness. However, it should be noted that the square-root LASSO
has been analyzed for matrix completion problems [17], and
our proof follows similar lines. Klopp [17, Theorem 8] ad-
dresses the case of randomly observed matrix entries and re-
quires these entries to be bounded, but Theorem 3 for the fully
observed but noisy case has no such restriction. The condition
rank(A)

(
1
n + 1

m

)
≤ 1/20 does not significantly affect the

claim, since our bounds no longer guarantee consistency of
the estimate Ŷsr(λ) when this condition is violated.

While the optimization problem (7) can be solved effi-
ciently, there may be cases when the noise is (sub-)Gaussian of
known variance for which the SVT estimate can be computed
more quickly. Hence, the SVT estimator is usually preferred
in cases where the noise statistics are known.

C. Exact algorithm for the noiseless case
For the noiseless model, the only efficient algorithm known

up to now is for the special case d = m = 1 [1]. We provide
the following spectral generalization of this special case, which
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returns the exact parameters Π∗ and X∗ provided certain
natural conditions are met. In order to define the conditions
required for the theorem, we require a few definitions. The
(left) leverage score vector ℓ(M) of a matrix M having the
reduced singular value decomposition M = UMΣMV ⊤

M is
defined by the relation ℓ(M) = diag(UMU⊤

M ), where diag(S)
is the vector of diagonal entries of a square matrix S. We now
introduce the LEVSORT algorithm:

(i) Compute the leverage scores ℓ(Y ) and ℓ(A).
(ii) Return the permutation Π̂lev ∈ argminΠ ∥ℓ(Y ) −

Π̂lev ℓ(A)∥22, and the matrix X̂lev =
(
Π̂levA

)†
Y , where

M† denotes the Moore-Penrose pseudoinverse of M .
Note that this algorithm runs in polynomial time, since it
involves only spectral computations and a matching step that
can be computed in time O(n log n) (see [1, Theorem 4]).

Theorem 4. Consider an instantiation of the noiseless model
with rank(A) ≤ rank(X∗), and such ℓ(A) and ℓ(Y ) both have
all distinct entries. Then the LEVSORT algorithm recovers the
parameters (Π∗, X∗) exactly.

The LEVSORT algorithm is a generalization of our own
algorithm [1] for scalar X∗, to the matrix setting. However,
instead of a simple sorting algorithm, we now require an
additional spectral component. While showing the necessity of
the condition rank(A) ≤ rank(X∗) is still open, an efficient
algorithm that does not impose any conditions is unlikely to
exist due to the general problem being NP-hard [1]. Note that
the condition includes as a special case all problems in which
the matrices A and X∗ are full rank, with d ≤ m.

In particular, the pose and correspondence estimation prob-
lem for 2D point clouds satisfies the conditions of Theorem 4
under some natural assumptions. We have d = m = 2 for all
such problems, and rank(X∗) = 2 unless the linear transfor-
mation is degenerate. Furthermore, unless the keypoints are
generated adversarially, the leverage scores of the matrices
A and Y are all distinct. Thus, assuming that the noiseless
version of model (1) exactly describes the keypoints detected
in the two images, we are guaranteed to find both the pose
and the correspondence exactly.

In Figure 2, we demonstrate the guarantee of Theorem 4 on
two image correspondence tasks when the keypoints detected
in the two images are identical and the transformation between
coordinates is linear.

D. Extensions: Dealing with duplicates and missing data

The results of Sections II-A and II-B also hold when the
set of perturbations to the rows of the matrix A is allowed
to be larger than just the set of permutation matrices Pn. In
particular, defining the set of “clustering matrices” Cn as

Cn = {D ∈ {0, 1}n×n : D1 = 1},

we consider an observation model of the form

Y = D∗AX∗ +W, (8)

where the matrices A, X∗, and W are as before, and D∗ ∈ Cn
now represents a clustering matrix. Such a clustering condition

Fig. 2. Synthetic experiment illustrating exact pose and correspondence
estimation by the LEVSORT algorithm. The right images are obtained via
a linear tranformation of the coordinates of the respective left images, and
keypoints are generated according to the noiseless model (1); keypoints are
the same in the right and left image.

ensures stochasticity of the matrix D∗ (not double stochastic-
ity, as in the permutation model), and corresponds to the case
where multiple responses may come from the same covariate,
and some of the data may be permuted. Such a model is likely
to better fit data from image correspondence problems when
the keypoints detected in the two images are quite different.
Also, such a formulation bears a superficial resemblance to
the k-means clustering problem with Gaussian data [18].

As it turns out, Theorems 1, 2 and 3 also hold for this
model, with minor modifications to the proofs. Defining the
analogous MLE for this model as

(
D̂ML, X̂ML

)
= arg min

D∈Cn

X∈Rd×m

∥Y −DAX∥2F ,

we have the following theorem.

Theorem 5. (a) For any matrix A, and for all parameters
D∗ ∈ Cn and X∗ ∈ Rd×m, we have

∥D̂MLAX̂ML −D∗AX∗∥2F
nm

≤ c1σ
2

(
rank(A)

n
+

1

m
min {log n,m}

)
,

with probability greater than 1− e−c(n logn+m rank(A)).
(b) For any choice of parameters D∗ and X∗, the SVT

estimate with λ = 1.1σ(
√
n+

√
m) satisfies

1

nm
∥Tλ(Y )−D∗AX∗∥2F ≤ c1σ

2 rank(A)

(
1

n
+

1

m

)

with probability greater than 1− e−cnm.
(c) If rank(A)

(
1
n + 1

m

)
≤ 1/20, then for any choice of

parameters D∗ and X∗, the square-root LASSO estimate (7)
with λ = 2.1

(
1√
n
+ 1√

m

)
satisfies

1

nm
∥Ŷsr(λ)−D∗AX∗∥2F ≤ c1σ

2 rank(A)

(
1

n
+

1

m

)

with probability greater than 1− 2e−cnm.

Clearly, the lower bounds (5b) and (6b) hold immediately
for the model (8) as a result of the inclusion Pn ⊂ Cn.

We conclude with a short proof sketch of claim (5b).
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III. PROOF SKETCH OF LOWER BOUND OF THEOREM 1

In this section, we sketch the proof of the minimax lower
bound (5b). Full proofs of all our theorems may be found in
the full version of the paper [13].

The bound (5b) follows from a packing set construction and
Fano’s inequality, which is a standard template used to prove
minimax lower bounds [19, Chapter 15]. Suppose we wish to
estimate a parameter θ over an indexed class of distributions
P = {Pθ | θ ∈ Θ} in the square of a (pseudo-)metric ρ. We
refer to a subset {θ1, θ2, . . . , θM} as a (δ, ϵ)-packing set if

min
i,j∈[M ],i ̸=j

ρ(θi, θj) ≥ δ and
1(M
2

)
∑

i,j∈[M ]

D(Pθi∥Pθj ) ≤ ϵ.

Lemma 1 (Fano lower bound). If we can construct a (δ, ϵ)-
packing set of cardinality M , then

inf
θ̂

sup
θ∗∈Θ

E
[
ρ(θ̂, θ∗)2

]
≥ δ2

2

(
1− ϵ+ log 2

logM

)
.

The lower bound (5b) follows from the following claims.

sup
X∗

E
[
∥Π̂AX̂ −Π∗AX∗∥2F

nm

]
≥ cσ2 rank(A)

n
for all A, and

(9a)

sup
Π∗

E
[
∥Π̂AX̂ −Π∗AX∗∥2F

nm

]
≥ c′σ2

m
if A ∈ A(C1, C2/

√
n).

(9b)

Claim (9a) follows from minimax lower bounds for linear
regression [19]. Since we are operating in the matrix setting,
we include the proof in the full version [13] for completeness.

We now prove claim (9b) for matrices in a smaller class
than A(C1, C2/

√
n); see the full version for an extension of

this proof for the class A(C1, C2/
√
n). We let 1p

n denote the
n-dimensional vector having 1 in its first p coordinates and 0
in the remaining coordinates.

Now consider the class of matrices that have 1p
n in their

range. By multiplying with δ and stacking m of these vectors
up as columns, we have a matrix Ỹ 1 ∈ Rn×m whose first p
rows are identically δ and the rest are identically zero. Define
the Hamming distance between two binary vectors dH(u, v) =
#{i : ui ̸= vi}. We require the following lemma.

Lemma 2. There exists a set of binary n-vectors {vi}Mi=1, each
of Hamming weight p and satisfying dH(vi, vj) ≥ h, having

cardinality M =
(np)

∑⌊h−1
2

⌋
i=1 (n−p

i )(pi)
.

The lemma is proved in the full version [13].

Proof of claim (9b). Applying Lemma 2 and a rescaling argu-
ment, we see that there is a packing set {ΠiỸ 1}Mi=1 obeying

1√
nm

∥ΠiỸ
1∥F = δ

√
p

n
for i ∈ [M ], and

1√
nm

∥ΠiỸ
1 −Πj Ỹ

1∥F ≥ δ

√
h

n
for i ̸= j ∈ [M ].

Fixing some constant γ ∈ (0, 1) and choosing p = γn and h =
n
2 min {γ, 1− γ}, it can be verified that we obtain a packing
set of size M ≥ ec

′γ log(1/γ)n. We now have observation i
distributed as Pi = N (ΠiỸ 1,σ2Inm), and so

D(Pi∥Pj) =
1

2σ2
∥ΠiỸ

1 −Πj Ỹ
1∥2F ≤ c

δ2γnm

σ2
.

Finally, substituting into the Fano bound of Lemma 1 yields

inf
Π̂∈Pn

X̂∈Rd×m

sup
Π∗∈Pn

X∗∈Rd×m

E
[

1

nm
∥Π̂AX̂ −Π∗AX∗∥2F

]

≥ δ2

2

(
1−

cδ2γnm
σ2 + log 2

c′γ log(1/γ)n

)
.

Setting δ2 = c(γ)σ
2

m for a constant c(γ) depending only on
γ completes the proof provided the vector 1p

n ∈ range(A) for
p = γn with γ ∈ (0, 1).
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