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Abstract— Four problems related to information divergence
measures defined on finite alphabets are considered. In three
of the cases we consider, we illustrate a contrast that arises
between the binary-alphabet and larger alphabet settings. This
is surprising in some instances, since characterizations for the
larger alphabet settings do not generalize their binary-alphabet
counterparts. In particular, we show that f-divergences are not
the unique decomposable divergences on binary alphabets that
satisfy the data processing inequality, thereby clarifying claims
that have previously appeared in the literature. We also show
that Kullback–Leibler (KL) divergence is the unique Bregman
divergence, which is also an f-divergence for any alphabet size.
We show that KL divergence is the unique Bregman divergence,
which is invariant to statistically sufficient transformations of the
data, even when nondecomposable divergences are considered.
Like some of the problems we consider, this result holds only
when the alphabet size is at least three.

Index Terms— Binary alphabet, Bregman divergence,
f-divergence, decomposable divergence, data processing
inequality, sufficiency property, Kullback-Leibler (KL)
divergence.

I. INTRODUCTION

D IVERGENCE measures play a central role in information
theory and other branches of mathematics. Many special

classes of divergences, such as Bregman divergences [1],
f-divergences [2]–[4], and Kullback-Liebler-type f-distance
measures [5], enjoy various properties which make them
particularly useful in problems related to learning, clustering,
inference, optimization, and quantization, to name a few.
A review of applications of various divergence measures in
statistical signal processing can be found in [6]. In this paper,
we investigate the relationships between these three classes
of divergences, each of which will be defined formally in
due course, and the subclasses of divergences which satisfy
desirable properties such as monotonicity with respect to data

Manuscript received April 27, 2014; revised September 3, 2014; accepted
September 9, 2014. Date of publication September 25, 2014; date of current
version November 18, 2014. This work was supported in part by the Center
for Science of Information and in part by the National Science Foundation
Science and Technology Center under Grant CCF-0939370. This paper was
presented at the 2014 IEEE International Symposium on Information Theory.

J. Jiao, A. No, K. Venkat, and T. Weissman are with the Department
of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
(e-mail: jiantao@stanford.edu; albertno@stanford.edu; kvenkat@stanford.
edu; tsachy@stanford.edu).

T. A. Courtade is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: courtade@eecs.berkeley.edu).

Communicated by J. Körner, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2014.2360184

processing. Roughly speaking, we address the following four
questions:

QUESTION 1: If a decomposable divergence satisfies the
data processing inequality, must it be an f-divergence?

QUESTION 2: Is Kullback-Leibler (KL) divergence the
unique KL-type f-distance measure which satisfies the data
processing inequality?

QUESTION 3: Is KL divergence the unique Bregman diver-
gence which is invariant to statistically sufficient transforma-
tions of the data?

QUESTION 4: Is KL divergence the unique Bregman diver-
gence which is also an f-divergence?

Of the above four questions, only QUESTION 4 has an
affirmative answer. However, this assertion is slightly deceiv-
ing. Indeed, if the alphabet size n is at least 3, then all
four questions can be answered in the affirmative. Thus,
counterexamples only arise in the binary setting when n = 2.

This is perhaps unexpected. Intuitively, a reasonable
measure of divergence should satisfy the data processing
inequality – a seemingly modest requirement. In this sense,
the answers to the above series of questions imply that the
class of “interesting” divergence measures can be very small
when n ≥ 3 (e.g., restricted to the class of f-divergences,
or a multiple of KL divergence). However, in the binary
alphabet setting, the class of “interesting” divergence measures
is strikingly rich, a point which will be emphasized in our
results. In many ways, this richness is surprising since the
binary alphabet is usually viewed as the simplest setting one
can consider. In particular, it might be expected that the class
of interesting divergence measures corresponding to binary
alphabets would be less rich than the counterpart class for
larger alphabets. However, as we will see, the opposite is true.

The observation of this dichotomy between binary and
larger alphabets is not without precedent. For example, Fischer
proved the following in his 1972 paper [7].

Theorem 1: Suppose n ≥ 3. If, and only if, f satisfies
n∑

k=1

pk f (pk) ≤
n∑

k=1

pk f (qk) (1)

for all probability distributions P = (p1, p2, . . . , pn),
Q = (q1, q2, . . . , qn), then it is of the form

f (p) = c log p + b for all p ∈ (0, 1), (2)

where b and c ≤ 0 are constants.
As implied by his supposition that n ≥ 3 in Theorem 1,

Fischer observed and appreciated the distinction between the
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binary and larger alphabet settings when considering so-called
Shannon-type inequalities of the form (1). Indeed, in the same
paper [7], Fischer gave the following result:

Theorem 2: The functions of the form

f (q) =
∫

G(q)

q
dq, q ∈ (0, 1), (3)

with G arbitrary, nonpositive, and satisfying G(1−q) = G(q)
for q ∈ (0, 1), are the only absolutely continuous functions1

on (0, 1) satisfying (1) when n = 2.
Only in the special case where G is taken to be constant

in (3), do we find that f is of the form (2). We direct the
interested reader to [8, Ch. 4] for a detailed discussion.

In part, the present paper was inspired and motivated
by Theorems 1 and 2, and the distinction they draw
between binary and larger alphabets. Indeed, the answers to
QUESTION 1 – QUESTION 3 are in the same spirit as Fischer’s
results. For instance, our answer to QUESTION 2 demonstrates
that the functional inequality (1) and a data processing require-
ment are still not enough to demand f take the form (2) when
n = 2. To wit, we prove an analog of Theorem 2 for this setting
(see Section III-B).

In order to obtain a complete picture of various questions
associated with divergence measures, we also attempt to
sharpen results in the literature regarding divergence mea-
sures on alphabets of at least size 3. The most technically
challenging result we obtain in this work, is to show that
KL divergence is the unique Bregman divergence which is
invariant to statistically sufficient transformations of the data
when the alphabet size is at least three, without requiring it
to be decomposable. Indeed, dropping the decomposability
conditions makes the problem much harder, and we have
to borrow profound techniques from convex analysis and
functional equations to fully solve it. This result is presented
in Theorem 4.

A. Organization

This paper is organized as follows. In Section II, we recall
several important classes of divergence measures and define
what it means for a divergence measure to satisfy any of
the data processing, sufficiency, or decomposability properties.
In Section III, we investigate each of the questions posed above
and state our main results. Section IV delivers our concluding
remarks, and the Appendices contain all proofs.

II. PRELIMINARIES: DIVERGENCES, DATA PROCESSING,
AND SUFFICIENCY PROPERTIES

Let R̄ ! [−∞,+∞] denote the extended real line.
Throughout this paper, we only consider finite alphabets.
To this end, let X = {1, 2, . . . , n} denote the alphabet, which
is of size n, and let !n = {(p1, p2, . . . , pn) : ∑n

i=1 pi = 1,
pi ≥ 0, i = 1, 2, . . . , n} be the set of probability measures
on X , with !+

n = {(p1, p2, . . . , pn) : ∑n
i=1 pi = 1, pi > 0,

i = 1, 2, . . . , n} denoting its relative interior.

1There also exist functions f on (0, 1) which are not absolutely continuous
and satisfy (1). See [7].

We refer to a non-negative function D : !n × !n → R̄+
simply as a divergence function (or, divergence measure).
Of course, essentially all common divergences – including
Bregman and f-divergences, which are defined shortly – fall
into this general class. In this paper, we will primarily be
interested in divergence measures which satisfy either of two
properties: the data processing property or the sufficiency
property.

In the course of defining these properties, we will consider
(possibly stochastic) transformations PY |X : X (→ Y , where
Y ∈ X . That is, PY |X is a Markov kernel with source and
target both equal to X (equipped with the discrete σ -algebra).
If X ∼ PX , we will write PX → PY |X → PY to
denote that PY is the marginal distribution of Y generated
by passing X through the channel PY |X . That is, PY (·) !∑

x∈X PX (x)PY |X (·|x).
Now, we are in a position to formally define the data

processing property (a familiar concept to most information
theorists).

Definition 1 (Data Processing): A divergence function D
satisfies the data processing property if, for all PX , QX ∈ !n,
we have

D (PX ; QX ) ≥ D (PY ; QY ), (4)

for any transformation PY |X : X (→ Y, where PY and QY are
defined via PX → PY |X → PY and QX → PY |X → QY ,
respectively.

A weaker version of the data processing inequality is
the sufficiency property. In order to describe the sufficiency
property, for two arbitrary distributions P, Q, we define a joint
distribution PX Z , Z ∈ {1, 2}, such that

PX |1 = P, PX |2 = Q. (5)

A transformation PY |X : X (→ Y is said to be a sufficient
transformation of X for Z if Y is a sufficient statistic of
X for Z . We remind the reader that Y is a sufficient statistic
of X for Z if the following two Markov chains hold:

Z − X − Y Z − Y − X. (6)

Definition 2 (Sufficiency): A divergence function D satisfies
the sufficiency property if, for all PX |1, PX |2 ∈ !n and
Z ∈ {1, 2}, we have

D(PX |1; PX |2) ≥ D
(
PY |1; PY |2

)
, (7)

for any sufficient transformation PY |X : X (→ Y of X for Z,
where PY |z is defined by PX |z → PY |X → PY |z for z ∈ {1, 2}.

We remark that our definition of SUFFICIENCY is a variation
on that given in [12]. Clearly, the sufficiency property is
weaker than the data processing property because our attention
is restricted to only those (possibly stochastic) transformations
PY |X for which Y is a sufficient statistic of X for Z . Given the
definition of a sufficient statistic, we note that the inequality
in (7) can be replaced with equality to yield an equivalent
definition.

Henceforth, we will simply say that a divergence func-
tion D(·; ·) satisfies DATA PROCESSING when it satisfies the
data processing property. Similarly, we say that a divergence
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function D(·; ·) satisfies SUFFICIENCY when it satisfies the
sufficiency property.

Remark 1: In defining the data processing and sufficiency
properties, we have required that Y ∈ X . This is neces-
sary because the divergence function D(·; ·) is only defined
on !n × !n.

Before proceeding, we make one more definition following
Pardo and Vajda [9].

Definition 3 (Decomposibility): A divergence function D is
said to be decomposable if there exists a bivariate function
δ(u, v) : [0, 1]2 → R̄ such that

D(P; Q) =
n∑

i=1

δ(pi , qi ) (8)

for all P = (p1, . . . , pn) and Q = (q1, . . . , qn) in !n.
Having defined divergences in general, we will now recall

three important classes of divergences which will be of inter-
est to us: Bregman divergences, f-divergences, and KL-type
divergences.

A. Bregman Divergences

Let G(P) : !n → R be a convex function defined
on !n , differentiable on !+

n . For two probability measures
P = (p1, . . . , pn) and Q = (q1, . . . , qn) in !n , the Bregman
divergence generated by G is defined by

DG(P; Q) ! G(P) − G(Q) − ⟨∇G(Q), P − Q⟩, (9)

where ⟨∇G(Q), P − Q⟩ denotes the standard inner product
between ∇G(Q) and (P − Q) (interpreted as vectors in Rn).
Note that we only define Bregman divergences on the space of
probability distributions in accordance with the “information
measures” theme. It is also common to define Bregman
divergences on other domains.

By Jensen’s inequality, many properties of D(P; Q) are
readily verified. For instance, DG (P; Q) ≥ 0, and hence
Bregman divergences are consistent with the general definition
given at the beginning of this section.

In addition to the elementary observation that
DG (P;Q) ≥ 0, Bregman divergences enjoy a number of
other properties which make them useful for many learning,
clustering, inference, and quantization problems. We refer
the interested reader to the recent survey [6] and references
therein for an overview.

Note that if the convex function G(P) which generates
DG (P; Q) takes the form:

G(P) =
n∑

i=1

g(pi), (10)

then DG (P; Q) is decomposable since

DG (P; Q) =
n∑

i=1

(g(pi) − g(qi) − g′(qi )(pi − qi )). (11)

In this case, DG (·; ·) is said to be a decomposable Bregman
divergence.

B. f-Divergences

Morimoto [2], Csiszár [4], and Ali and Silvey [10]
independently introduced the notion of f-divergences, which
take the form

D f (P; Q) !
n∑

i=1

qi f
( pi

qi

)
, (12)

where f is a convex function satisfying f (1) = 0. By Jensen’s
inequality, the convexity of f ensures that f-divergences are
always nonnegative:

D f (P; Q) ≥ f

(
n∑

i=1

qi
pi

qi

)

= 0, (13)

and therefore are consistent with our general definition
of a divergence. Well-known examples of f-divergences
include the Kullback–Leibler divergence, Hellinger distance,
χ2-divergence, and total variation distance. From their defini-
tion, it is immediate that all f-divergences are decomposable.
Many important properties of f-divergences can be found in
Basseville’s survey [6] and references therein.

C. Kullback-Leibler-Type f-Distance Measures

A Kullback-Leibler-type f-distance measure (or, KL-type
f-distance measure) [11] takes the form

L(P; Q) =
n∑

k=1

pk

(
f (qk) − f (pk)

)
≥ 0. (14)

If a particular divergence L(P; Q) is defined by (14) for a
given f, we say that f generates L(P; Q). Theorems 1 and 2
characterize all permissible functions f which generate
KL-type f-distance measures. Indeed, when n ≥ 3, any
KL-type f-distance measure is proportional to the standard
Kullback-Leibler divergence. As with f-divergences, KL-type
f-distance measures are decomposable by definition.

III. MAIN RESULTS

In this section, we address each of the questions posed in
the introduction. A subsection is devoted to each question, and
all proofs of stated results can be found in the appendices.

A. QUESTION 1: Are f-Divergences the Unique Decomposable
Divergences Which Satisfy DATA PROCESSING?

Recall that a decomposable divergence D takes the form:

D(P; Q) =
n∑

i=1

δ(pi , qi ), (15)

where δ(u, v) : [0, 1]2 → R̄ is an arbitrary bivariate function.
[9, Th. 1] asserts that any decomposable divergence which
satisfies DATA PROCESSING must be an f-divergence.
However, the proof of [9, Th. 1] only works when n ≥ 3,
a fact which apparently went unnoticed.2 The proof of the
same claim in [13, Appendix] suffers from a similar flaw and

2The propagation of this problem influences other claims in the literature
(see [12, Th. 2]).
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also fails when n = 2. Of course, knowing that the assertion
holds for n ≥ 3, it is natural to expect that it also must hold for
n = 2. As it turns out, this is not true. In fact, counterexamples
exist in great abundance.

To this end, take any f-divergence D f (P; Q) and let
k : R → R be an arbitrary nondecreasing function,
such that k(0) = 0. Since all f-divergences satisfy DATA

PROCESSING (see [6] and references therein), the diver-
gence function D̃(P; Q) ! k

(
D f (P; Q)

)
must also satisfy

DATA PROCESSING. It was first observed in Amari [13].
It turns out that the divergence function D̃(P; Q) is also
decomposable in the binary case, which follows immediately
from decomposability of f-divergences and the following
lemma, which is proved in the appendix.

Lemma 1: A divergence function D on a binary alphabet
is decomposable if and only if

D((p, 1 − p); (q, 1 − q)) = D((1 − p, p); (1 − q, q)). (16)

Therefore, if D̃(P; Q) is not itself an f-divergence, we
can conclude that D̃(P; Q) constitutes a counterexample
to [9, Th. 1] for the binary case. Indeed, D̃(P; Q) is generally
not an f-divergence, and a concrete example is as follows.
Taking f (x) = |x − 1|, we have

D f (P; Q) =
n∑

i=1

|pi − qi |, (17)

which, in the binary case, reduces to

D f

(
(p, 1 − p); (q, 1 − q)

)
= 2|p − q|. (18)

Letting k(x) = x2, we have

D̃(P; Q) = 4(p − q)2 (19)

= 2(p − q)2 + 2((1 − p) − (1 − q))2 (20)

= δ(p, q) + δ(1 − p, 1 − q), (21)

The divergence (p − q)2 on binary alphabet is called the
Brier score [14]. Since D̃(P; Q) = 4(p − q)2 is a Bregman
divergence, we will see later in Theorem 5 that it cannot
also be an f-divergence because it is not proportional to KL-
divergence. Thus, the answer to QUESTION 1 is negative for
the case n = 2. What is more, we emphasize that an decom-
posable divergence that satisfies DATA PROCESSING on the
binary alphabet needs not to be a function of an f-divergence.
Indeed, for any two f-divergences D f1(P; Q), D f2 (P, Q),
k(D f1(P; Q), D f2 (P; Q)) is also a divergence on binary
alphabet satisfying DATA PROCESSING, if k(·, ·) is nonneg-
ative and nondecreasing for both arguments. The fact that a
divergence satisfying DATA PROCESSING does not need to
be a function of an f-divergence was already observed in
Polyanskiy and Verdú [15].

As mentioned above, [9, Th. 1] implies the answer is
affirmative when n ≥ 3.

B. QUESTION 2: Is KL Divergence the Only KL-Type
f-Distance Measure Which Satisfies DATA PROCESSING?

Recall from Section II that a KL-type f-distance measure
takes the form

L(P; Q) =
n∑

k=1

pk

(
f (qk) − f (pk)

)
. (22)

If a particular divergence L(P; Q) is defined by (14) for a
given f , we say that f generates L(P; Q).

As alluded to in the introduction, there is a dichotomy
between KL-type f-distance measures on binary alphabets,
and those on larger alphabets. In particular, we have the
following:

Theorem 3: If L(P; Q) is a Kullback-Leibler-type
f-distance measure which satisfies DATA PROCESSING, then

1) If n ≥ 3, L(P; Q) is equal to KL divergence up to a
nonnegative multiplicative factor;

2) If n = 2 and the function f (x) that generates L(P; Q)
is continuously differentiable, then f (x) is of the form

f (x) =
∫

G(x)

x
dx, for x ∈ (0, 1), (23)

where G(x) satisfies the following properties:
a) xG(x) = (x − 1)h(x) for x ∈ (0, 1/2] and

some nonnegative, nondecreasing continuous func-
tion h(x).

b) G(x) = G(1 − x) for x ∈ [1/2, 1).
Conversely, any nonnegative, non-decreasing contin-
uous function h(x) generates a KL-type divergence
in the manner described above which satisfies DATA

PROCESSING.
To illustrate the last claim of Theorem 3, take for example

h(x) = x2, x ∈ [0, 1/2]. In this case, we obtain

f (x) = 1
2

x2 − x + C, ∀x ∈ [0, 1], (24)

where C is a constant of integration. Letting P = (p, 1 − p),
Q = (q, 1 − q), and plugging (24) into (14), we obtain the
KL-type divergence

L(P; Q) = 1
2
(p − q)2 (25)

which satisfies DATA PROCESSING, but certainly does not
equal KL divergence up to a nonnegative multiplicative factor.
Thus, the answer to QUESTION 2 is negative.

At this point it is instructive to compare with the discussion
on QUESTION 1. In Section III-A, we showed that a diver-
gence which is decomposable and satisfies DATA PROCESSING

is not necessarily an f-divergence when the alphabet is binary.
From the above example, we see that the much stronger
hypothesis – that a divergence is a Kullback-Leibler-type
f-distance measure which satisfies DATA PROCESSING – still
does not necessitate an f-divergence in the binary setting.

C. QUESTION 3: Is KL Divergence the Unique Bregman
Divergence Which Satisfies SUFFICIENCY?

In this section, we investigate whether KL divergence is
the unique Bregman divergence that satisfies SUFFICIENCY.
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Again, the answer to this is affirmative for n ≥ 3, but
negative in the binary case. This is captured by the following
theorem.

Theorem 4: If DG (P; Q) is a Bregman divergence which
satisfies SUFFICIENCY and

1) n ≥ 3, then DG (P; Q) is equal to the KL divergence
up to a nonnegative multiplicative factor;

2) n = 2, then DG (P; Q) can be any Bregman divergence
generated by a symmetric bivariate convex function
G(P) defined on !2.

The first part of Theorem 4 is possibly surprising, since
we do not assume the Bregman divergence DG (P; Q) to be
decomposable a priori. In an informal remark immediately
following [12, Th. 2], a claim similar to first part of our
Theorem 4 was proposed. However, we are the first to give
a complete proof of this result, as no proof was previously
known [16].

We have already seen an example of a Bregman divergence
which satisfies DATA PROCESSING (and therefore SUFFI-
CIENCY) in our previous examples. Letting P = (p, 1 − p),
Q = (q, 1 − q) and defining G(P) = p2 + (1 − p)2 generates
the Bregman divergence

DG (P; Q) = 2(p − q)2. (26)

The second part of Theorem 4 characterizes all Bregman
divergences on binary alphabets which satisfy SUFFICIENCY

as being in precise correspondence with the set of symmetric
bivariate convex functions defined on !2.

It is worth mentioning that Theorem 3 is closely related
to Theorem 4 in the binary case. According to the Savage
representation [17], there exists a bijection between Bregman
divergences and KL-type f-distances on the binary alphabet.
Hence, Theorem 3 implies that KL divergence is not the
unique Bregman divergence even if we restrict it to satisfy
DATA PROCESSING on the binary alphabet. In fact, Theorem 3
characterizes a wide class of Bregman divergences that satisfy
DATA PROCESSING on binary alphabet, but do not coincide
with KL divergence. In contrast, Theorem 4 characterizes the
set of Bregman divergences that satisfy SUFFICIENCY in the
binary case.

D. QUESTION 4: Is KL Divergence the Unique Bregman
Divergence Which is Also an f-Divergence?

We conclude our investigation by asking whether Kullback–
Leibler divergence is the unique divergence which is both a
Bregman divergence and an f-divergence. The first result of
this kind was proved in [18] in the context of linear inverse
problems requiring an alphabet size of n ≥ 5, and is hard to
extract as an independent result. This question has also been
considered in [12] and [13], in which the answer is shown to
be affirmative when n ≥ 3. Note that since any f-divergence
satisfies SUFFICIENCY, Theorem 4 already implies this result
for n ≥ 3. However, we now complete the story by showing
that for all n ≥ 2, KL divergence is the unique Bregman
divergence which is also an f-divergence.

Theorem 5: Suppose D(P; Q) is both a Bregman diver-
gence and an f-divergence for some n ≥ 2. Then D(P; Q)

is equal to KL divergence up to a nonnegative multiplicative
factor.

E. Review

In the previous four subsections, we investigated the four
questions posed in Section I. We now take the opportunity
to collect these results and summarize them in terms of the
alphabet size n.

1) For an alphabet size of n ≥ 3,
a) Pardo and Vajda [9] showed any decomposable

divergence that satisfies SUFFICIENCY must be an
f-divergence.

b) Fischer [7] showed that any KL-type f-distance
measure must be Kullback–Leibler divergence.

c) The present paper proves that any (not neces-
sarily decomposable) Bregman divergence that
satisfies SUFFICIENCY must be Kullback–Leibler
divergence.

2) In contrast, for binary alphabets of size of n = 2,
we have shown in this paper that

a) A decomposable divergence that satisfies DATA

PROCESSING does not need to be an f-divergence
(Section III-A).

b) A KL-type f-distance measure that satisfies DATA

PROCESSING does not need to be Kullback–
Leibler divergence (Theorem 3). Moreover, a com-
plete characterization of this class of divergences
is given.

c) A Bregman divergence that satisfies SUFFICIENCY

does not need to be Kullback–Leibler divergence
(Theorem 4), and this class of divergences is com-
pletely characterized.

d) The only divergence that is both a Bregman diver-
gence and an f-divergence is Kullback–Leibler
divergence (Theorem 5).

IV. CONCLUDING REMARKS

Motivated partly by the dichotomy between the binary-
and larger-alphabet settings in the characterization of Shan-
non entropy using Shannon-type inequalities [8, Ch. 4.3],
we investigate the curious case of binary alphabet in more
general scenarios. In the four problems we consider, three of
them exhibit a similar dichotomy between binary and larger
alphabets. Concretely, we show that f-divergences are not
the unique decomposable divergences on binary alphabets
that satisfy the data processing inequality, thereby clarifying
claims that have previously appeared in [9], [12] and [13].
We show that KL divergence is the only KL-type f-distance
measure which satisfies the data processing inequality, only
when the alphabet size is at least three. To the best of
our knowledge, we are the first to demonstrate that, without
assuming the decomposability condition, KL divergence is the
unique Bregman divergence which is invariant to statistically
sufficient transformations of the data when the alphabet size
is larger than two, a property that does not hold for the binary
alphabet case. Finally, we demonstrate that KL divergence is
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the unique Bregman divergence which is also an f-divergence,
on any alphabet size using elementary methods, which is a
claim made in the literature either in different settings [18],
or proven only in the case n ≥ 3 [12], [13].

APPENDIX A

PROOF OF LEMMA 1

Define h(p, q) ! D((p, 1 − p); (q, 1 − q)), where D(·; ·)
is an arbitrary divergence function on the binary alphabet.
We first prove the “if” part:

If D((p, 1 − p); (q, 1 − q)) = D((1 − p, p); (1 − q, q)),
then h(p, q) = h( p̄, q̄), where p̄ = 1 − p, q̄ = 1 − q . To this
end, define

δ(p, q) = 1
2

h(p, q), (27)

and note that we have that

h(p, q) = δ(p, q) + δ( p̄, q̄). (28)

This implies that D((p, 1 − p); (q, 1 − q)) is a decomposable
divergence.

Now we show the “only if” part: Suppose there exists a
function δ(p, q) : [0, 1] × [0, 1] → R̄, such that

h(p, q) = δ(p, q) + δ( p̄, q̄). (29)

Then,

h( p̄, q̄) = δ( p̄, q̄) + δ(p, q) = h(p, q), (30)

which is equivalent to

D((p, 1 − p); (q, 1 − q)) = D((1 − p, p); (1 − q, q)), (31)

completing the proof.

APPENDIX B

PROOF OF THEOREM 3

When n ≥ 3, Theorem 1 implies that L(P; Q) is equal to
the KL divergence up to a non-negative multiplicative factor.
Hence it suffices to deal with the binary alphabet case. Since
Y ∈ X is also a binary random variable, we may parametrize
any (stochastic) transform between two binary alphabets by
the following binary channel:

PY |X (1|1) = α

PY |X (2|1) = 1 − α

PY |X (1|2) = β

PY |X (2|2) = 1 − β,

where α,β ∈ [0, 1] are parameters. Under the binary chan-
nel PY |X , if the input distribution is PX = (p, 1 − p),
the output distribution PY would be (pα + β(1 − p),
(1−α)p+(1−β)(1− p)). For notational convenience, denote
p̃ = pα + β(1 − p), q̃ = qα + β(1 − q). The data processing
property implies that

p( f (q) − f (p)) + (1 − p)( f (1 − q) − f (1 − p))

≥ p̃( f (q̃) − f ( p̃)) + (1 − p̃)( f (1 − q̃) − f (1 − p̃)), (32)

for all p, q,α,β ∈ [0, 1]. Taking α = β = 1, we obtain

p( f (q) − f (p)) + (1 − p)( f (1 − q) − f (1 − p)) ≥ 0. (33)

Theorem 2 gives the general solution to this functional
inequality. In particular, it implies that there exists a function
G(p) such that

f ′(p) = G(p)/p, G(p) ≤ 0, G(p) = G(1 − p). (34)

Note that both sides of (32) are zero when q = p. Since
we assume f is continuously differentiable, we know that
there must exist a positive number δ > 0, such that for any
q ∈ [p, p + δ), the derivative of LHS of (32) with respect
to q is no smaller than the derivative of the RHS of (32)
with respect to q . Hence, we assume q ∈ [p, p + δ) and take
derivatives with respect to q on both sides of (32) to obtain

p f ′(q) − (1 − p) f ′(1 − q)

≥ p̃(α − β) f ′(q̃) + (1 − p̃)(β − α) f ′(1 − q̃). (35)

Substituting f ′(p) = G(p)/p, G(p) = G(1− p), we find that

p − q
q(1 − q)

G(q) ≥ (α − β)G(q̃)
(p − q)(α − β)

q̃(1 − q̃)
. (36)

Since we assumed that q > p, we have shown

G(q)

G(q̃)
≥ (α − β)2q(1 − q)

q̃(1 − q̃)
. (37)

Noting that p does not appear in (37), we know (37) holds
for all q,α,β ∈ [0, 1]. However, the four parameters α,β, q, q̃
are not all free parameters, since q̃ is completely determined
by q,α,β through its definition q̃ = qα + β(1 − q). In order
to eliminate this dependency, we try to eliminate α in (37).
Since

α = q̃ − β(1 − q)

q
∈ [0, 1], (38)

we know that

q̃ ∈ [β(1 − q), q + β(1 − q)], (39)

which is equivalent to the following constraint on β:

max
(

0,
q̃ − q
1 − q

)
≤ β ≤ min

(
q̃

1 − q
, 1

)
. (40)

Plugging (38) into (37), we obtain

G(q)

G(q̃)
≥ (q̃ − β)2(1 − q)

qq̃(1 − q̃)
. (41)

In order to get the tightest bound in (41), we need to
maximize the RHS of (41) with respect to β. By elementary
algebra, it follows from the symmetry of G(x) with respect to
x = 1/2 that (41) can be reduced to the following inequality:

G(x)

G(y)
≥ y(1 − x)

x(1 − y)
, 0 ≤ y ≤ x ≤ 1/2. (42)

Inequality (42) is equivalent to

G(x)
x

1 − x
≤ G(y)

y
1 − y

, 0 ≤ y ≤ x ≤ 1/2, (43)
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which holds if and only if

G(x)
x

1 − x
(44)

is a non-positive non-increasing function on [0, 1/2]. In other
words, there exists a function h(x), x ∈ [0, 1/2], such that

G(x) = x − 1
x

h(x), (45)

h(x) ≥ 0, h(x) non-decreasing ∀x ∈ [0, 1/2]. To conclude,
the data processing inequality implies that the derivative of
f (x) admits the following representation:

f ′(x) = G(x)/x, (46)

where for x ∈ (0, 1/2], G satisfies

G(x) = G(1 − x) (47)

xG(x) = (x − 1)h(x), (48)

and h(x) ≥ 0 is a non-decreasing continuous function on
(0, 1/2].

Conversely, for any f whose derivative can be expressed
in the form (46), we can show the data processing inequality
holds. Indeed, for a function f admitting representation (46),
it suffices to show for any α,β ∈ [0, 1], the derivative of LHS
with respect to q is larger than the derivative of RHS with
respect to q in (32) when q > p, and is smaller when q < p.
This follows as a consequence of the previous derivations.

APPENDIX C

PROOF OF THEOREM 4

Before we begin the proof of Theorem 4, we take the
opportunity to state a symmetry lemma that will be needed.

Lemma 2: If the Bregman divergence DG (P; Q) generated
by G satisfies SUFFICIENCY, then there is a symmetric convex
function Gs that generates the same Bregman divergence.
That is, DG(P; Q) = DGs(P; Q) for all P, Q ∈ !n.

Proof: Let N = (1/n, . . . , 1/n) ∈ !n denote the uniform
distribution on X , and consider a permutation Y = π(X).
Since DG(P; Q) obeys SUFFICIENCY, it follows that

G(P) − G(N) − ⟨∇G(N), P − N⟩
= G(Pπ−1) − G(N) − ⟨∇G(N), Pπ−1 − N⟩, (49)

where Pπ−1(i) = pπ−1(i) for 1 ≤ i ≤ n. This implies that
Gs(P) ! G(P)−⟨∇G(N), P⟩ is a symmetric convex function
on !n . Since Bregman divergences are invariant to affine
translations of the generating function, the claim is proved.

Note that Lemma 2 essentially proves the Theorem’s asser-
tion for n = 2. Noting that the only sufficient transformation
on binary alphabets is a permutation of the elements finishes
the proof. Therefore, we only need to consider the setting
where n ≥ 3. This will be accomplished in the following
series of propositions.

Proposition 1: Suppose n ≥ 3. If D(P; Q) is a Bregman
divergence on !n that satisfies SUFFICIENCY, then there exists

a convex function G that generates D(P; Q) and admits the
following representation:

G(P) = (p1 + p2)U
(

p1

p1 + p2
; p4, . . . , pn

)

+E(p1 + p2; p4, . . . , pn), (50)

where P = (p1, p2, . . . , pn) ∈ !n is an arbitrary proba-
bility vector, and U(·; p4, . . . , pn), E(·; p4, . . . , pn) are two
univariate functions indexed by the parameter p4, . . . , pn.

Proof: Take P(t)
λ1

, P(t)
λ2

to be two probability vectors
parameterized in the following way:

P(t)
λ1

= (λ1t,λ1(1 − t), r − λ1, p4, . . . , pn) (51)

P(t)
λ2

= (λ2t,λ2(1 − t), r − λ2, p4, . . . , pn), (52)

where r ! 1 − ∑
i≥4 pi , t ∈ [0, 1],λ1 < λ2. Observe that

DG (PX |1; PX |2) = G(P(t)
λ1

) − G(P(t)
λ2

)

−⟨∇G(P(t)
λ2

), P(t)
λ1

− P(t)
λ2

⟩ (53)

because DG (P; Q) = G(P) − G(Q) − ⟨∇G(Q), P − Q⟩ by
definition.

Since the first two elements of P(t)
λ1

and P(t)
λ2

are propor-
tional, the transformation X (→ Y defined by

Y =
{

1 X ∈ {1, 2}
X otherwise

(54)

is sufficient for Z ∈ {1, 2}, where PX |Z ! P(t)
λZ

. By our
assumption that DG (P; Q) satisfies SUFFICIENCY, we can
conclude that

G(P(t)
λ1

) − G(P(t)
λ2

) − ⟨∇G(P(t)
λ2

), P(t)
λ1

− P(t)
λ2

⟩
= G(P(1)

λ1
) − G(P(1)

λ2
) − ⟨∇G(P(1)

λ2
), P(1)

λ1
− P(1)

λ2
⟩ (55)

for all legitimate λ2 > λ1 ≥ 0.
Fixing p4, p5, . . . , pn , define

R(λ, t; p4, p5, . . . , pn) ! G(P(t)
λ ). (56)

For notational simplicity, we will denote R(λ, t;
p4, p5, . . . , pn) by R(λ, t) since p4, p5, . . . , pn remain
fixed for the rest of the proof. Thus, (55) becomes

R(λ1, t) − R(λ2, t) − ⟨∇ R(λ2, t), P(t)
λ1

− P(t)
λ2

⟩
= R(λ1, 1) − R(λ2, 1) − ⟨∇ R(λ2, 1), P(1)

λ1
− P(1)

λ2
⟩, (57)

where we abuse notation and have written ∇ R(λ, t) in place
of ∇G(P(t)

λ ).
For arbitrary real-valued functions U(t), F(t) to be defined

shortly, define R̃(λ, t) = R(λ, t) − λU(t) − F(t). For all
admissible λ1,λ2, t , it follows that

R(λ1, t) − R(λ2, t) − ⟨∇ R(λ2, t), P(t)
λ1

− P(t)
λ2

⟩
= R̃(λ1, t) − R̃(λ2, t) − ⟨∇ R̃(λ2, t), P(t)

λ1
− P(t)

λ2
⟩, (58)

which implies that

R̃(λ1, t) − R̃(λ2, t) − ⟨∇ R̃(λ2, t), P(t)
λ1

− P(t)
λ2

⟩
= R̃(λ1, 1) − R̃(λ2, 1) − ⟨∇ R̃(λ2, 1), P(1)

λ1
− P(1)

λ2
⟩. (59)
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Fixing λ2, we can choose the functions U(t), F(t) so that
R̃(λ2, t) satisfies

R̃(λ2, t) = R̃(λ2, 1)

⟨∇ R̃(λ2, t), P(t)
λ1

− P(t)
λ2

⟩ = ⟨∇ R̃(λ2, 1), P(1)
λ1

− P(1)
λ2

⟩. (60)

Plugging (60) into (59), we find that

R̃(λ1, t) = R̃(λ1, 1). (61)

Therefore, there must exist a function E : [0, 1] → R, such
that

R̃(λ, t) = E(λ). (62)

By definition, R(λ, t) = R̃(λ, t) + λU(t) + F(t). Hence,
we can conclude that there exist real-valued functions E, U, F
(indexed by p4, . . . , pn) such that

R(λ, t) = F(t) + λU(t) + E(λ). (63)

By definition of R(λ, t), we have

G(p1, p2, p3, p4, . . . , pn)

= F
(

p1

p1 + p2
; p4, . . . , pn

)

+ (p1 + p2)U
(

p1

p1 + p2
; p4, . . . , pn

)

+ E(p1 + p2; p4, . . . , pn), (64)

which follows from expressing λ, t in terms of p1, p2:

λ = p1 + p2, t = p1

p1 + p2
. (65)

Reparameterizing p1 = xa, p2 = x(1 − a), a ∈ [0, 1],
p3 = 1 −

(∑
i≥4 pi

)
− x and letting x ↓ 0, it follows from

from (64) that

lim
x↓0

G(P) = F(a; p4, . . . , pn) + lim
x↓0

E(x; p4, . . . , pn). (66)

In words, Equation (66) implies that if F is not identically
constant, lim

x↓0
G(P) is going to depend on how we approach

the boundary point (0, 0, 1−∑
i≥4 pi , p4, . . . , pn). Since !n is

a bounded closed polytope, we obtain a contradiction by
recalling:

Lemma 3 (Gale-Klee-Rockafellar [20]): If S is boundedly
polyhedral and φ is a convex function on the relative interior
of S which is bounded on bounded sets, then φ has a unique
continuous convex extension on S. Moreover, every convex
function on a bounded closed polytope is bounded.

Without loss of generality, we may take F ≡ 0, completing
the proof.

Proposition 1 establishes that Bregman divergences which
satisfy SUFFICIENCY can only be generated by convex func-
tions G which satisfy a functional equation of the form (50).
Toward characterizing the solutions to (50), we cite a result
on the the so-called generalized fundamental equation of
information theory.

Lemma 4 (See [21]–[23]): Any measurable solution of

f (x) + (1 − x)g
( y

1 − x

)
= h(y) + (1 − y)k

( x
1 − y

)
, (67)

for x, y ∈ [0, 1) with x + y ∈ [0, 1], where f, h : [0, 1) → R
and g, k : [0, 1] → R, has the form

f (x) = a H2(x) + b1x + d, (68)

g(y) = a H2(y) + b2y + b1 − b4, (69)

h(x) = a H2(x) + b3x + b1 + b2 − b3 − b4 + d, (70)

k(y) = a H2(y) + b4y + b3 − b2, (71)

for x ∈ [0, 1), y ∈ [0, 1], where H2(x) = −x ln x−
(1 − x) ln(1 − x) is the binary Shannon entropy and
a, b1, b2, b3, b4, and d are arbitrary constants.

We remark that if f = g = h = k in Lemma 4,
the corresponding functional equation is called the funda-
mental equation of information theory, and has the solution
f (x) = C · H2(x), where C is an arbitrary constant.

We now apply Lemma 4 to prove the following refinement
of Proposition 1.

Proposition 2: Suppose n ≥ 3. If D(P; Q) is a Bregman
divergence on !n that satisfies SUFFICIENCY, then there exists
a symmetric convex function G that generates D(P; Q) and
admits the following representation:

G(P) = A(p4, . . . , pn) (p1 ln p1 + p2 ln p2 + p3 ln p3)

+B(p4, . . . , pn), (72)

where P = (p1, p2, . . . , pn) ∈ !n is an arbitrary probabil-
ity vector, and A(p4, . . . , pn), B(p4, . . . , pn) are symmetric
functions of p4, . . . , pn.

Proof: Taking Lemma 2 together with Proposition 1,
we can assume that there is a symmetric convex function G
that generates D(P; Q) and admits the representation

G(P) = (p1 + p2)U
(

p1

p1 + p2
; p4, . . . , pn

)

+E(p1 + p2; p4, . . . , pn). (73)

We now massage (73) into a form to which we can apply
Lemma 4. For the remainder of the proof, we suppress the
explicit dependence of U (·; p4, . . . , pn) and E(·; p4, . . . , pn)
on p4, . . . , pn , and simply write U(·) and E(·), respectively.
First, since G(P) is a symmetric function, we know that if we
exchange the entries p1 and p3 in P , the value of G(P) will
not change. In other words, for r = p1 + p2 + p3, we have

(r − p3)U
(

p1

r − p3

)
+ E(r − p3)

= (r − p1)U
(

p3

r − p1

)
+ E(r − p1). (74)

Second, we define Ẽ(x) ! E(r − x), and can now write

(r − p3)U
(

p1

r − p3

)
+ Ẽ(p3)

= (r − p1)U
(

p3

r − p1

)
+ Ẽ(p1). (75)

Finally, we define qi = pi/r for i = 1, 2, 3, and h(x) =
Ẽ(r x)/r to obtain

(1 − q3)U
(

q1

1 − q3

)
+ h(q3)

= (1 − q1)U
(

q3

1 − q1

)
+ h(q1), (76)
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which has the same form as (67). Applying Lemma 4, we find
that b1 = b3, b2 = b4, and

h(x) = a H2(x) + b1x + d (77)

U(y) = a H2(y) + b2y + b1 − b2. (78)

By unraveling the definitions of h(x) and Ẽ(x), and recall-
ing the symmetric relation H2(x) = H2(1 − x), we find that

E(x) = ra H2(x/r) + b1(r − x) + rd. (79)

Substituting the general solutions to U(x), E(x) into (73), we
have

G(P) = a(p1 + p2)H2

(
p1

p1 + p2

)
+ b2 p1

+(b1 − b2)(p1 + p2) + ra H2

(
p1 + p2

r

)

+b1(r − (p1 + p2)) + rd (80)

= a(p1 + p2)H2

(
p1

p1 + p2

)
+ ra H2

(
p1 + p2

r

)

+ b1r − b2 p2 + rd. (81)

Since G(P) is symmetric, its value must be invariant to
exchanging the values p1 ↔ p2. However, (81) can only be
invariant to such permutations if b2 ≡ 0. Thus, we can further
simplify (81) and write

G(P) = a
(

p1 ln p1 + p2 ln p2

+(r − p1 − p2) ln(r − p1 − p2)−r ln(r)
)

+(b1 + d)r (82)

= A(p4, . . . , pn)(p1 ln p1 + p2 ln p2 + p3 ln p3)

+B(p4, . . . , pn), (83)

where A(p4, . . . , pn) and B(p4, . . . , pn) are functions of
(p4, . . . , pn). By performing an arbitrary permutation on
p4, . . . , pn and noting that p1, p2, p3 share two degrees of
freedom, we can conclude that A(p4, . . . , pn), B(p4, . . . , pn)
must be symmetric functions as desired.

We are now in a position to prove Theorem 4.
Proof of Theorem 4 for n ≥ 3: Suppose D(P; Q) is

a Bregman divergence that satisfies SUFFICIENCY. Then,
Proposition 2 asserts that there must be a symmetric convex
function G(P) which admits the form

G(P) = A(p4, . . . , pn) (p1 ln p1 + p2 ln p2 + p3 ln p3)

+B(p4, . . . , pn), (84)

where A and B are symmetric functions. By symmetry of
G(P), we can exchange p1, p4 to obtain the identity

A(p4, p5, . . . , pn)(p1 ln p1 + p2 ln p2 + p3 ln p3)

+ B(p4, p5, . . . , pn)

= A(p1, p5, . . . , pn)(p4 ln p4 + p2 ln p2 + p3 ln p3)

+ B(p1, p5, . . . , pn). (85)

Comparing the coefficients for p2 ln p2, it follows that A must
satisfy

A(p4, p5, . . . , pn) = A(p1, p5, . . . , pn). (86)

However, since A is a symmetric function, (86) implies that
A is a constant. Defining the constant a ! A, we now have

a(p1 ln p1 + p2 ln p2 + p3 ln p3) + B(p4, p5, . . . , pn)

= a(p4 ln p4 + p2 ln p2 + p3 ln p3) + B(p1, p5, . . . , pn),

(87)

which is equivalent to

ap1 ln p1−ap4 ln p4 = B(p1, p5, . . . , pn)−B(p4, p5, . . . , pn).

(88)

Taking partial derivatives with respect to p1 on both sides
of (88), we obtain

a(ln p1 + 1) = ∂

∂p1
B(p1, p5, . . . , pn), (89)

which implies that there exists a function f (p5, . . . , pn) such
that

B(p1, p5, . . . , pn) = ap1 ln p1 + f (p5, . . . , pn). (90)

Recalling the symmetry of B , we can conclude that

B(p4, . . . , pn) =
∑

i≥4

api ln pi + c, (91)

where c is a constant. To summarize, we have shown that

G(P) = a
n∑

i=1

pi ln pi + c. (92)

To guarantee that G(P) is convex, we must have a ≥ 0. Since
G(P) = a

∑n
i=1 pi ln pi + C generates a Bregman divergence

which is a positive multiple of KL divergence, the theorem is
proved.

APPENDIX D

PROOF OF THEOREM 5

Setting pi = qi = 0, i ≥ 3, and denoting p1 by p, q1 by q ,
G(p, 1 − p, 0, . . . , 0) by h(p), we have

h(p) − h(q) − h′(q)(p − q) = q f
(

p
q

)
+(1−q) f

(
1− p
1−q

)
.

(93)

Setting p = q , we find that f (1) = 0. The function f is
assumed to be convex so it has derivatives from left and right.
Taking derivatives with respect to p on both sides of (93),
we have

h′(p) − h′(q)= f ′
+

(
p
q

)
− f ′

−

(
1 − p
1 − q

)
. (94)

Taking x = p/q , we have

h′(xq) − h′(q) = f ′
+(x) − f ′

−

(
1 − xq
1 − q

)
. (95)

Assume x > 1. Then, upon letting q ↓ 0, yields

lim
q↓0

(h′(xq) − h′(q)) = f ′
+(x) − f ′

−(1). (96)

Here we have used the fact that the left derivative of a convex
function is left continuous.
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We now have

f ′
+(x) = f ′

−(1) + lim
q↓0

(h′(xq) − h′(q)) (97)

= f ′
−(1) + lim

q↓0

(
n∑

i=1

h′(x
n−i+1

n q) − h′(x
n−i

n q)

)

(98)

= f ′
−(1) +

n∑

i=1

lim
q↓0

(h′(x
n−i+1

n q) − h′(x
n−i

n q)) (99)

= f ′
−(1) +

n∑

i=1

(
f ′
+(x1/n) − f ′

−(1)
)

(100)

= n f ′
+(x1/n) − (n − 1) f ′

−(1). (101)

Hence we get

f ′
+(x) − f ′

−(1) = n
(

f ′
+(x1/n) − f ′

−(1)
)
. (102)

Taking x = 1, we obtain f ′
−(1) = f ′

+(1), so that we may
simply write f ′(1). Hence,

f ′
+(x) − f ′(1) = n

(
f ′
+(x1/n) − f ′(1)

)
. (103)

Introduce the increasing function g(t) = f ′
+(et ) − f ′(1).

Then we have

g(t) = ng(t/n), for any n ∈ N+. (104)

It further implies that g(t) = tg(1), for all t ∈ Q.
Considering the fact that g(·) is increasing, we know g(·) must
be a linear function, which means that g(t) = a+t, t > 0 for
some constant a+. Therefore f ′

+(x) = a+ ln x + f ′(1). By the
integral relation of a convex function and its right derivative,
using the fact that f (1) = 0, we get

f (x) = a+ · (x ln x − x + 1) + f ′(1)(x − 1), x ≥ 1. (105)

Similarly, there exists a constant a− such that

f (x) = a− · (x ln x − x + 1) + f ′(1)(x − 1), x < 1. (106)

Plugging the expression of f into (93), we obtain a+ = a−.
Substituting this general solution into the definition of an
f-divergence, we obtain

∑
qi f

(
pi

qi

)
= f ′′(1)DKL(P∥Q), (107)

which finishes the proof.
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