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A Strong Entropy Power Inequality
Thomas A. Courtade , Member, IEEE

Abstract— When one of the random summands is Gaussian,
we sharpen the entropy power inequality (EPI) in terms of the
strong data processing function for Gaussian channels. Among
other consequences, this ‘strong’ EPI generalizes the vector
extension of Costa’s EPI to non-Gaussian channels in a precise
sense. This leads to a new reverse EPI and, as a corollary,
sharpens Stam’s uncertainty principle relating entropy power
and Fisher information (or, equivalently, Gross’ logarithmic
Sobolev inequality). Applications to network information theory
are also given, including a short self-contained proof of the rate
region for the two-encoder quadratic Gaussian source coding
problem and a new outer bound for the one-sided Gaussian
interference channel.

Index Terms— Entropy power inequality, Costa’s EPI, Stam’s
inequality, reverse EPI, strong data processing, gaussian source
coding.

I. INTRODUCTION AND MAIN RESULT

FOR a random vector X with density f on Rd , the
differential entropy of X is defined by

h(X) = −
∫

Rd
f (x) log f (x)dx, (1)

where we adopt the convention that the logarithm is computed
with respect to the natural base. The celebrated Entropy Power
Inequality (EPI) put forth by Shannon [2] and rigorously
established by Stam [3] and Blachman [4] asserts that for
X, W independent and Y = X + W ,

e
2
d h(Y ) ≥ e

2
d h(X) + e

2
d h(W ). (2)

Under the assumption that W is Gaussian, our main result is
the following improvement of (2):

Theorem 1: Suppose X, W are independent random vectors
in Rd , and moreover that W is Gaussian. Define Y = X + W.
For any V satisfying X → Y → V ,

e
2
d (h(Y )−I (X;V )) ≥ e

2
d (h(X)−I (Y ;V )) + e

2
d h(W ). (3)

The notation X → Y → V in Theorem 1 indicates that the
random variables X , Y and V form a Markov chain, in that
order (this and other notations are detailed in Section II).
In case the integral (1) does not exist, or if X does not have
density, then we adopt the convention that h(X) = −∞.
In this case, the inequality (3) is a trivial consequence of
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the data processing inequality. Likewise, the inequality is also
degenerate when h(X) = ∞. So, as with the classical EPI,
Theorem 1 is only informative when the entropy h(X) exists
and is finite.

Let us briefly remark on equality cases of Theorem 1
in comparison to the classical EPI. First, we recall that
the Shannon-Stam-Blachman EPI (2) attains equality pre-
cisely when X and W are Gaussian with proportional
covariances [3], [5]. In contrast, by judiciously choosing the
auxiliary random variable V , equality can be achieved in (3)
for any given X with finite entropy. In fact, choosing V =
X + W renders both sides equal to e

2
d h(W ). Furthermore,

in analogy to the classical EPI, it is a simple calculation to
see that equality is also achieved in (3) whenever the random
variables X , Y and V are jointly Gaussian with proportional
covariances.

For X, Y as in the statement of Theorem 1, we may
associate a function ! : R≥0 → R≥0 to their joint law PXY
as follows

!(t) := sup
V :X→Y→V

{I (X; V ) : I (Y ; V ) ≤ t}, (4)

where the supremum ranges over all random variables V
satisfying the Markov relation X → Y → V . The function !
is generally referred to as a strong data processing function
because it sharpens the classical data processing inequality
for mutual information in a certain way. Indeed, definitions
ensure I (X; V ) ≤ !(I (Y ; V )) ≤ I (Y ; V ) for all V satisfying
X → Y → V , and ! is the (pointwise) smallest function for
which the first inequality holds. With ! defined in this way,
Theorem 1 may be recast in terms of ! as

e
2
d (h(Y )−!(t)) ≥ e

2
d (h(X)−t) + e

2
d h(W ) ∀t ≥ 0. (5)

Hence, Theorem 1 strengthens the EPI when one of the
variables is Gaussian, and does so precisely in terms of the
strong data processing function ! . According to this, we find
it fitting to refer to (3) as a ‘strong’ entropy power inequality,
giving this paper its title.

It should be noted that Calmon, Polyanskiy and Wu [6], [7]
have recently considered a somewhat related problem where
they bound the best-possible data processing function defined
according to

FI (t, γ ) := sup
U,X :U→X→Y

{I (Y ; U) : I (X; U) ≤ t} , (6)

where Y = X + W , W ∼ N(0, I ) is independent of (X, U),
and the supremum is over all joint distributions PU X such that
E[X2] ≤ γ . Since the Markov assumptions in (4) and (6)
differ, and Calmon et al. further optimize over the
distribution PX , the present results and those of [6], [7] are
not comparable.
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Various improvements of the EPI have appeared previously
in the literature. However, none are highly similar to (3).
For instance, strengthened EPIs for random vectors with log-
concave densities have recently been proposed by Toscani [8]
and Courtade, Fathi and Pananjady [9]. In another direction,
Madiman and Barron have established an EPI for subsets of
random variables [10], which generalizes the monotonicity of
entropy along the central limit theorem [11]. The reader is
referred to the recent survey [12] for a general overview of
EPI-related results.

Among those inequalities appearing in the literature,
we consider Costa’s EPI [13] to be most comparable to
Theorem 1. In the following section, we clarify this rela-
tionship by demonstrating that Theorem 1 generalizes Costa’s
EPI [13] and its vector extension [14], which enjoy applica-
tions ranging from interference channels to secrecy capacity
(e.g., [14]–[17]). However, Theorem 1 goes considerably fur-
ther than generalizing Costa’s EPI. In the context of functional
inequalities, we will see that Theorem 1 leads to new reverse
entropy power and Fisher information inequalities, which in
turn can be applied to sharpen the Gaussian logarithmic
Sobolev inequality. On the other hand, in the context of coding
theorems, we will see that Theorem 1 leads to a concise proof
of the converse for the rate region of the quadratic Gaussian
two-encoder source-coding problem [18], [19] (a result which
seems beyond the reach of Costa’s EPI). Applications to
one-sided interference channels and strong data processing
inequalities are also briefly discussed.

The restriction of W to be Gaussian in Theorem 1 should
not be a severe limitation in practice. In applications of the
EPI, it is often the case that one of the variables is Gaussian.
As noted by Rioul [20], examples include the scalar Gaussian
broadcast channel problem [21] and its generalization to the
multiple-input multiple-output case [22], [23]; the secrecy
capacity of the Gaussian wiretap channel [24] and its multiple
access extension [25]; determination of the corner points for
the scalar Gaussian interference channel problem [15], [16];
the scalar Gaussian source multiple-description problem [26];
and characterization of the rate-distortion regions for several
multiterminal Gaussian source coding schemes [19], [27], [28].
Furthermore, the EPI with one Gaussian variable is equiv-
alent to the Gaussian logarithmic Sobolev inequality [29],
which has a number of important applications in analysis
(e.g,. [30], [31]). It is tempting to conjecture that (3) holds
even when the distribution of W is non-Gaussian, and we
have found no evidence to suggest the contrary. This is a very
interesting question, which we leave as an open problem.

A. Organization

The remainder of this paper is organized as follows:
Section II defines notation and Section III explores various
applications of Theorem 1. For the reader interested only in
applications of the main result, Sections IV and beyond can be
safely omitted as they are dedicated to the proof of Theorem 1.

As for the proof of Theorem 1, it is rather long and we
know of no simpler proof at this time. Section IV is intended
to familiarize the reader with the basic strategy of the proof.

In particular, Section IV-A is devoted to a heuristic discussion
of the crux of our argument, in which we sketch the basic ideas
involved in proving a one-dimensional version of Theorem 1,
but gloss over several technical issues that need to be dealt
with. Section V shows how to recover Theorem 1 from its one-
dimensional counterpart by leveraging some of the machinery
developed in Section IV.

Section VI and the two appendices are for readers interested
in the details of the proof. Specifically, Section VI revisits the
heuristic discussion of Section IV-A, and makes it rigorous
by treating the subtle points with more care. In order to
arrive at its main conclusion, Section VI requires two key
technical estimates whose proofs are essentially orthogonal to
the rest of the argument. Appendices A and B are dedicated
to establishing these separate results.

II. NOTATION

This section establishes basic notation, most of which
is standard in the information theory literature. We write
PXY , PX and PY to denote the joint and respective mar-
ginal probability distributions associated to a pair of ran-
dom variables (X, Y ). We write X ∼ PX to denote
X has distribution PX , and similarly (X, Y ) ∼ PXY to
indicate that (X, Y ) have joint law PXY , and so forth.
We shall use Y |{X = x} to denote the random variable Y
conditional on {X = x}, and denote its law by PY |{X=x}.
Note that Y |{X = x} is uniquely defined in the sense that
different versions of the same are equal PX -a.e. x ; as such,
we will not distinguish between these versions. It will be
often convenient to factor joint distributions into products of
marginals and conditionals, so that (X, Y ) ∼ PX PY |X denotes
that X, Y are jointly distributed such that X ∼ PX and
Y |{X = x} ∼ PY |{X=x}. This notation is particularly handy
to describe conditional independence. For example, any joint
distribution PXY V may be factored as PXY PV |XY . So, if we
write (X, Y, V ) ∼ PXY PV |Y , this implies that the conditional
law PV |XY = PV |Y does not depend on X , and therefore
V and X are conditionally independent given Y . As already
introduced previously, conditional independence (i.e., Markov)
structure can be compactly represented as X → Y → V to
denote PXY V = PX PY |X PV |Y . When additional conditioning
is needed, we write X → Y → V |Q to indicate that PQ XY V =
PQ PX |Q PY |X Q PV |Y Q . In other words, X → Y → V form
a Markov chain, conditioned on Q. So, for example, if we
write

inf
V :X→Y→V |Q

{
I (Y ; V |Q)− λI (X; V |Q)

}
,

this denotes an infimum taken over all distributions PV |Y Q ,
where the information measures in the argument of the
infimum are evaluated with respect to the joint distribution
PQ XY V = PQ PX |Q PY |X Q PV |Y Q . Reader familiarity with
information measures (entropy, mutual information, etc.) and
their calculus is assumed. For the unfamiliar reader, definitions
may be found in any standard textbook, e.g., [32].

A sequence of random variables X1, X2, . . . indexed by
n ∈ N will be denoted by the shorthand {Xn}, and convergence
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of {Xn} in distribution to a random variable X∗ is written
Xn

D−→ X∗.
We write W ∼ N(µ,$) to indicate that W has Gaussian

distribution with mean µ and covariance $. We will often
be interested in the Gaussian channel parametrized by the
scalar quantity ϱ > 0 (the signal-to-noise ratio), in which
Y = √ϱX + Z , where Z ∼ N(0, 1) is independent of the
input X . For this particular situation, we reserve the notation
Gϱ

Y |X to denote the conditional law of Y given X . Hence,
writing (Qn, Xn, Yn) ∼ PQn Xn Gϱ

Yn |Xn
is compact notation for

(Qn, Xn) ∼ PQn,Xn and Yn = √ϱXn + Z , where Z ∼ N(0, 1)
is independent of (Qn, Xn).

For a conditional law PY |X and a random variable X ∼ PX ,
we sometimes employ the compact notation PY |X : X +→ Y
to indicate that Y is a random variable with law obtained by
composing PY |X with PX . In particular, given a sequence {Xn},
we may define a sequence {Yn} via PY |X : Xn +→ Yn , which
means that the conditional law of Yn given Xn is equal to PY |X
for each n.

Without loss of generality, it is assumed throughout that
all logarithms are base-e, so that all information measures
are in units of nats. Exceptions to this convention occur in
Sections III-C and III-D, and are explicitly noted. Finally,
∥ · ∥ is used to denote Euclidean length on Rd .

III. APPLICATIONS

Here we present several representative applications of
Theorem 1.

A. Generalized Costa’s Entropy Power Inequality

Costa’s EPI [13] (see [33]–[35] for alternate proofs) states
that, for independent d-dimensional random vectors X ∼ PX ,
W ∼ N(0,$) and |α| ≤ 1

e
2
d h(X+αW ) ≥ (1− α2)e

2
d h(X) + α2e

2
d h(X+W ). (7)

This result was generalized to matrix weightings by Liu,
Liu, Poor and Shamai using perturbation and I-MMSE
arguments [14]. We demonstrate below that this generalization
follows as an easy corollary to Theorem 1 by taking V equal
to X contaminated by additive Gaussian noise. In this sense,
Theorem 1 may be interpreted as a further generalization of
Costa’s EPI, where the additive noise is non-Gaussian.

Theorem 2 [14]: Let X ∼ PX and W ∼ N(0,$) be
independent random vectors in Rd . For a positive semidefinite
matrix A ≼ I that commutes with $,

e
2
d h(X+A1/2 W ) ≥ |I − A|1/de

2
d h(X) + |A|1/de

2
d h(X+W ), (8)

where | · | denotes determinant.
Remark 1: The original claim by Liu, Liu, Poor and Shamai

in [14] does not contain the hypothesis that A and $ commute.
However, the inequality can fail if this commutativity property
does not hold [36].

Proof: We assume $ is positive definite; the gen-
eral case follows by approximation. Let W1, W2 denote
two independent copies of W , and put Y = X +
A1/2W1 and V = Y + (I − A)1/2W2. Using the fact

that A and $ commute, it holds that V = X + W
in distribution so that I (X; V ) = h(X + W ) − h(W ).
Similarly, I (Y ; V ) = h(X + W )− h((I − A)1/2W ). Now, (8)
follows from Theorem 1 since

e
2
d (h(X+A1/2 W )−h(X+W )+h(W ))

= e
2
d (h(Y )−I (X;V ))

≥ e
2
d (h(X)−I (Y ;V )) + e

2
d h(A1/2 W1)

= e
2
d (h(X)−h(X+W )+h((I−A)1/2W )) + |A|1/de

2
d h(W )

= |I − A|1/de
2
d (h(X)−h(X+W )+h(W )) + |A|1/de

2
d h(W ).

Multiplying both sides by e
2
d (h(X+W )−h(W )) completes the

proof. !
Costa’s EPI may be interpreted as a concavity property

enjoyed by entropy powers. The proof of Theorem 2 suggests a
generalization of this property to non-Gaussian additive noise.
Indeed, we have the following general result:

Theorem 3: Let X ∼ PX , Y ∼ PY and W ∼ N(0,$) be
independent random vectors in Rd with finite second moments.
Then

e
2
d (h(X+W )+h(Y+W )) ≥ e

2
d (h(X)+h(Y )) + e

2
d (h(X+Y+W )+h(W )).

Proof: This is an immediate consequence of Theorem 1
by letting V = X + Y + W and rearranging exponents. !

We remark that the assumption of finite second moments
in Theorem 3 is only needed to ensure that all entropies are
less than +∞ (precluding the indeterminate ∞ −∞ in the
exponent) and can generally be relaxed. If any of the entropies
are equal to −∞, the claim is trivial.

We also mention that Madiman observed the follow-
ing related inequality on submodularity of differential
entropy [37], which can be proved via data processing: if
X, Y, W are independent (one-dimensional) random variables,
then

e2(h(X+W )+h(Y+W )) ≥ e2(h(X+Y+W )+h(W )). (9)

When W is Gaussian, Theorem 3 sharpens inequality (9) by
reducing the LHS by a factor of e2(h(X)+h(Y )).

B. Reverse Convolution Inequalities and Refinement of
Stam-Gross LSI

Theorem 3 admits several interesting corollaries that are
connected to reversing the convolution inequalities for entropy
and Fisher information. We explore these connections briefly
in this section, but remark that our treatment is far from
exhaustive.1 To start, define the entropy power N(X) and the
Fisher information J (X) of a random vector X in Rd with
density f (with respect to Lebesgue measure) as follows:

N(X) := 1
2πe

e
2
d h(X) J (X) := E

[∥∇ f (X)∥2
f 2(X)

]
.

If the Fisher information does not exist (e.g., if f is not
sufficiently smooth), we adopt the convention J (X) =∞.

1A more comprehensive treatment of this topic and the connections to
Costa’s EPI can be found in [35].
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In his classic 1959 proof of the entropy power inequal-
ity [3], Stam observed the following uncertainty principle for
d-dimensional X with finite second moments:

p(X) := 1
d N(X)J (X) ≥ 1. (10)

As noted by Costa and Cover [38], p(X) may be interpreted as
a notion of surface area associated to X ; indeed, (10) is derived
from the EPI in the same way that the isoperimetric inequality
is derived from the Brunn-Minkowski inequality. Since (10)
is proved using de Bruijn’s identity and the special case of
Shannon’s EPI when one summand is Gaussian, Theorem 3
naturally leads to a sharpening of (10). This strengthen-
ing takes the form of a reverse EPI, which upper bounds
N(X + Y ) in terms of only marginal entropies and Fisher
informations.

Theorem 4: If X and Y are independent d-dimensional
random vectors with finite second moments, then

N(X)N(Y ) (J (X) + J (Y )) ≥ d N(X + Y ). (11)

Proof: We may assume J (X) < ∞ and J (Y ) <
∞, else there is nothing to prove. To begin, let Z ∼
N(0, I ) be independent of X, Y and recall de Bruijn’s identity
[3]: d

dt h(X + √t Z) = 1
2 J (X + √t Z). In particular, we

have
d
dt

N(X +
√

t Z)
∣∣∣
t=0

= 1
d

N(X)J (X). (12)

Identifying W = √t Z in Theorem 3 and rearranging, we find

N(X +√t Z)N(Y +√t Z)− N(X)N(Y )

t
≥ N(X + Y +

√
t Z) ≥ N(X + Y ).

Letting t → 0 and applying (12) proves the claim. !
By recalling the definition of p(·) in (10), we obtain the fol-

lowing corollary, which reverses the convolution inequalities
for entropy powers and Fisher information:

Corollary 1: Let X, Y be independent with finite second
moments, and choose θ to satisfy θ/(1 − θ) = N(Y )/N(X).
Then

N(X + Y ) ≤ (N(X) + N(Y )) (θp(X) + (1− θ)p(Y )) (13)

and
1

J (X + Y )
≤

(
1

J (X)
+ 1

J (Y )

)
p(X)p(Y ). (14)

Proof: Inequality (13) is the same as (11), but rewritten in
terms of p(·). Likewise, (14) follows immediately from (11)
and (10), applied to the sum X + Y . !

We remind the reader that the convolution inequalities
for entropy power and Fisher information may, respectively,
be written as

N(X + Y ) ≥ (N(X) + N(Y ))

and
1

J (X + Y )
≥ 1

J (X)
+ 1

J (Y )
.

So, we may conclude sharpness of the “reverse” estimates in
Corollary 1. Precisely, we see that if both X and Y each nearly

saturate (10), then the convolution inequalities for entropy
power and Fisher information will also be nearly saturated.
Notably, the reverse EPI (13) is nontrivial whenever the Fisher
informations J (X), J (Y ) exist and are finite. This should be
contrasted with the reverse EPI of Bobkov and Madiman [39],
which holds only for convex measures and must be stated
in terms of volume preserving maps (similar to Milman’s
reverse Brunn-Minkowski inequality for convex bodies [40]).
The reader is referred again to the recent paper [12] which
surveys known reverse EPIs, all of which apparently require
convexity properties of the involved measures.

We have already seen above that Theorem 3 is a natural
generalization of Costa’s EPI. However, we note that its par-
ticularization to (13) continues to imply Costa’s EPI. Indeed,
if Z ∼ N(0, I ), then N(

√
t Z) = t , p(

√
t Z) = 1 and

de Bruijn’s identity (12) together with (13) yields

N(X +
√

t Z) ≤ N(X) + t
(

d
dt

N(X +
√

t Z)
∣∣∣
t=0

)
, (15)

which is equivalent to concavity of t +→ N(X +√t Z).
In addition to generalizing Costa’s inequality, (13) also

improves the uncertainty principle (10). To see this, let X, X∗
be i.i.d. random vectors on Rd . Then, it follows immediately
from (13) that

p(X) ≥ exp
[

2
d

(
h

(
1√
2
(X + X∗)

)
− h(X)

)]
. (16)

The RHS of (16) is strictly greater than one by the EPI,
unless X is Gaussian. The quantity h

(
1√
2
(X + X∗)

)
− h(X)

is referred to as the entropy jump associated to X , and
can be lower bounded by a linear function of the relative
entropy D(X∥Z) when Cov(X) = I and X satisfies regularity
conditions (i.e., X satisfies a Poincaré inequality [41]–[43]
and, for d ≥ 2, has log-concave density [44]).

In closing this section, we briefly discuss how Theorem 4
leads to a sharpening of the Gaussian logarithmic Sobolev
inequality (LSI). In 1975, Gross rediscovered (10) in a dif-
ferent form by establishing the LSI for the standard Gaussian
measure γ on Rd [29]. In particular, he showed that for every
g on Rd with gradient in L2(γ ),
∫

Rd
g2 log g2 dγ

≤ 2
∫

Rd
∥∇g∥2 dγ +

(∫

Rd
g2dγ

)
log

(∫

Rd
g2 dγ

)
. (17)

In the same paper, Gross also proved that (17) is equiv-
alent to the hypercontractivity of the Ornstein-Uhlenbeck
semigroup [45]. Despite the fact that Stam’s inequality (10)
preceded Gross’ LSI (17) by over a decade, it wasn’t until the
1990’s that Carlen [46] recognized that they were completely
equivalent (a concise proof can be found in [47]). By view-
ing g2 as the probability density (with respect to the standard
Gaussian measure γ ) associated to a random vector X , it is
well known that the LSI (17) may be equivalently written in
information-theoretic terms as

1
2

I (X∥Z) ≥ D(X∥Z), (18)
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where I (X∥Z) denotes the relative Fisher information of X
with respect to Z ∼ N(0, I ), and D(X∥Z) is the relative
entropy (with units of nats). There have been several recent
works that attempt to give quantitative bounds on the deficit
δLSI(X) := 1

2 I (X∥Z)−D(X∥Z) (e.g., [48]–[50]). By recalling
the expressions for relative entropy and Fisher information in
terms of their non-relative counterparts

D(X∥Z) = d
2

log(2πe)− h(X) + 1
2

E∥X∥2 − d
2

I (X∥Z) = J (X)− 2d + E∥X∥2,
we may take logarithms in (16) and use the inequality log x ≤
x−1 to obtain the following concise bound on simplification:

Theorem 5: Let X, X∗ be i.i.d. random vectors on Rd with
finite second moments. For δLSI defined as above,

δLSI(X) ≥ h
(

1√
2
(X + X∗)

)
− h(X). (19)

Thus, we see that δLSI(X) controls the entropy jump associ-
ated to X . Note that inequality (19) does not impose regularity
conditions on X (beyond finiteness of second moment). This
should be contrasted with the quantitative bound in [49], which
assumes that X satisfies a Poincaré inequality. Inequality (19)
also has the desirable property that it is dimension-free in
the sense that it is additive on independent components of X .
The disadvantage of (19) is that it is presently unknown how
the entropy jump associated to X is quantitatively related
to the distance of X from Gaussian, except under regular-
ity assumptions [9], [41], [44]. This situation is similar to
the HSI inequality of Ledoux, Nourdin and Peccati which
strengthens (18), provided the so-called Stein discrepancy
associated to X is finite. As with entropy jumps, finiteness of
Stein discrepancy is presently only ensured under regularity
assumptions such as positive spectral gap [51].

C. Conditional Strong EPI and Converse for the
Two-Encoder Quadratic Gaussian Source Coding Problem

A conditional version of the EPI is often useful in applica-
tions (e.g., [52]). Theorem 1 easily generalizes along these
lines. In particular, due to joint convexity of (u, v) +→
log(eu + ev ) in (u, v), we immediately obtain via Jensen’s
inequality the following corollary:

Corollary 2: Suppose X, W are random vectors in Rd ,
conditionally independent given Q, and moreover that W is
conditionally Gaussian given Q. Define Y = X + W. For any
V satisfying X → Y → V |Q,

e
2
d (h(Y |Q)−I (X;V |Q)) ≥ e

2
d (h(X |Q)−I (Y ;V |Q)) + e

2
d h(W |Q).

(20)

Let’s now see an example of how this may be applied to
establish nontrivial converse results in network information
theory. Toward this end, let us mention that characterizing
the rate region for the two-encoder quadratic Gaussian source
coding problem was a longstanding open problem until its
ultimate resolution by Wagner, Tavildar and Viswanath in
their tour de force [18], which established that a separation-
based scheme [53], [54] was optimal. Wagner et al.’s work

built upon Oohama’s earlier solution to the one-helper prob-
lem [19] and the independent solutions to the Gaussian CEO
problem due to Prabhakaran, Tse and Ramachandran [28] and
Oohama [27] (see [52] for a self-contained treatment). Since
Wagner et al.’s original proof of the sum-rate constraint,
other proofs have been proposed based on estimation-theoretic
arguments and semidefinite programming (e.g., [55]), however
all known proofs are quite complex. Below, we show that
the converse result for the entire rate region is a direct
consequence of Corollary 2, thus unifying the results of [18]
and [19] under a common and succinct inequality.

Theorem 6 [18]: Let ρ ∈ [−1, 1] and let X ∼ N(0, I )
be a d-dimensional standard Gaussian random vector. Define
Y = ρX+

√
1− ρ2 Z, where Z ∼ N(0, I ) is independent of X.

Let φX : Rd → {1, . . . , 2d RX } and φY : Rd → {1, . . . , 2d RY },
and define

dX := 1
d

E
[
∥X − E[X |φX (X),φY (Y )]∥2

]

dY := 1
d

E
[
∥Y − E[Y |φX (X),φY (Y )]∥2

]
.

Then

RX ≥
1
2

log2

(
1

dX

(
1− ρ2 + ρ22−2RY

))
(21)

RY ≥
1
2

log2

(
1

dY

(
1− ρ2 + ρ22−2RX

))
(22)

RX + RY ≥
1
2

log2
(1− ρ2)β(dX dY )

2dX dY
, (23)

where β(D) := 1 +
√

1 + 4ρ2 D
(1−ρ2)2 .

For convenience, we assume throughout the remainder of
this subsection that all information quantities have units of
bits (i.e., their defining logarithms are taken to be base-2).

The key ingredient for establishing Theorem 6 is the
following simple consequence of Corollary 2:

Proposition 1: For X, Y as above and any U, V satisfying
U → X → Y → V ,

2−
2
d (I (X;U,V )+I (Y ;U,V ))

≥ 2−
2
d I (X,Y ;U,V )

(
1− ρ2 + ρ22−

2
d I (X,Y ;U,V )

)
. (24)

Proof: By identifying Q ← U , an application of
Corollary 2 directly yields

2
2
d (h(Y |U )−I (X;V |U ))

≥ 2
2
d (h(ρX |U )−I (Y ;V |U )) + 2

2
d h(
√

1−ρ2 Z)

= ρ22
2
d (h(X |U )−I (Y ;V |U )) + (2πe)(1− ρ2).

Since 2−
2
d h(Y ) = 2−

2
d h(X) = 1

2πe , multiplying through by
1

2πe 2−
2
d I (X,Y ;U,V ) and rearranging exponents establishes the

claim. !
Proof of Theorem 6: Put U = φX (X) and V = φY (Y ).

The left- and right-hand sides of (24) are monotone decreasing
in 1

d (I (X; U, V ) + I (Y ; U, V )) and 1
d I (X, Y ; U, V ), respec-

tively. Therefore, if

1
d

(I (X; U, V ) + I (Y ; U, V )) ≥ 1
2

log2
1
D
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and
1
d

I (X, Y ; U, V ) ≤ R

for some pair (R, D), then we have

D ≥ 2−2 R
(

1− ρ2 + ρ22−2 R
)

,

which is a quadratic inequality with respect to the term 2−2 R .
This is easily solved using the quadratic formula to obtain:

2−2R ≤ 2D
(1− ρ2)β(D)

0⇒ R ≥ 1
2

log2
(1− ρ2)β(D)

2D
.

Jensen’s inequality and the maximum-entropy property of
Gaussians imply

1
d

I (X; U, V ) ≥ 1
2

log2
1

dX

and
1
d

I (Y ; U, V ) ≥ 1
2

log2
1

dY
,

so that
1
d

(I (X; U, V ) + I (Y ; U, V )) ≥ 1
2

log2
1

dX dY
,

establishing (23) since

1
d

I (X, Y ; U, V ) ≤ 1
d

(H (U) + H (V )) ≤ RX + RY .

Similarly,

22 RX +log2 dX ≥ 2
2
d (I (X;U |V )−I (X;U,V ))

= 2−
2
d I (X;V )

≥ (1− ρ2) + ρ22−
2
d I (Y ;V )

≥ (1− ρ2) + ρ22−2 RY ,

where the second inequality is a consequence of Theorem 1
and the fact that h(X) = h(Y ) = h(Z) for the variables as
defined. Rearranging (and symmetry) yields (21)-(22). !

We remark that Proposition 1 (a special case of
Corollary 2) first appeared in [56] by the author and Jiao.
In fact, Proposition 1 yields a stronger result than the con-
verse for the two-terminal Gaussian source coding problem;
it shows that the rate regions coincide for the problems when
distortion is measured under quadratic loss and logarithmic
loss [57], [58]. On a different note, we remark that the
quadratic Gaussian sum-rate bound has an alternate proof that
avoids using the EPI, favoring estimation-theoretic arguments
instead [55].

D. One-Sided Gaussian Interference Channel

The one-sided Gaussian interference channel (IC)
(or Z-Gaussian IC) is a discrete memoryless channel,
with input-output relationship given by

Y1 = X1 + W (25)

Y2 = αY1 + X2 + W2, (26)

where Xi and Yi are the channel inputs and observations
corresponding to Encoder i and Decoder i , respectively, for

i = 1, 2. Here, W ∼ N(0, 1) and W2 ∼ N(0, 1 − α2) are
independent of each other and of the channel inputs X1, X2.
We have assumed |α| < 1 since the setting where |α| ≥ 1
is referred to as the strong interference regime, and the
capacity is known to coincide with the Han-Kobayashi inner
bound [15], [52], [59], [60]. Observe that we have expressed
the one-sided Gaussian IC in degraded form, which has
capacity region identical to the corresponding non-degraded
version as proved by Costa [15]. Despite receiving significant
attention from researchers over several decades, the capacity
region C (α, P1, P2) of the one-sided Gaussian IC remains
unknown in the regime of |α| < 1 described above.

Having already discussed connections between Costa’s
EPI (7) and Theorem 1 above, we remark that Costa’s EPI was
motivated by the Gaussian IC [15]. Since Theorem 1 general-
izes Costa’s result, the one-sided Gaussian IC presents itself
as a natural application. Toward this end, we establish a new
multi-letter outer bound to give a simple demonstration of how
Theorem 1 might be applied to the one-sided Gaussian IC.

Theorem 7: Let all information quantities have units of bits.
(R1, R2) ∈ C (α, P1, P2) only if

R1 ≤
1
2

log2(1 + P1) (27)

R2 ≤
1
2

log2(1 + P2) (28)

and

2−2R2+ϵn ≥ 2−
2
n I (Xn

1 ,Xn
2 ;Y n

2 ) sup
V :Y n

1→Y n
0→V

{
α222R1− 2

n I (Y n
0 ;V |Y n

1 )

+ (1− α2)2
2
n I (Y n

1 ;V )
}
, (29)

for some ϵn → 0 and independent Xn
1 , Xn

2 satisfying the power
constraints E[∥Xn

i ∥2] ≤ n Pi , i = 1, 2.
Proof: For consistency, we assume throughout the proof

that information quantities have units of bits. The only non-
trivial inequality to prove is (29). Thus, we begin by noting
that Corollary 2 implies

2
2
n (h(Y n

2 |Xn
2 )−I (Y n

1 ;V |Xn
2 ))

≥ 2
2
n (h(αY n

1 |Xn
2 )−I (Y n

2 ;V |Xn
2 )) + 2

2
n h(W n

2 |Xn
2 )

= α22
2
n (h(Y n

1 )−I (Y n
2 ;V |Xn

2 )) + (1− α2)2
2
n h(W n)

for all V such that Y n
1 → Y n

2 → V |Xn
2 . Since h(W n) =

h(Y n
2 |Xn

1 , Xn
2 ) = h(Y n

1 |Xn
1 ), I (Y n

2 ; V |Xn
2 ) = I (Y n

0 ; V , Xn
2 )

and I (Y n
1 ; V |Xn

2 ) = I (Y n
1 ; V , Xn

2 ), this can be rewritten as

2−
2
n I (Xn

2 ;Y n
2 )+ 2

n I (Xn
1 ,Xn

2 ;Y n
2 )

≥ sup
V :Y n

1→Y n
0→V

{
α22

2
n I (Xn

1 ;Y n
1 )− 2

n I (Y n
0 ;V |Y n

1 )

+ (1− α2)2
2
n I (Y n

1 ;V )
}
.

Therefore,

2−2(R2−ϵn)

≥ 2−
2
n I (Xn

2 ;Y n
2 ) (30)

≥ 2−
2
n I (Xn

1 ,Xn
2 ;Y n

2 ) sup
V :Y n

1→Y n
0→V

{
α22

2
n I (Xn

1 ;Y n
1 )− 2

n I (Y n
0 ;V |Y n

1 )

+ (1− α2)2
2
n I (Y n

1 ;V )
}

(31)
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≥ 2−
2
n I (Xn

1 ,Xn
2 ;Y n

2 ) sup
V :Y n

1→Y n
0→V

{
α222(R1−ϵn)− 2

n I (Y n
0 ;V |Y n

1 )

+ (1− α2)2
2
n I (Y n

1 ;V )
}
, (32)

where (30) and (32) hold for ϵn → 0 due to Fano’s inequality.
Multiplying both sides by 22ϵn proves the claim. !

The Han-Kobayashi achievable region [52], [60] evaluated
for Gaussian inputs (without power control) can be expressed
as the set of rate pairs (R1, R2) satisfying (27), (28) and

2−2R2 ≥ α2 P2 22R1

(P2 + 1− α2)(1 + α2 P1 + P2)
+ 1− α2

P2 + 1− α2 .

(33)

Interestingly, this takes a similar form to (29); however, it is
known that transmission without power control is suboptimal
for the Gaussian Z-interference channel in general [61], [62].
Nevertheless, it may be possible to identify a random vari-
able V in (29), possibly depending on Xn

2 , which ultimately
improves known bounds. We leave this for future work.

E. Relationship to Strong Data Processing

Strong data processing inequalities and their connection
to hypercontractivity have garnered much attention recently
(e.g,. [6], [7], [63]–[68]). We have already seen the connection
to Theorem 1 in the discussion surrounding (5). We briefly
mention here that, for !(t) ≡ !(t, PXY ) as defined in (4),
inequality (5) may be rearranged to provide the following
explicit upper bound on the strong data processing function !
which may be of independent interest:

Corollary 3: Let X ∼ PX and W ∼ N(0, I ) be indepen-
dent random vectors in Rd . For Y = X + W,

!(t, PXY ) ≤ I (X; Y )− d
2

log
(

1 + 1
2πe

e
2
d (h(X)−t)

)
.

Moreover, equality is achieved if X is Gaussian with covari-
ance proportional to the identity matrix I .

IV. OUTLINE OF PROOF OF MAIN RESULTS

The goal of this section is to provide an overview of the
key ideas involved in establishing our main results. To this
end, we focus attention on the scalar version of Theorem 1,
stated as Theorem 8 below. The rationale for this is that
the multidimensional result of Theorem 1 will be proved as
a corollary of its one-dimensional counterpart in Section V,
using some of the machinery that we develop in this section.

Theorem 8: Let X be random variable on R, and let W ∼
N(0, σ 2) be independent of X. For Y = X + W and any V
satisfying X → Y → V ,

e2(h(Y )−I (X;V )) ≥ e2(h(X)−I (Y ;V )) + e2h(W ). (34)

In order to give the intuition behind our proof of (34),
we begin by defining the following quantities whose moti-
vation will soon be apparent:

Definition 1: Let X ∼ PX be a random variable on R. For
(Y, X) ∼ Gϱ

Y |X PX , define the family of functionals (of PX )

sλ(X,ϱ) := −h(X) + λh(Y )

+ inf
V :X→Y→V

{
I (Y ; V )− λI (X; V )

}

parameterized by λ ≥ 1 and ϱ > 0. Similarly, let (X, Q) ∼
PX Q be a pair of random variables on R×Q. For (Y, X, Q) ∼
Gϱ

Y |X PX Q, define the functional (of PX Q)

sλ(X,ϱ|Q) := −h(X |Q) + λh(Y |Q)

+ inf
V :X→Y→V |Q

{
I (Y ; V |Q)− λI (X; V |Q)

}
.

Noting that the term e2 h(W ) is constant in (34), one
approach toward proving Theorem 8 would be to simultane-
ously minimize the exponent h(Y ) − I (X; V ), while maxi-
mizing the exponent h(X) − I (Y ; V ) over all valid choices
of X, V . If, for all such choices, the LHS of (34) exceeds
the RHS of (34), the theorem would be proved. Modulo
rescaling of random variables, the functional sλ(X,ϱ) makes
this intuition precise by capturing this tradeoff of exponents,
as parameterized by λ. This is apparent by observing that

sλ(X, 1) = inf
V :X→Y→V

{
λ(h(Y )− I (X; V ))

− (h(X)− I (Y ; V ))
}
,

where X, Y are as in the statement of Theorem 8 for σ 2 = 1.
Since sλ(X,ϱ) has the optimization over valid choices

of V built into its definition, the stated approach of extremizing
exponents in (34) reduces to characterizing the infimum of
sλ(X,ϱ), taken over all distributions PX with finite variance
(in fact, variance at most 1 suffices). Such an optimization
appears difficult to execute directly, so we instead turn to the
relaxation

Vλ(ϱ) := inf
PX Q : E[X2]≤1

sλ(X,ϱ|Q). (35)

This is indeed a relaxation of infimizing sλ(X,ϱ) over the
set of distributions PX with EX2 ≤ 1 because problem (35)
is equivalent to finding the infimum of the lower convex
envelope of the functional PX +→ sλ(X,ϱ), over the set of
distributions PX with EX2 ≤ 1. Similar relaxation strategies
have been fruitfully applied elsewhere in information theory
(cf. [69]–[71]).

Having described the overall objective, our strategy for
characterizing Vλ(ϱ) will be to show that in (35) it suffices to
minimize over Gaussian X , independent of Q. Stated precisely,
we aim to show:

Theorem 9:

Vλ(ϱ) = inf
0≤γ≤1

sλ(Xγ ,ϱ), where Xγ ∼ N(0, γ ). (36)

With Theorem 9 in hand, it is a matter of calculus to
explicitly compute Vλ(ϱ) as a function of ϱ and λ, yielding
Theorem 8 as a corollary. Thus, we dedicate the following
subsection to provide a heuristic discussion of how Theorem 9
will be established. This is intended to orient the reader
and provide context for the proof details that follow in later
sections. The computations for deducing Theorem 8 from
Theorem 9 are detailed in subsection IV-B.

Remark 2: A somewhat technical point is that the value
of the optimization problem (35) potentially depends on the
set Q (in which the random variable Q takes values), which
we have not explicitly specified in Definition 1. However, this
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is not problematic since any non-singleton set Q will suf-
fice. Indeed, the standard dimensionality reduction argument
can be applied: Consider the image of the map PX Q +→
(EX2, sλ(X,ϱ|Q)), taken over all distributions PX Q on R×Q
with EX2 ≤ 1 and, say for concreteness, Q = R. As usual,
this image is a convex set in R2 by definition. Hence, by the
Fenchel-Caratheodory-Bunt theorem [72, Theorem 18(i i)], for
any point (a, b) in this set, there is a distribution PX Q on
R ×Q, with PQ supported on at most two points in Q, that
achieves the values EX2 = a and sλ(X,ϱ|Q) = b. Since
we will often consider random variables Q taking values on
different spaces, the set Q will be implicitly defined as the set
in which the random variable Q takes values. However, taking
Q = {1, 2, 3} is generally sufficient for our purposes as will
be made clear in Section VI-B.

A. Heuristic Proof of Theorem 9

Having argued that Theorem 9 is the crux, we now give
a heuristic discussion of the main ideas that will be carried
forward later into the full arguments. In order to minimize
interruption to the flow of the argument, remarks on related
literature are collected at the conclusion of this subsection.

Establishing sufficiency of Gaussian X in optimization
problem (35) appears nontrivial from the outset. However,
the first crucial idea is that we may exploit a “doubling”
property enjoyed by the functional sλ. In particular, we have
the following simple lemma, established in Section VI-A:

Lemma 1: Let PX Q be a distribution on R × Q, let
(Y, X, Q) ∼ Gϱ

Y |X PX Q, and let (Y1, X1, Q1) and (Y2, X2, Q2)
denote two independent copies of (Y, X, Q). Define

X+ = X1 + X2√
2

, X− = X1 − X2√
2

(37)

and, in a similar manner, define Y+, Y−. Letting Q =
(Q1, Q2), we have for λ ≥ 1

2sλ(X,ϱ|Q) ≥ sλ(X+,ϱ|X−, Q) + sλ(X−,ϱ|Y+, Q) (38)

and

2sλ(X,ϱ|Q) ≥ sλ(X+,ϱ|Y−, Q) + sλ(X−,ϱ|X+, Q). (39)

In view of the central limit theorem, the doubling opera-
tion (37) should produce random variables X+, and X− that
are “more Gaussian” than X . The essential content of
Lemma 1 is that the doubling operation (37) also improves
the value of the sλ functional in the sense of (38) and (39).
So, the general idea will be to exploit this property to show
that Gaussian X minimizes the functional sλ(·,ϱ).

Let us now make this intuition precise, while still glossing
over some of the challenging technicalities that need to be
dealt with. In particular, let us assume that the infimum in (35)
is attained, and let P denote the subset of distributions PX Q
achieving the corresponding minimum, with the additional
property that EX = 0. The assumption of centered X is
only for convenience, since the functional sλ(·,ϱ) is invariant
to translation of the mean of its argument (an immediate
consequence of the same translation invariance enjoyed by
entropy and mutual information).

Now, suppose there is a distribution PX Q ∈ P having the
extremal property that, for (Y, X, Q) ∼ Gϱ

Y |X PX Q and any
other (Y ′, X ′, Q′) ∼ Gϱ

Y ′|X ′ PX ′Q ′ with PX ′Q ′ ∈ P ,

h(Y |Q)− h(X |Q) ≤ h(Y ′|Q′)− h(X ′|Q′). (40)

We will argue below that by choosing PX Q in this manner,
the corresponding conditional law PX |{Q=q} is Gaussian with
variance not depending on q .

Toward this end, let X+, X−, Y+, Y−, Q be as in
Lemma 1, constructed from independent copies of
(Y, X, Q) ∼ Gϱ

Y |X PX Q . Since the transformation
(X1, X2) +→ (X+, X−) is variance-preserving, each of
the four quantities sλ(X+,ϱ|X−, Q), sλ(X−,ϱ|Y+, Q),
sλ(X+,ϱ|Y−, Q) and sλ(X−,ϱ|X+, Q) is at least Vλ(ϱ)
by definition (i.e., (35)). However, the assumption that
PX Q ∈ P combined with Lemma 1 establishes the reverse
inequality, giving equality. E.g.,

sλ(X+,ϱ|Y−, Q) = sλ(X−,ϱ|Y+, Q) = Vλ(ϱ). (41)

Thus, roughly speaking, the set P is closed under the doubling
operation. It is tempting at this point to imagine applying
the doubling operation ad infinitum, leading to Gaussianity
by the central limit theorem. However, this approach runs
into the problem that the auxiliary alphabet Q grows at each
stage, leading to technical difficulties down the line. One could
potentially control this growth by applying the dimensionality
reduction operation described in Remark 2. Unfortunately, it is
not clear that such dimensionality reduction will preserve any
additional “Gaussianity" gained through doubling. The need
to circumvent this problem is what motivates the additional
extremal property (40) which we assumed of PX Q and have
not yet exploited.

To see how the argument works, let B ∼ Bernoulli(1/2) be
a Bernoulli random variable taking values on {+,−}, indepen-
dent of X+, X−, Y+, Y−, Q. Define B̄ to be the complement
of B in {+,−}, meaning that {B = +} ⇔ {B̄ = −},
and vice-versa. Now, let us define a new pair of random
variables (X ′, Q′) as follows: X ′ = X B and Q′ = (B, YB̄, Q).
By construction and (41),

sλ(X ′,ϱ|Q′) = 1
2

sλ(X+,ϱ|Y−, Q) + 1
2

sλ(X−,ϱ|Y+, Q)

= Vλ(ϱ).

We also have EX ′2 = EX2, so that PX ′Q ′ ∈ P , where
PX ′Q ′ denotes the law of (X ′, Q′). Unraveling definitions,
the following crucial identity may be obtained:

h(Y |Q)− h(X |Q) = h(Y ′|Q′)− h(X ′|Q′)
+ 1

2
I (X+; X−|Y+, Y−, Q). (42)

Therefore, assumption (40) together with non-negativity of
mutual information implies that we must have

I (X1 + X2; X1 − X2|Y1, Y2, Q1, Q2)

= I (X+; X−|Y+, Y−, Q) = 0. (43)

Let us now take a final leap of faith, and pretend for
sake of simplicity that Y1, Y2 are absent in the conditioning
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in (43). This would imply that I (X+; X−|Q1, Q2) = 0.
Equivalently, X+|{Q1, Q2 = q1, q2} and X−|{Q1, Q2 =
q1, q2} are independent for PQ × PQ -a.e. q1, q2. However,
X1|{Q1, Q2 = q1, q2} and X2|{Q1, Q2 = q1, q2} are inde-
pendent by construction. At this point, a classical char-
acterization of the normal law due to Bernstein [73] is
helpful:

Lemma 2 [74, Theorem 5.1.1]: If A1, A2 are independent
random variables such that A1+ A2 and A1− A2 are indepen-
dent, then A1 and A2 are normal, with identical variances.

Since Xi |{Q1, Q2 = q1, q2} is equal in distribution to
Xi |{Qi = qi }, for i = 1, 2 (by independence of the copies
(X1, Q1), (X2, Q2)), Bernstein’s theorem allows us to con-
clude from the above that X1|{Q1 = q1} and X2|{Q2 = q2}
are normal with identical variances. Moreover, freedom of
choosing q1 and q2 lets us further surmise that these variances
do not depend on the specific choice of q1, q2. So, we are
left to conclude that X |{Q = q} ∼ N(µq , σ 2

X ), where σ 2
X

does not depend on q , but the mean µq may. However, since
the functional sλ(·,ϱ) is invariant to translations of the mean,
we arrive at the statement of Theorem 9.

The above heuristic argument provides a roadmap for the
complete proof that follows. In order to make the proof
rigorous, there are three main technical issues to be dealt with:
First, it is not clear a priori that the infimum in (35) is achieved.
We remedy this by adapting the above argument to work for
distributions which closely approach the infimum in (35), and
are nearly extremal in the sense of (40). This allows us to infer
the existence of a sequence of distributions which approach
the infimum (35), but also have mutual informations of the
form (43) that asymptotically vanish. Second, the application
of Bernstein’s theorem above relied on equality in (43),
and also neglected the conditioning on the variables Y1, Y2.
To correct these issues, we develop an information-theoretic
variation of Bernstein’s theorem that enables us to conclude
that the aforementioned asymptotically optimal sequence of
distributions converges weakly to Gaussian. Finally, to pass
from this weakly convergent sequence to Theorem 9, we need
to establish a local semicontinuity property enjoyed by the
functional PX +→ sλ(X,ϱ). Generally speaking, these three
points are separately dealt with in Section VI, and Appen-
dices A and B, respectively.

Literature Notes: At this point, we would like to make a
few remarks on literature relevant to the above proof. Although
considerably different in the details, the doubling argument
presented above draws inspiration from Geng and Nair’s
exposition in [70], which established Gaussian optimality
for different information functionals by appealing to rota-
tional invariance of the optimizers. They refer to their proof
technique as “factorization of concave envelopes”. Another
argument appealing to rotational invariance appeared in [75],
providing an alternate proof to the fact that Gaussian inputs
maximize mutual information in Gaussian channels. In addi-
tion to these relatively recent appearances in the information
theory literature, this general strategy has been successfully
employed for establishing extremality of Gaussian kernels
in functional inequalities [46], [76], [77]. Our reading of
the literature suggests that Lieb [76] deserves credit for

inventing the general approach; indeed, Carlen’s contempo-
raneous work [46] attributes the idea to Lieb and coined
the “doubling trick” terminology. The fact that this doubling
trick works well for establishing Gaussian optimality in both
information-theoretic and functional inequalities is not coin-
cidental. Indeed, there is a precise duality between these
different classes of inequalities; interested readers are referred
to [78]–[81] for further discussion.

In a different direction, we remark that the usual state-
ment of Bernstein’s theorem does not comment on the
identical variances of A1, A2 as stated in Lemma 2.
However, assuming without loss of generality that A1, A2
are zero-mean, the observation that A1 and A2 have identical
variances is immediate since E[A2

1]− E[A2
2] = E[(A1 − A2)

(A1 + A2)] = 0. This fact was explicitly noted by
Geng and Nair [70].

B. From Theorem 9 to Theorem 8

Taking Theorem 9 for granted, we now detail the com-
putations needed to derive Theorem 8 from it. To begin,
we establish the following explicit characterization of Vλ(ϱ).

Theorem 10:

Vλ(ϱ)

=

⎧
⎨

⎩

1
2

[
λ log

(
λ2πe
λ−1

)
− log

(
2πe
λ−1

)
+ log(ϱ)

]
if ϱ ≥ 1

λ−1
1
2

[
λ log (2πe(1 + ϱ))− log (2πe)

]
if ϱ ≤ 1

λ−1 .

We require the following lemma, which is a simple conse-
quence of the conditional EPI, and an equivalent formulation
of an inequality observed by Oohama [19].

Lemma 3: Let X ∼ N(0, γ ) and Z ∼ N(0, 1) be indepen-
dent, and define Y = √ϱX + Z. For λ ≥ 1,

inf
V :X→Y→V

(
I (Y ; V )− λI (X; V )

)

=

⎧
⎪⎨

⎪⎩

1
2

[
log ((λ− 1)γ ϱ)− λ log

(
λ−1
λ (1 + γ ϱ)

)]

if γ ϱ ≥ 1
λ−1

0 if γ ϱ ≤ 1
λ−1 .

Proof: Let V be such that X → Y → V , and let
X |{V = v}, Y |{V = v} denote the random variables con-
ditioned on {V = v}. Since X, Y are jointly Gaussian and
V → Y → X , we have X |{V = v} = ρY |{V = v} + W ,
where ρ := γ

√
ϱ

1+γ ϱ and W ∼ N
(

0, γ − γ 2 ϱ
1+γ ϱ

)
is independent

of Y |{V = v}. By the entropy power inequality, it holds that

e2h(X |V=v) ≥ e2h(ρY |V=v) + e2 h(W )

= γ 2 ϱ

(1 + γ ϱ)2 e2h(Y |V=v) + 2πe
(

γ − γ 2 ϱ

1 + γ ϱ

)
.

Rearranging, applying Jensen’s inequality to the convex func-
tion t +→ 1

2 log
(

γ 2 ϱ
(1+γ ϱ)2 e2t + 2πe

(
γ − γ 2 ϱ

1+γ ϱ

))
, and rear-

ranging again, yields

e−2 I (X;V ) ≥ 1 + γ ϱ e−2I (Y ;V )

1 + γ ϱ
.
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It follows that

I (Y ; V )− λI (X; V )

≥ I (Y ; V ) + λ

2
log

(
1 + γ ϱ e−2I (Y ;V )

)
− λ

2
log(1 + γ ϱ)

≥

⎧
⎪⎨

⎪⎩

1
2

[
log ((λ− 1)γ ϱ)− λ log

(
λ−1
λ (1 + γ ϱ)

)]

if γ ϱ > 1
λ−1

0 if γ ϱ ≤ 1
λ−1 ,

where the second inequality follows by minimizing over the
scalar quantity I (Y ; V ) ≥ 0. When γ ϱ ≤ 1

λ−1 , this is
trivially achieved by setting V = constant. On the other hand,
if γ ϱ > 1

λ−1 , then it is easy to see that the lower bound is
achieved by taking V = Y + W , where W ∼ N(0, 1+γ ϱ

γ ϱ(λ−1)−1)
is independent of Y . !

Proof of Theorem 10: Let Xγ ∼ N(0, γ ). Recalling the
definition of sλ( · ,ϱ), Lemma 3 implies

sλ(Xγ ,ϱ)

=
{

1
2

[
λ log

(
λ2πe
λ−1

)
− log

(
2πe
λ−1

)
+ log(ϱ)

]
if γ ϱ ≥ 1

λ−1
1
2

[
λ log (2πe (1 + γ ϱ))− log (2πeγ )

]
if γ ϱ ≤ 1

λ−1 .

Differentiating with respect to the quantity γ , we find that
1
2

[
λ log (2πe (1 + γ ϱ))− log (2πeγ )

]
is decreasing in γ pro-

vided γ ϱ ≤ 1
λ−1 . Therefore, taking γ = 1 minimizes

sλ(Xγ ,ϱ) over the interval γ ∈ [0, 1]. Taken together with
Theorem 9, the claim is proved. !

Given the explicit characterization of Vλ(ϱ) afforded by
Theorem 10, we may now prove Theorem 8.

Proof of Theorem 8: We first establish (34) under the
additional assumption that E[X2] <∞, and generalize at the
end via a truncation argument. Toward this goal, since mutual
information is invariant to scaling, it is sufficient to prove
that, for Y = √ϱX + Z with E[X2] ≤ 1 and Z ∼ N(0, 1)
independent of X , we have

e2(h(Y )−I (X;V )) ≥ ϱ e2(h(X)−I (Y ;V )) + e2h(Z) (44)

for V satisfying X → Y → V . Multiplying both sides
by σ 2 and choosing ϱ := Var(X)

σ 2 gives the desired inequal-
ity (34) when E[X2] < ∞. Thus, to prove (44), observe by
definition of Vλ(ϱ) that for all λ ≥ 1

−h(X) + I (Y ; V ) ≥ λ(I (X; V )− h(Y )) + Vλ(ϱ). (45)

Inequality (44) is now immediately verified by substituting
into (45) the unique λ ≥ 1 which satisfies

λ

λ− 1
= 1

2πe
e−2(I (X;V )−h(Y )) (46)

and simplifying. Note that there always exists a unique λ ≥ 1
that solves (46) since

1
2πe

e−2(I (X;V )−h(Y )) = e−2h(Z)e−2(I (X;V )−h(Y ))

= e2 I (X;Y |V ) ≥ 1.

Now, we eliminate the assumption that E[X2] <∞. Toward
this end, let X have density, let W be Gaussian independent
of X , and consider V satisfying X → Y → V , where Y =
X + W . Define Xn to be the random variable X conditioned

on the event {|X | ≤ n}, let Yn = Xn + W and define Vn via
PV |Y : Yn +→ Vn . Since Xn is bounded, E[X2

n] <∞ so that

e2(h(Yn)−I (Xn ;Vn)) ≥ e2(h(Xn)−I (Yn ;Vn)) + e2h(W ).

The dominated convergence theorem can be used to show
that limn→∞ h(Xn) = h(X), provided h(X) exists and is
finite, which covers all cases requiring proof in view of the

comments following Theorem 1. Moreover, since Xn
D−→ X ,

Lemma 10 (see Appendix A) asserts that limn→∞ h(Xn +
W ) = h(X + W ), so that h(Yn)→ h(Y ). It is easy to see that

(Xn, Vn)
D−→ (X, V ), so lim infn→∞ I (Xn; Vn) ≥ I (X; V )

by lower semicontinuity of relative entropy. Finally, the fact
that 1{|X |≤n} → Y → V , combined with the chain rule for
mutual information implies

I (Y ; V ) = I (1{|X |≤n}, Y ; V )

≥ I (Y ; V |1{|X |≤n})
≥ I (Yn; Vn)P{|X | ≤ n},

giving lim supn→∞ I (Yn; Vn) ≤ I (Y ; V ). Putting these obser-
vations together, we have established

e2(h(Y )−I (X;V )) ≥ e2(h(X)−I (Y ;V )) + e2h(W )

in absence of second moment constraints on X , as desired.!

V. EXTENSION TO RANDOM VECTORS

The vector generalization of the classical EPI is usually
proved by a combination of conditioning, Jensen’s inequality
and induction (e.g., [52, Problem 2.9]). The same argument
does not appear to readily apply in generalizing Theorem 8
to its vector counterpart in Theorem 1 due to complica-
tions arising from the Markov constraint X → Y → V .
However, the desired generalization may be established by
noting an additivity property enjoyed by the functional sλ of
Definition 1, appropriately generalized to probability distribu-
tions on Rd .

For a random vector X ∼ PX in Rd , let the conditional law
PY |X be defined via the Gaussian channel Y = /1/2 X + Z ,
where Z ∼ N(0, I ) is independent of X and / is a d × d
diagonal matrix with nonnegative diagonal entries. Analogous
to the scalar case, (X, Y ) ∼ PX PY |X , we define the family
of functionals of PX

sλ(X,/) := −h(X) + λh(Y )

+ inf
V :X→Y→V

{
I (Y ; V )− λI (X; V )

}

parameterized by λ ≥ 1. Similarly, for (Y, X, Q) ∼ PY |X PX Q ,
define

sλ(X,/|Q) := −h(X |Q) + λh(Y |Q)

+ inf
V :X→Y→V |Q

{
I (Y ; V |Q)− λI (X; V |Q)

}
,

and consider the optimization problem

Vλ(/) = inf
PX Q : E[X2

i ]≤1,i∈[d]
sλ(X,/|Q). (47)
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Theorem 11: If / = diag(ϱ1,ϱ2, . . . ,ϱd ), then

Vλ(/) =
d∑

i=1

Vλ(ϱi ).

Proof: Consider (Y, X, Q) ∼ PY |X PX Q defined as above,
and let / be a block diagonal matrix with blocks given by
/ = diag(/1,/2). Partition X = (X1, X2) and Z = (Z1, Z2)
such that Yi = /

1/2
i Xi + Zi for i = 1, 2. Then, for any V

such that X → Y → V |Q, it follows from Lemma 4 (see
Section VI-B) that

sλ(X,/|Q) ≥ sλ(X1,/1|X2, Q) + sλ(X2,/2|Y1, Q).

Therefore, by definitions, Vλ(/) ≥ Vλ(/1) + Vλ(/2). The
reverse direction of this inequality is immediate; the infimum
in (47) cannot decrease if we restrict attention to measures of
product form PX Q = PX1 Q1 PX2 Q2 , on which sλ is additive.
The general case then follows by induction. !

Evidently, Theorem 11 relates Vλ(/) for matrix-valued
parameter / to the quantity Vλ(ϱ), for scalar ϱ. However,
we have already seen a complete characterization of the latter
quantity in Theorem 10. Thus, we are now positioned to
establish the first stated result of this paper, Theorem 1.

Proof of Theorem 1: Define Y = X + W for con-
venience, where W ∼ N(0,$W ) is independent of X .
As in the scalar setting, we establish the claim first under
the constraint E[∥X∥2] <∞. The general result follows by a
truncation argument exactly as in the scalar setting. Moreover,
we may assume $W ≻ 0, else the inequality reduces to
h(Y ) + I (Y ; V ) ≥ h(X) + I (X; V ), which is trivially true by
the data processing inequality and the fact that conditioning
reduces entropy.

Thus, due to positive definiteness of $W and invariance of
mutual information under one-one transformations, we may
multiply both sides of (3) by |$W |−1/d to obtain the equivalent
inequality

e
2
d (h($

−1/2
W Y )−I ($−1/2

W X;V ))

≥ e
2
d (h($

−1/2
W X)−I ($−1/2

W Y ;V )) + e
2
d h($

−1/2
W W ).

However, $−1/2
W W ∼ N(0, I ) and, E[∥$−1/2

W X∥2] < ∞
provided E[∥X∥2] < ∞, so we may assume without loss of
generality that W ∼ N(0, I ) in establishing (3).

To simplify further, put ϱ := max1≤i≤d E[X2
i ]. Note that we

may assume ϱ > 0, else the claimed inequality is trivial since
h(X) = −∞ and h(Y )− I (X; V ) ≥ h(Y )− I (X; Y ) = h(W ).
Therefore, (3) is equivalent to

e
2
d (h(Y )−I (X;V )) ≥ ϱ e

2
d (h(X)−I (Y ;V )) + e

2
d h(Z)

holding for X → Y → V , where Y = √
ϱX + Z ,

Z ∼ N(0, I ) is independent of X , and max1≤i≤d E[X2
i ] ≤ 1.

This is established exactly as in the proof of Theorem 8
(starting from equation (44)), since Vλ(ϱ · I ) = d Vλ(ϱ) by
Theorem 11. !

VI. PROOF OF THEOREM 9

This section is dedicated to the proof of Theorem 9. Our
agenda will be to revisit the heuristic discussion given in

Section IV-A and fill in the details where needed. In particular,
we first establish the doubling property of the functional sλ,
and then proceed to adapt the the heuristic argument so that
it applies to near-extremal distributions.

A. Proof of Lemma 1

In order to establish the doubling property asserted by
Lemma 1, we require the following simple observation, hold-
ing for all random variables with joint distribution of a
prescribed form.

Lemma 4: Let X = (X+, X−), Y = (Y+, Y−), and Q have
joint distribution of the form PXYQ = PX+ X−Q PY+|X+ PY−|X− .
If V satisfies X→ Y→ V |Q, then for λ ≥ 1, we have

I (Y+, Y−; V |Q)− h(X+, X−|Q)

− λ (I (X+, X−; V |Q)− h(Y+, Y−|Q))

≥ I (Y+; V |X−, Q)− h(X+|X−, Q)

− λ (I (X+; V |X−, Q)− h(Y+|X−, Q))

+ I (Y−; V |Y+, Q)− h(X−|Y+, Q)

− λ (I (X−; V |Y+, Q) − h(Y−|Y+, Q)) . (48)

Moreover, X+ → Y+ → V |(X−, Q) and X− → Y− →
V |(Y+, Q).

Proof: The second claim is straightforward.
Indeed, using PXYQ = PX+ X−Q PY+|X+ PY−|X− ,
we can factor the joint distribution of (X, Y, V , Q)
as PXYV Q = PX+ X−Q PY+|X+ PY−|X−PV |Y+Y−Q =
PX+ X−Q PY+|X+ PY−V |Y+ X−Q . Marginalizing over Y−,
we find that X+ → Y+ → V |(X−, Q). The
symmetric Markov chain follows similarly by writing
PXYV , Q = PX+ X−Y+ Q PY−|X−PV |Y+Y−Q and marginalizing
over X+.

To prove the claimed inequality, note the following identity
which does not make use of any particular structure of the
joint distribution:

I (Y+, Y−; V |Q)− h(X+, X−|Q)

= I (Y+; V |Q) + I (Y−; V |Q, Y+)

− h(X−|Q)− h(X+|Q, X−)

= I (Y+; V |Q) + I (Y−; V |Q, Y+)

− h(X−|Q, Y+)− h(X+|Q, X−)− I (X−; Y+|Q)

= I (Y+; V |Q, X−) + I (Y−; V |Q, Y+)

− h(X−|Q, Y+)− h(X+|Q, X−)− I (X−; Y+|Q, V ),

A symmetric argument gives

I (X+, X−; V |Q)− h(Y+, Y−|Q)

= I (X−; V |Q, Y+) + I (X+; V |Q, X−)

− h(Y+|Q, X−)− h(Y−|Q, Y+)− I (X−; Y+|Q, V ).

Therefore,

I (Y+, Y−; V |Q)− h(X+, X−|Q)

− λ (I (X+, X−; V |Q)− h(Y+, Y−|Q))

= I (Y+; V |X−, Q)− h(X+|X−, Q)

− λ (I (X+; V |X−, Q)− h(Y+|X−, Q))
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+ I (Y−; V |Y+, Q)− h(X−|Y+, Q)

− λ (I (X−; V |Y+, Q)− h(Y−|Y+, Q))

+ (λ− 1)I (X−; Y+|V , Q),

which proves the inequality (48) since λ ≥ 1 and mutual
information is non-negative. !

We are now in a position to establish Lemma 1, stated in
Section IV-A.

Proof of Lemma 1: Let all quantities be as defined in
the statement of the lemma. The crucial observation is that
the unitary transformation (Y1, Y2) +→ (Y+, Y−) preserves the
Gaussian nature of the channel. That is, if Yi = √ϱXi + Zi ,
then Y+ = √ϱX+ + 1√

2
(Z1 + Z2) and Y− = √ϱX− + 1√

2
(Z1 − Z2), where the pair ( 1√

2
(Z1 + Z2),

1√
2
(Z1 − Z2)) is

equal in distribution to (Z1, Z2).
Thus, consider an arbitrary V satisfying (X+, X−) →

(Y+, Y−) → V |Q. By Lemma 4 and the above observation,
we have

I (Y1, Y2; V |Q)− h(X1, X2|Q)

− λ (I (X1, X2; V |Q)− h(Y1, Y2|Q))

= I (Y+, Y−; V |Q)− h(X+, X−|Q)

− λ (I (X+, X−; V |Q)− h(Y+, Y−|Q))

≥ I (Y+; V |X−, Q)− h(X+|X−, Q)

− λ (I (X+; V |X−, Q)− h(Y+|X−, Q))

+ I (Y−; V |Y+, Q)− h(X−|Y+, Q)

− λ (I (X−; V |Y+, Q)− h(Y−|Y+, Q))

≥ sλ(X+,ϱ|X−, Q) + sλ(X−,ϱ|Y+, Q).

This proves (38) since

inf
V :X→Y→V |Q

{
I (Y1, Y2; V |Q)− h(X1, X2|Q)

− λ (I (X1, X2; V |Q)− h(Y1, Y2|Q))
}

≤
2∑

i=1

inf
V :Xi→Yi→V |Qi

{
I (Yi ; V |Qi )− h(Xi |Qi )

− λ (I (Xi ; V |Qi )− h(Yi |Qi ))
}

= 2 sλ(X,ϱ|Q),

where the inequality follows since the infimum is taken over
a smaller set. !

B. Existence of Sequences Satisfying
limn→∞ sλ(Xn,ϱ|Qn) = Vλ(ϱ) That Converge Weakly to
Gaussian

Define Q3 := {1, 2, 3}. The following definition will also
be convenient.

Definition 2: For given ϱ > 0 and λ ≥ 1, a sequence
{Xn, Qn} is said to be admissible if, for each n ≥ 1, (Xn, Qn)
takes values in R×Q3, and the following two conditions hold:

lim
n→∞ sλ(Xn,ϱ|Qn) = Vλ(ϱ) (49)

E[X2
n] ≤ 1 n ≥ 1. (50)

From Remark 2, it is clear that the set of admissible
sequences is nonempty, even under the restriction that the
variables Qn take values in the three-point set Q3. In fact,
two points would suffice to ensure the existence of admissible
sequences, but the additional degree of freedom afforded by
the third point will be needed in our proof. Associate to
each (Xn, Qn) taking values in R × Q3 the random variable
Yn defined by Yn = √ϱXn + Z , where Z ∼ N(0, 1) is
independent of (Xn, Qn). We define the following quantity:

h⋆(ϱ) = inf
{

lim inf
n→∞ (h(Yn |Qn)− h(Xn |Qn)) :

the sequence {Xn, Qn} is admissible
}
.

This definition is meant to capture the extremal property (40)
in the discussion of Section IV-A, appropriately modified for
admissible sequences. In particular, we will aim to show that
admissible sequences {Xn, Qn} which are extremal in the
sense that lim infn→∞ (h(Yn |Qn)− h(Xn|Qn)) = h⋆(ϱ) will
be guaranteed to approach normality in a precise sense. First,
we observe that degeneracy is avoided in the sense that h⋆(ϱ)
is always finite.

Proposition 2: It holds that |h⋆(ϱ)| <∞.
Proof: Let (Yn, Xn, Qn) be as above, with {Xn, Qn}

being an admissible sequence. Note first that h(Yn |Qn) −
h(Xn |Qn) ≥ 0 since conditioning reduces entropy, so
h⋆(ϱ) ≥ 0. On the other hand, since {Xn, Qn} is admissible,
we have sλ(Xn,ϱ|Qn) < Vλ(ϱ)+1 for n sufficiently large by
definition, provided Vλ(ϱ) > −∞. However, this is always
the case. Indeed, for λ ≥ 1, we use again the inequality
h(Yn |Qn)− h(Xn |Qn) ≥ 0 to observe

−h(Xn |Qn) + λh(Yn |Qn) ≥ (λ− 1)h(Yn |Qn)

≥ (λ− 1)h(Z)

= (λ− 1)
1
2

log(2πe), (51)

where Z ∼ N(0, 1) and (51) follows from the definition of Yn
and the fact that conditioning reduces entropy. Hence,

sλ(Xn,ϱ|Qn)

= −h(Xn|Qn) + λh(Yn |Qn)

+ inf
V :Xn→Yn→V |Qn

{
I (Yn; V |Qn)− λI (Xn; V |Qn)

}

≥ (λ− 1)
1
2

log(2πe)

+ inf
V :Xn→Yn→V |Qn

{
I (Yn; V |Qn)− λI (Xn; V |Qn)

}

≥ (λ− 1)
1
2

log(2πe)− (λ− 1)I (Xn; Yn|Qn), (52)

where (52) follows from the data processing inequali-
ties I (Yn; V |Qn) ≥ I (Xn; V |Qn) and I (Xn; Yn |Qn) ≥
I (Xn; V |Qn). Of course, I (Xn; Yn|Qn) ≤ 1

2 log(1 + ϱ) by
the maximum entropy property of Gaussians (since EX2

n ≤ 1
by admissibility), so that Vλ(ϱ) > −∞ as claimed.

Therefore, if n is sufficiently large so that sλ(Xn,ϱ|Qn) <
Vλ(ϱ) + 1, there is necessarily some Vn satisfying
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Xn → Yn → Vn|Qn for which

h(Yn |Qn)− h(Xn |Qn)

≤ Vλ(ϱ) + 1 + λI (Xn; Vn|Qn)− I (Yn; Vn|Qn)

− (λ− 1)h(Yn|Qn)

≤ Vλ(ϱ) + 1 + (λ− 1)I (Xn; Vn|Qn)

− (λ− 1)h(Yn|Qn) (53)

≤ Vλ(ϱ) + 1 + (λ− 1)I (Xn; Yn|Qn)

− (λ− 1)h(Yn|Qn)

= Vλ(ϱ) + 1− (λ− 1)h(Yn |Xn), (54)

where (53) and (54) are both due to the data processing
inequality. Since Vλ(ϱ) < ∞ trivially and h(Yn |Xn) =
h(Z) = 1

2 log 2πe, we conclude that h⋆(ϱ) <∞, establishing
the claim. !

At this point, we may essentially repeat the heuristic dis-
cussion of Section IV-A to obtain the following conclusion
that applies to distributions that are near-extremal in a precise
sense.

Lemma 5: Fix ϵ > 0. Consider a distribution PX Q on
R×Q3 such that EX = 0, EX2 ≤ 1,

sλ(X,ϱ|Q) ≤ Vλ(ϱ) + ϵ (55)

and

h(Y |Q)− h(X |Q) ≤ h⋆(ϱ) + ϵ, (56)

where (Y, X, Q) ∼ Gϱ
Y |X PX Q. There exists a distribution

PX ′Q ′ on R × Q3 such that, for (Y ′, X ′, Q′) ∼ Gϱ
Y ′|X ′PX ′Q ′ ,

we have EX ′2 ≤ 1,

sλ(X ′,ϱ|Q′) ≤ Vλ(ϱ) + 2ϵ

and

h(Y ′|Q′)− h(X ′|Q′)
+1

2
I (X1 + X2; X1 − X2|Y1, Y2, Q1, Q2) ≤ h⋆(ϱ) + ϵ,

where (Y1, X1, Q1) and (Y2, X2, Q2) denote independent
copies of (Y, X, Q).

Proof: Let X+, X−, Y+, Y−, Q be as in Lemma 1, con-
structed from the two independent copies of (Y, X, Q). Apply-
ing Lemma 1 to the variables Q → (X+, X−) → (Y+, Y−),
we obtain

2sλ(X,ϱ|Q) ≥ sλ(X+,ϱ|X−, Q) + sλ(X−,ϱ|Y+, Q), (57)

and the symmetric inequality

2sλ(X,ϱ|Q) ≥ sλ(X+,ϱ|Y−, Q) + sλ(X−,ϱ|X+, Q). (58)

By independence of X1 and X2 and the assumption that
EX = 0, we have

E[X2
+] = E[X2

−] = 1
2

E[X2
1] + 1

2
E[X2

2] = E[X2] ≤ 1.

Hence, it follows that the terms in the RHS of (57) and the
RHS of (58) are each lower bounded by Vλ(ϱ). Combined
with (55), we may conclude that

1
2

sλ(X+,ϱ|Y−, Q) + 1
2

sλ(X−,ϱ|Y+, Q) ≤ Vλ(ϱ) + 2ϵ.

(59)

Next, exactly as in Section IV-A, let B ∼ Bernoulli(1/2)
be a Bernoulli random variable taking values on {+,−},
independent of X+, X−, Y+, Y−, Q, and define B̄ to be the
complement of B in {+,−}. Construct a new pair of random
variables (X̃ , Q̃) as follows: X̃ = X B and Q̃ = (B, YB̄, Q).
Clearly, EX̃2 = EX2 ≤ 1. Also, by construction and (59),

sλ(X̃ ,ϱ|Q̃) = 1
2

sλ(X+,ϱ|Y−, Q) + 1
2

sλ(X−,ϱ|Y+, Q)

≤ Vλ(ϱ) + 2ϵ.

Moreover, using Markovity, we may establish

h(Y |Q)− h(X |Q)

= 1
2

(h(Y+, Y−|Q)− h(X+, X−|Q))

= 1
2

(h(Y−|Y+, Q)− h(X−|Y+, Q))

+ 1
2

(h(Y+|Y−, Q)− h(X+|Y−, Q))

+ 1
2

I (X+; X−|Y+, Y−, Q)

= h(Ỹ |Q̃)− h(X̃ |Q̃) + 1
2

I (X+; X−|Y+, Y−, Q),

where Ỹ = √ϱX̃ + Z , with Z ∼ N(0, 1) independent of
(X̃ , Q̃). In particular, using (56), we have

h(Ỹ |Q̃)− h(X̃ |Q̃) + 1
2

I (X+; X−|Y+, Y−, Q) ≤ h⋆(ϱ) + ϵ.

Evidently, the pair (X̃ , Q̃) satisfies nearly all of the stated
properties of (X ′, Q′) in the claim to be proved. The only
exception is that Q̃ takes values in the space {+,−} × R ×
Q3 × Q3, whereas we require that Q′ takes values in Q3.
This is easily dealt with by applying the standard dimen-
sionality reduction procedure described in Remark 2. Indeed,
by the Fenchel-Caratheodory-Bunt [72, Theorem 18(i i)],
there is a pair (X ′, Q′) with Q′ supported on at most
three points that preserves the values EX ′2 = EX̃2,
sλ(X ′,ϱ|Q′) = sλ(X̃ ,ϱ|Q̃) and

(
h(Y ′|Q′)− h(X ′|Q′)) =

(h(Ỹ |Q̃)− h(X̃ |Q̃)). Thus, the claim is proved. !
Applying Lemma 5 to an appropriately chosen admissible

sequence, we obtain the following asymptotic analog of
property (43), which was a key milestone in the heuristic
discussion of Section IV-A.

Lemma 6: There exists an admissible sequence {Xn, Qn}
and a distribution PX∗Q∗ on R ×Q3 such that (Xn, Qn)

D−→
(X∗, Q∗) ∼ PX∗Q∗ , with E[X2

∗] ≤ 1 and

lim inf
n→∞ I (X1,n + X2,n; X1,n − X2,n |Yn, Qn = q) = 0 (60)

for PQ∗ × PQ∗-a.e. q, where Yn := (Y1,n, Y2,n), Qn :=
(Q1,n, Q2,n), and (Y1,n, X1,n, Q1,n) and (Y2,n, X2,n, Q2,n)
denote independent copies of (Yn, Xn, Qn) ∼ Gϱ

Yn |Xn
PXn Qn .

Proof: Let {Xn, Qn} be an admissible sequence with the
additional property that

lim
n→∞ (h(Yn |Qn)− h(Xn |Qn)) = h⋆(ϱ).

By a diagonalization argument, such an admissible
sequence exists. Since Q3 is finite and E[X2

n] ≤ 1,
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the sequence {Xn, Qn} is tight. By Prokhorov’s
theorem [82], we may assume that there is some (X∗, Q∗)
for which (Xn, Qn)

D−→ (X∗, Q∗) by restricting our attention
to a subsequence of {Xn, Qn} if necessary. Moreover,
E[X2

∗] ≤ lim infn→∞ E[X2
n] ≤ 1 by Fatou’s lemma.

Applying Lemma 5 along the sequence {Xn, Qn} for each n,
we conclude the existence of another admissible sequence
{X ′n, Q′n} with the property that

lim inf
n→∞ I (X1,n + X2,n; X1,n − X2,n |Yn, Qn)

+ lim inf
n→∞

(
h(Y ′n |Q′n)− h(X ′n |Q′n)

)

≤ h⋆(ϱ).

However, as {X ′n, Q′n} is admissible, the definition of h⋆(ϱ)
combined with the fact that it is finite (Proposition 2) implies
that we must have

lim inf
n→∞ I (X1,n + X2,n; X1,n − X2,n |Yn, Qn) = 0. (61)

Since Q3 is finite and Qn
D−→ Q∗, the desired result follows

from (61). !
As suggested in the discussion at the end of Section IV-A,

to finish the proof of Theorem 9 we will require (i) a
generalization of Bernstein’s theorem with hypothesis com-
patible with (60); and (ii) a local semicontinuity property of
sλ(·,ϱ). Stated precisely, the two required ingredients are the
following:

Lemma 7: Suppose (X1,n, X2,n)
D−→ (X1,∗, X2,∗) with

supn E[X2
i,n ] <∞ for i = 1, 2. Let (Z1, Z2) ∼ N(0, σ 2 I ) be

pairwise independent of (X1,n, X2,n) and, for i = 1, 2, define
Yi,n = Xi,n + Zi . If X1,n, X2,n are independent and

lim inf
n→∞ I (X1,n + X2,n; X1,n − X2,n |Y1,n, Y2,n) = 0, (62)

then X1,∗, X2,∗ are independent Gaussian random variables
with identical variances.

Lemma 8: If Xn
D−→ X∗ ∼ N(µ, σ 2

X ) and supn E[X2
n] <∞,

then

lim inf
n→∞ sλ(Xn,ϱ) ≥ sλ(X∗,ϱ). (63)

By assembling Lemmas 6, 7 and 8, Theorem 9 follows
almost immediately. The argument is as follows.

Proof of Theorem 9: Let {Xn, Qn}, (Y1,n, X1,n, Q1,n),
(Y2,n, X2,n, Q2,n) and (X∗, Q∗) be as in Lemma 6. Since Q3 is

finite, we of course have Xi,n |{Qi,n = qi } D−→ X∗|{Q∗ = qi },
for i = 1, 2 and PQ∗ -a.e. qi . Now, (60) fulfills the hypothesis
of Lemma 7, so we are able to conclude that for PQ∗×PQ∗-a.e.
q1, q2, the random variables X∗|{Q∗ = q1} and X∗|{Q∗ = q2}
are Gaussian with identical variances. In other words, for
PQ∗-a.e. q , we have X∗|{Q∗ = q} ∼ N(µq , σ 2

X ), where µq
possibly depends on q , but σ 2

X does not. Since EX2
∗ ≤ 1,

we must have σ 2
X ≤ 1.

So, using the lower semicontinuity property of Lemma 7,
for PQ∗-a.e. q ,

lim inf
n→∞ sλ(Xn |{Qn = q},ϱ) ≥ sλ(N(µq , σ 2

X ),ϱ)

= sλ(N(0, σ 2
X ),ϱ),

where the equality follows since sλ(·,ϱ) is invariant to trans-
lation of the mean. Thus,

lim inf
n→∞ PQn (q)sλ(Xn |{Qn = q},ϱ) ≥ PQ∗(q)sλ(N(0, σ 2

X ),ϱ)

for each q ∈ Q3 satisfying PQ∗(q) > 0.
We now turn our attention to the possible situation where

PQ∗(q) = 0 for some q . Following the same steps leading
to (52), for λ ≥ 1 we have the lower bound

PQn (q)sλ(Xn |{Qn = q},ϱ)

≥ PQn (q)(λ− 1)

(
1
2

log(2πe)− I (Xn; Yn|Qn = q)

)
,

(64)

valid for all q ∈ Q3. Since {Xn, Qn} is admissible, for each
n ≥ 1,

PQn (q)E[X2
n|Qn = q] ≤ E[X2

n] ≤ 1 ∀q ∈ Q3.

Rearranging gives E[X2
n |Qn = q] ≤ (

PQn (q)
)−1. By the

maximum-entropy property of Gaussians and definition of
(Yn, Xn, Qn),

I (Xn; Yn|Qn = q) ≤ 1
2

log
(

1 + ϱ E[X2
n|Qn = q]

)

≤ 1
2

log
(

1 + ϱ
(
PQn (q)

)−1
)

,

so that (64) yields

PQn (q)sλ(Xn|{Qn = q},ϱ)

≥ 1
2

PQn (q)(λ− 1)
(

log(2πe)− log
(

1 + ϱ
(
PQn (q)

)−1
))

.

Hence, if q is such that PQn (q)→ PQ∗(q) = 0, then

lim inf
n→∞ PQn (q)sλ(Xn|{Qn = q},ϱ) ≥ 0.

Combining the above establishes

lim inf
n→∞ sλ(Xn,ϱ|Qn) ≥ sλ(N(0, σ 2

X ),ϱ). (65)

Since {Xn, Qn} was assumed to be an admissible sequence,
(65) and (49) together ensure that

Vλ(ϱ) ≥ sλ(N(0, σ 2
X ),ϱ),

which proves the claim. !

APPENDIX A
A WEAK FORM OF BERNSTEIN’S THEOREM

The aim of this appendix is to prove Lemma 7, which
is largely a matter of assembling the needed ingredients.
We begin by recalling two facts about random variables that
are contaminated by Gaussian noise. Of particular interest
to us are weakly convergent sequences of random variables,
and corresponding continuity properties when densities are
regularized via convolution with a Gaussian density.

Lemma 9 [74, Lemma 5.1.3]: If X, Z are independent
random variables and Z is normal, then X + Z has a non-
vanishing probability density function which has derivatives
of all orders.
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Lemma 10 [70, Propositions 16 and 18]: Let Xn
D−→ X∗

with supn E[∥Xn∥2] < ∞, and let Z ∼ N(0, σ 2 I ) be a non-
degenerate Gaussian, independent of {Xn}, X∗. Let Yn = Xn+
Z and Y∗ = X∗+ Z. Finally, let fn and f∗ denote the density
of Yn and Y∗, respectively. Then

1. Yn
D−→ Y∗

2. ∥ fn − f∗∥∞ → 0
3. h(Yn)→ h(Y∗).

Let us also make note of two characterizations of the
normal distribution. First, we remind the reader of the result
of Bernstein given previously as Lemma 2. Second, we will
need the following observation:

Lemma 11: Let Y = X + Z, where Z ∼ N(0, σ 2) is a
non-degenerate Gaussian, independent of X. If X |{Y = y}
is normal for PY -a.e. y, with variance σ 2

X not depending on

y, then X is normal with variance
σ 2σ 2

X
σ 2−σ 2

X
.

Proof: If X |{Y = y} is normal for PY -a.e. y with variance
σ 2

X not depending on Y , then X = E[X |Y ]+W in distribution,
where W ∼ N(0, σ 2

X ) is independent of Y . In particular,
X has density fX by Lemma 9. Also by Lemma 9,
Y has density fY . The conditional density fY |X exists and is
Gaussian by definition, and fX |Y is a valid Gaussian density
for PY -a.e. y, with corresponding variance σ 2

X not depending
on y. Thus, we have

log fX (x) = log fY (y) + log fY |X (y|x)− log fX |Y (x |y).

(66)

The key observation is that the RHS of (66) is a quadratic
function in x . Since fX is a density and must integrate to unity,
it must therefore be Gaussian. Direct computation reveals that
X has variance σ 2σ 2

X
σ 2−σ 2

X
. !

In final preparation for the proof of Lemma 7, we record the
following consequence of Lemma 10 and lower semicontinuity
of relative entropy:

Lemma 12: Suppose (X1,n, X2,n)
D−→ (X1,∗, X2,∗) with

supn E[X2
i,n ] <∞ for i = 1, 2. Let (Z1, Z2) ∼ N(0, σ 2 I ) be

pairwise independent of (X1,n, X2,n) and (X1,∗, X2,∗), and,
for i = 1, 2, define Yi,n = Xi,n + Zi and Yi,∗ = Xi,∗ + Zi .

Then (Y1,n, Y2,n)
D−→ (Y1,∗, Y2,∗) and

lim inf
n→∞ I (X1,n; X2,n|Y1,n, Y2,n) ≥ I (X1,∗; X2,∗|Y1,∗, Y2,∗).

(67)

Proof: The fact that (Y1,n, Y2,n)
D−→ (Y1,∗, Y2,∗) follows

from Lemma 10. Lemma 10 also establishes that

h(Y1,n, Y2,n)→ h(Y1,∗, Y2,∗). (68)

On account of the Markov chains (X2,n, Y2,n)→ X1,n → Y1,n
and (X1,n, Y1,n)→ X2,n → Y2,n , we have the identity

I (X1,n; X2,n|Y1,n, Y2,n)

= I (X1,n, Y2,n; Y1,n, X2,n)− I (X1,n, X2,n; Y1,n, Y2,n), (69)

which is verified as follows:

I (X1,n; X2,n|Y1,n, Y2,n)

= I (X1,n; Y1,n|Y2,n) + I (X1,n; X2,n|Y1,n, Y2,n)

− I (X1,n; Y1,n|Y2,n)

= I (X1,n; Y1,n, X2,n |Y2,n)− I (X1,n, X2,n; Y1,n|Y2,n)

= I (Y2,n; X2,n) + I (X1,n; Y1,n, X2,n|Y2,n)

− I (X1,n, X2,n; Y2,n)− I (X1,n, X2,n; Y1,n|Y2,n)

= I (Y2,n; Y1,n, X2,n) + I (X1,n; Y1,n, X2,n |Y2,n)

− I (X1,n, X2,n; Y1,n, Y2,n)

= I (X1,n, Y2,n; Y1,n, X2,n)− I (X1,n, X2,n; Y1,n, Y2,n).

Observe that lim infn→∞ I (X1,n, Y2,n; Y1,n, X2,n) ≥ I
(X1,∗, Y2,∗; Y1,∗, X2,∗) due to lower semicontinuity of
relative entropy, and limn→∞ I (X1,n, X2,n; Y1,n, Y2,n) =
I (X1,∗, X2,∗; Y1,∗, Y2,∗) due to (68) and the fact that
h(Y1,∗, Y2,∗|X1,∗, X2,∗) = h(Y1,n, Y2,n |X1,n, X2,n) =
h(Z1, Z2) is constant. Thus, (67) is proved by applying the
identity (69) again for (X1,∗, X2,∗, Y1,∗, Y2,∗). !

Having assembled the required ingredients, we now prove
Lemma 7.

Proof of Lemma 7: Let Yi,∗ be as in the statement
of Lemma 12, and recall that the same lemma asserts
(Y1,n, Y2,n)

D−→ (Y1,∗, Y2,∗). By definition of Z1, Z2, the ran-
dom variables (Z1 + Z2) and (Z1 − Z2) are independent
and Gaussian with respective variances 2σ 2. Thus, noting that
assumption (62) is equivalent to

lim inf
n→∞ I (X1,n +X2,n; X1,n−X2,n|Y1,n +Y2,n, Y1,n−Y2,n) = 0,

we may apply Lemma 12 to the sequences {X1,n+X2,n, X1,n−
X2,n} and {Y1,n + Y2,n, Y1,n − Y2,n} to obtain

I (X1,∗ + X2,∗; X1,∗ − X2,∗|Y1,∗, Y2,∗)
= I (X1,∗ + X2,∗; X1,∗ − X2,∗|Y1,∗ + Y2,∗, Y1,∗ − Y2,∗)
= 0. (70)

Using independence of X1,n, X2,n , Lemma 12 applied directly
yields

I (X1,∗; X2,∗|Y1,∗, Y2,∗) = 0. (71)

In particular, for PY1,∗Y2,∗ -a.e. y1, y2, the random variables
X1,∗|{Y1,∗, Y2,∗ = y1, y2} and X2,∗|{Y1,∗, Y2,∗ = y1, y2}
are independent by (71), and (X1,∗ + X2,∗)|{Y1,∗, Y2,∗ =
y1, y2} and (X1,∗−X2,∗)|{Y1,∗, Y2,∗ = y1, y2} are independent
by (70). Therefore, Lemma 2 implies that X1,∗|{Y1,∗, Y2,∗ =
y1, y2} and X2,∗|{Y1,∗, Y2,∗ = y1, y2} are each normal with
identical variances for PY1,∗Y2,∗ -a.e. y1, y2. Starting with the
third claim of Lemma 10 and applying lower semicontinuity
of relative entropy, we observe

I (X1,∗; Y1,∗) = lim
n→∞ I (X1,n; Y1,n)

= lim
n→∞ I (X1,n; Y1,n, Y2,n)

≥ I (X1,∗; Y1,∗, Y2,∗)
= I (X1,∗; Y1,∗) + I (X1,∗; Y2,∗|Y1,∗),



2188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

so it follows that X1,∗ → Y1,∗ → Y2,∗, and therefore
X1,∗|{Y1,∗, Y2,∗ = y1, y2} ∼ X1,∗|{Y1,∗ = y1} by condi-
tional independence. Similarly, X2,∗|{Y1,∗, Y2,∗ = y1, y2} ∼
X2,∗|{Y2,∗ = y2}. So, we may conclude that the random
variables X1,∗|{Y1,∗ = y1} and X2,∗|{Y2,∗ = y2} are normal,
with identical variances not depending on y1, y2. Invoking
Lemma 11, we find that both X1,∗ and X2,∗ are normal with
identical variances, completing the proof. !

APPENDIX B
A LOWER SEMICONTINUITY PROPERTY OF sλ(·,ϱ)

The goal of this appendix is to establish the lower semicon-
tinuity property of sλ(·,ϱ) as stated in Lemma 8. In particular,

if Xn
D−→ X∗ ∼ N(µ, σ 2

X ) and supn E[X2
n] <∞, then

lim inf
n→∞ sλ(Xn,ϱ) ≥ sλ(X∗,ϱ). (72)

Recall that sλ(X,ϱ) is defined in the context of the Gaussian
channel Y = √ϱX + Z . However, for the purposes of the
proof, it will be convenient to omit the scaling factor ϱ, and
instead parametrize the channel in terms of the noise variance.
Toward this end, let Z ∼ N(0, σ 2). For λ > 0 and a random
variable X ∼ PX , independent of Z , define Y = X + Z and
the functionals

Fλ,σ 2(X) = inf
V :X→Y→V

(
I (Y ; V )− λI (X; V )

)

Gλ,σ 2(X) = −h(X) + λh(Y ).

The semicontinuity property (72) is an immediate corollary
of weak lower semicontinuity of Gλ,σ 2(X) and Fλ,σ 2(X) at
Gaussian X . These facts are established separately below in
separate subsections. The former is straightforward, while the
latter is a bit more delicate.

A. Semicontinuity of Gλ,σ 2

Here, we establish a semicontinuity property enjoyed by
Gλ,σ 2 . Specifically,

Lemma 13: If Xn
D−→ X∗ ∼ N(µ, σ 2

X ) and supn E[X2
n] <

∞, then

lim inf
n→∞ Gλ,σ 2(Xn) ≥ Gλ,σ 2(X∗).

Proof: Fix δ > 0 and define Nδ ∼ N(0, δ), pairwise
independent of {Xn}, X∗. Observe that

Gλ,σ 2(Xn) = −h(Xn) + λh(Yn)

≥ −h(Xn + Nδ) + λh(Yn).

By the third claim of Lemma 10, we have −h(Xn + Nδ) +
λh(Yn)→ −h(X∗ + Nδ) + λh(Y∗) as n →∞. Thus,

lim inf
n→∞ Gλ,σ 2(Xn) ≥ −h(X∗ + Nδ) + λh(Y∗).

Since h(X∗ + Nδ) = 1
2 log

(
2πe(σ 2

X + δ)
)

is continuous in δ,
we may take δ ↓ 0 to prove the claim. !

B. Semicontinuity of Fλ,σ 2

This section is devoted to proving the required semiconti-
nuity property by Fλ,σ 2 . Specifically, we aim to show:

Lemma 14: If Xn
D−→ X∗ ∼ N(µ, σ 2

X ) and supn E[X2
n] <

∞, then

lim inf
n→∞ Fλ,σ 2(Xn) ≥ Fλ,σ 2(X∗). (73)

The proof of Lemma 14 boils down to careful control
over various error terms, which are ultimately shown to
be negligible. To this end, we begin by establishing three
technical estimates. These are then assembled together in the
proof of Lemma 14.

Lemma 15: Let {Yn}, Y∗ be as in Lemma 10, and let PV |Y
be given. Fix b > 0 and define {Vn}, V∗ according to PV |Y :
Yn +→ Vn and PV |Y : Y∗ +→ V∗. There exists a positive
sequence {ϵn} depending on b and {Yn}, but not PV |Y , which
satisfies limn→∞ ϵn = 0 and

I (Vn; Yn | |Yn | ≤ b) ≤ (1 + ϵn)I (V∗; Y∗ | |Y∗| ≤ b) + ϵn,

I (Vn; Yn | |Yn | ≤ b) ≥ (1− ϵn)I (V∗; Y∗ | |Y∗| ≤ b)− ϵn,∣∣∣∣
P(|Yn| ≤ b)

P(|Y∗| ≤ b)
− 1

∣∣∣∣ ≤ ϵn . (74)

Proof: Let fn and f∗ denote the density of Yn and Y∗,
respectively. By Lemma 9, the density f∗ is continuous and
does not vanish, and is therefore bounded away from zero on
the interval B = [−b, b]. By Lemma 10, ∥ fn − f∗∥∞ → 0,
so it follows that

sup
y∈B

∣∣∣∣1−
fn(y)

f∗(y)

∣∣∣∣ ≤ ϵn and sup
y∈B

∣∣∣∣1−
f∗(y)

fn(y)

∣∣∣∣ ≤ ϵn (75)

for some positive ϵn → 0 as n → ∞ (note that ϵn does not
depend on PV |Y ). As a consequence,

P(Y∗ ∈ B) =
∫

B
f∗(y)dy ≤ (1 + ϵn)

∫

B
fn(y)dy

= (1 + ϵn)P(Yn ∈ B).

By symmetry of (75), this establishes (74).
Now, for y ∈ B , the conditional densities of Yn |{Yn ∈ B}

and Y∗|{Y∗ ∈ B} satisfy

fYn |{Yn∈B}(y)

fY∗|{Y∗∈B}(y)
= fn(y)

f∗(y)
· P(Y∗ ∈ B)

P(Yn ∈ B)
≤ (1 + ϵn)

2. (76)

Therefore, for any Borel set2 A ⊂ V ,

P(Vn ∈ A|Yn ∈ B)

=
∫

B
fYn |{Yn∈B}(y)PV |Y=y(A)dy

≤ (1 + ϵn)2
∫

B
fY∗|{Y∗∈B}(y)PV |Y=y(A)dy

= (1 + ϵn)2 P(V∗ ∈ A|Y∗ ∈ B).

As a consequence,

d PVn |Yn∈B

d PV∗|Y∗∈B
(v) ≤ (1 + ϵn)2, v ∈ V . (77)

2We implicitly assume PV |Y=y is a Borel measure on a topological space
V for each y.
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By a symmetric argument, the following counterpart to (76)
is obtained

fYn |{Yn∈B}(y) ≥ (1 + ϵn)−2 fY∗|{Y∗∈B}(y) ∀y ∈ B. (78)

Using the fact that mutual information may be written as a
relative entropy and PVn |Yn = PV |Y for each n,

I (Vn; Yn|Yn ∈ B)

=
∫

fYn |{Yn∈B}(y)D(PVn |Yn=y,Yn∈B∥PVn |Yn∈B)dy

=
∫

fYn |{Yn∈B}(y)D(PV |Y=y∥PVn |Yn∈B)dy.

Similarly, since PV∗|Y∗ = PV |Y ,

I (V∗; Y∗|Y∗ ∈ B) =
∫

fY∗|{Y∗∈B}(y)D(PV |Y=y∥PV∗|Y∗∈B)dy.

Hence, if we can show that, for each y,

D(PV |Y=y∥PVn |Yn∈B) ≥ D(PV |Y=y∥PV∗|Y∗∈B)− 3ϵn,

then we may apply (78) and non-negativity of divergence to
conclude

I (Vn; Yn |Yn ∈ B) ≥ (1 + ϵn)
−2 I (V∗; Y∗|Y∗ ∈ B)− 3ϵn.

(79)

Toward this end, let us recall the Donsker-Varadhan variational
formula for relative entropy [83] between probability measures
P ≪ Q

D(P∥Q) = sup
ϕ

{∫
ϕd P − log

(∫
eϕd Q

)}
,

where the supremum is over all bounded Q-measurable func-
tions ϕ. Applied to our situation, PV |Y=y ≪ PV∗|Y∗∈B for
y ∈ B (except possibly for y in a null set, which we may
neglect), so we are ensured the existence of a bounded function
ϕ∗ for which
∫

ϕ∗d PV |Y=y − log
(∫

eϕ∗d PV∗|Y∗∈B

)

≥ D(PV |Y=y∥PV∗|Y∗∈B)− ϵn .

Therefore, using the Donsker-Varadhan formula for
D(PV |Y=y∥PVn |Yn∈B) and the estimate (77), we have

D(PV |Y=y∥PVn |Yn∈B)

≥
∫

ϕ∗d PV |Y=y − log
(∫

eϕ∗d PVn |Yn∈B

)

≥
∫

ϕ∗d PV |Y=y − log
(

(1 + ϵn)2
∫

eϕ∗d PV∗|Y∗∈B

)

=
∫

ϕ∗d PV |Y=y − log
(∫

eϕ∗d PV∗|Y∗∈B

)
− log(1 + ϵn)2

≥ D(PV |Y=y∥PV∗|Y∗∈B)− 3ϵn.

The final step used the inequality log(1 + x)2 ≤ 2x for
purposes of simplifying the expression. Hence, (79) is proved.
By symmetry of (75) and the above argument, we also have
the complementary inequality

I (V∗; Y∗|Y∗ ∈ B) ≥ (1 + ϵn)−2 I (Vn; Yn|Yn ∈ B)− 3ϵn.

It is now a simple matter to construct a new vanishing
sequence {ϵ′n} from {ϵn} which satisfies the claims of the
lemma. !

Lemma 16: Let X ∼ PX and let Z ∼ N(0, σ 2) be a non-
degenerate Gaussian, independent of X. It holds that

lim
b→∞

P(|X | > b)I (X; X + Z | |X | > b) = 0.

Proof: The proof follows that of [84, Theorem 6].
By lower semicontinuity of relative entropy, we have

lim inf
b→∞

I (X; X + Z | |X | ≤ b) ≥ I (X; X + Z).

Also,

I (X; X + Z) ≥ P(|X | ≤ b)I (X; X + Z | |X | ≤ b),

so that

lim
b→∞

I (X; X + Z | |X | ≤ b)

= lim
b→∞

P(|X | ≤ b)I (X; X + Z | |X | ≤ b) = I (X; X + Z).

By the chain rule for mutual information

P(|X | > b)I (X; X + Z | |X | > b)

= I (X; X + Z)− I (1{|X |≤b}; X + Z)

−P(|X | ≤ b)I (X; X + Z | |X | ≤ b),

so the claim is proved since I (1{|X |≤b}; X + Z) vanishes as
b→∞. !

Lemma 17: Fλ,σ 2(X) is continuous in λ. Furthermore,
if X ∼ N(µ, σ 2

X ), then

Fλ,σ 2(X) = 1
2

[

log

(

(λ−1)
σ 2

X

σ 2

)

− λ log

(
λ−1

λ

(

1+σ 2
X

σ 2

))]

for λ ≥ 1 + σ 2

σ 2
X

, and Fλ,σ 2(X) = 0 when 0 ≤ λ ≤ 1 + σ 2

σ 2
X

.

In particular, Fλ,σ 2(X) is continuous in the parameters σ 2,
σ 2

X and λ for Gaussian X.
Proof: The function Fλ,σ 2(X) is the pointwise infimum of

linear functions in λ, and is therefore concave and continuous
on the open interval λ ∈ (0,∞) for any distribution PX . The
explicit expression for Fλ,σ 2(X) follows by identifying γ ϱ←
σ 2

X
σ 2 in Lemma 3. !

We may now prove the desired result, which will conclude
the proof of Lemma 8.

Proof of Lemma 14: Fix an interval B = [−b, b],
a conditional law PV |Y , and δ satisfying 0 < δ < σ 2/2.
Recalling the definition of Z ∼ N(0, σ 2), decompose Z =
N1 + N2 + N3, where N1 ∼ N(0, δ), N2 ∼ N(0, σ 2−2δ) and
N3 ∼ N(0, δ) are mutually independent. Define X δ

n = Xn+N1
and Y δ

n = Yn − N3 = Xn + N1 + N2. Note that we have
Xn → X δ

n → Y δ
n → Yn → Vn , where Vn is defined by the

stochastic transformation PV |Y : Yn +→ Vn . Using the notation
of Lemma 10, we also have X∗ → X δ

∗ → Y δ
∗ → Y∗ → V∗,

where Y∗ = X∗+ Z , X δ
∗ = X∗+ N1, Y δ

∗ = X∗+ N1 + N2 and
V∗ is defined via PV |Y : Y∗ +→ V∗. With these definitions in
hand, we may apply Lemma 15 to the processes {X δ

n}, {Y δ
n } to
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conclude the existence of a sequence ϵn → 0, not depending
on PV |Y , that satisfies

I (Vn; X δ
n|X δ

n∈B) ≤ (1 + ϵn)I (V∗; X δ
∗|X δ
∗ ∈ B) + ϵn (80)

I (Vn; Y δ
n |Y δ

n ∈B) ≥ (1− ϵn)I (V∗; Y δ
∗ |Y δ
∗ ∈ B)− ϵn (81)

P(X δ
n ∈ B) ≤ (1 + ϵn)P(X δ

∗ ∈ B) (82)

P(Y δ
n ∈ B) ≥ (1− ϵn)P(Y δ

∗ ∈ B). (83)

Without loss of generality, we may assume that ϵn < 1 for
all n.

Having completed the setup, our goal at this point will be to
obtain a lower bound on the quantity I (Yn; Vn)− λI (Xn; Vn)
which does not depend on the specific conditional law PV |Y .
The key idea will be to work with the perturbed random
variables Xn → X δ

n and Yn → Y δ
n , and resist temptation to

take any limits n →∞ or b→∞ until after dependence on
PV |Y is eliminated. We begin with the following sequence of
inequalities, each of whose steps are individually justified in
the sequel:

I (Yn; Vn)− λI (Xn; Vn)

≥ I (Y δ
n ; Vn)− λI (X δ

n; Vn) (84)

= I (Y δ
n ,1{Y δ

n ∈B}; Vn)− λI (X δ
n,1{X δ

n∈B}; Vn) (85)

= P(Y δ
n ∈ B)I (Y δ

n ; Vn|Y δ
n ∈ B)

+ P(Y δ
n /∈ B)I (Y δ

n ; Vn|Y δ
n /∈ B) + I (1{Y δ

n ∈B}; Vn)

− λ
(
P(X δ

n ∈ B)I (X δ
n; Vn|X δ

n ∈ B)

+ P(X δ
n /∈ B)I (X δ

n; Vn|X δ
n /∈ B) + I (1{X δ

n∈B}; Vn)
)

(86)

≥ P(Y δ
n ∈ B)I (Y δ

n ; Vn|Y δ
n ∈ B)

− λ
(
P(X δ

n ∈ B)I (X δ
n; Vn|X δ

n ∈ B)

+ P(X δ
n /∈ B)I (X δ

n; Yn |X δ
n /∈ B) + H (1{X δ

n∈B})
)

(87)

≥ P(Y δ
n ∈ B)

(
(1− ϵn)I (Y δ

∗ ; V∗|Y δ
∗ ∈ B)− ϵn

)

− λP(X δ
n ∈ B)

(
(1 + ϵn)I (X δ

∗; V∗|X δ
∗ ∈ B) + ϵn

)

− λ
(

P(X δ
n /∈ B)I (X δ

n; Yn|X δ
n /∈ B) + H (1{X δ

n∈B})
)

(88)

≥ P(Y δ
n ∈ B)(1− ϵn)I (Y δ

∗ ; V∗|Y δ
∗ ∈ B)

− λP(X δ
n ∈ B)(1 + ϵn)I (X δ

∗; V∗|X δ
∗ ∈ B)

− λ
(

P(X δ
n /∈ B)I (X δ

n; Yn|X δ
n /∈ B) + H (1{X δ

n∈B})
)

− (λ + 1)ϵn. (89)

The above steps are justified as follows:
• (84) follows by the data processing inequality.
• (85) follows since 1{Y δ

n ∈B} and 1{X δ
n∈B} are functions of

Y δ
n and X δ

n , respectively.
• (86) follows from the chain rule for mutual information.
• (87) follows from non-negativity of mutual information,

the fact that I (1{X δ
n∈B}; Vn) ≤ H (1{X δ

n∈B}), and the data
processing inequality which implies I (X δ

n; Vn|X δ
n /∈ B) ≤

I (X δ
n; Yn|X δ

n /∈ B).
• (88) follows from (80) and (81).

• (89) follows since P(Y δ
n ∈ B) and P(X δ

n ∈ B) are each
at most one.

Now, let us separately bound the first two terms in (89).
First, we note that the chain rule for mutual information
implies

P(Y δ
∗ ∈B)I (Y δ

∗ ; V∗|Y δ
∗ ∈ B) = I (Y δ

∗ ; V∗)− I (1{Y δ∗ ∈B}; V∗)

−P(Y δ
∗ /∈ B)I (Y δ

∗ ; V∗|Y δ
∗ /∈ B).

So, the first term in (89) may be bounded as

P(Y δ
n ∈ B)(1− ϵn)I (Y δ

∗ ; V∗|Y δ
∗ ∈ B)

= P(Y δ
n ∈ B)

P(Y δ∗ ∈B)
(1− ϵn)

(
I (Y δ
∗ ; V∗)− I (1{Y δ∗ ∈B}; V∗)

−P(Y δ
∗ /∈ B)I (Y δ

∗ ; V∗|Y δ
∗ /∈ B)

)

≥ (1− ϵn)2
(

I (Y δ
∗ ; V∗)− I (1{Y δ∗ ∈B}; V∗)

−P(Y δ
∗ /∈ B)I (Y δ

∗ ; V∗|Y δ
∗ /∈ B)

)
(90)

≥ (1− ϵn)2 I (Y δ
∗ ; V∗)

−
(
P(Y δ
∗ /∈ B)I (Y δ

∗ ; Y∗|Y δ
∗ /∈ B) + H (1{Y δ∗∈B})

)
, (91)

where
• (90) follows from (83) (note that the term inside the

parentheses is proportional to I (Y δ
∗ ; V∗|Y δ

∗ ∈ B), and
therefore nonnegative).

• (91) uses the simple facts that I (1{Y δ∗ ∈B}; V∗) ≤
H (1{Y δ∗∈B}), and (1− ϵn)2 ≤ 1, and

I (Y δ
∗ ; V∗|Y δ

∗ /∈ B) ≤ I (Y δ
∗ ; Y∗|Y δ

∗ /∈ B),

where the third is due to the data processing inequality.
Next, we bound the second term in (89). To start, note

that the chain rule for mutual information combined with non-
negativity of mutual information gives

I (X δ
∗; V∗|X δ

∗ ∈ B) ≤ 1
P(X δ∗ ∈ B)

I (X δ
∗; V∗).

Thus,

λP(X δ
n ∈ B)(1 + ϵn)I (X δ

∗; V∗|X δ
∗ ∈ B)

≤ λ
P(X δ

n ∈ B)

P(X δ∗ ∈ B)
(1 + ϵn)I (X δ

∗; V∗)

≤ λ(1 + ϵn)2 I (X δ
∗; V∗),

where the last inequality is due to (82).
Combining the above two bounds with (89), we have

established

I (Yn; Vn)− λI (Xn; Vn)

≥ (1− ϵn)2 I (Y δ
∗ ; V∗)− λ(1 + ϵn)2 I (X δ

∗; V∗)

−
(
P(Y δ
∗ /∈B)I (Y δ

∗ ; Y∗|Y δ
∗ /∈ B) + H (1{Y δ∗∈B})

)

− λ
(

P(X δ
n /∈ B)I (X δ

n; Yn|X δ
n /∈ B) + H (1{X δ

n∈B})
)

− (λ + 1)ϵn (92)

= (1− ϵn)2
(

I (Y δ
∗ ; V∗)− λn I (X δ

∗; V∗)
)

−
(
P(Y δ
∗ /∈B)I (Y δ

∗ ; Y∗|Y δ
∗ /∈ B) + H (1{Y δ∗∈B})

)
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− λ
(

P(X δ
n /∈ B)I (X δ

n; Yn|X δ
n /∈ B) + H (1{X δ

n∈B})
)

− (λ + 1)ϵn, (93)

≥ (1− ϵn)
2Fλn,(σ 2−2δ)(X δ

∗)

−
(
P(Y δ
∗ /∈B)I (Y δ

∗ ; Y∗|Y δ
∗ /∈ B) + H (1{Y δ∗∈B})

)

− λ
(

P(X δ
n /∈ B)I (X δ

n; Yn|X δ
n /∈ B) + H (1{X δ

n∈B})
)

− (λ + 1)ϵn. (94)

Above, we make the definition λn := (1+ϵn)2

(1−ϵn)2 λ in (93) and
used the definition of Fλn,(σ 2−2δ)(X δ

∗) in (94).
As desired, the RHS of (94) does not depend on Vn

(i.e., PV |Y ). Thus, taking the infimum over Vn satisfying
Xn → Yn → Vn and then letting n→∞, we arrive at

lim inf
n→∞ Fλ,σ 2(Xn)

≥ Fλ,(σ 2−2δ)(X δ
∗)

−
(
P(Y δ
∗ /∈ B)I (Y δ

∗ ; Y∗|Y δ
∗ /∈ B) + H (1{Y δ∗∈B})

)

− λ
(
P(X δ

∗ /∈ B)I (X δ
∗; Y∗|X δ

∗ /∈ B) + H (1{X δ∗∈B})
)
, (95)

which follows due to ϵn → 0 and the following:
• Fλn,(σ 2−2δ)(X δ

∗) → Fλ,(σ 2−2δ)(X δ
∗) by continuity of the

mapping λ +→ Fλ,σ 2(X) (Lemma 17).

• P(X δ
n /∈ B) → P(X δ

∗ /∈ B) since X δ
n

D−→ X δ
∗ by the first

claim of Lemma 10. By the same token, H (1{X δ
n∈B})→

H (1{X δ∗∈B}) by continuity of the binary entropy function.
• I (X δ

n; Yn|X δ
n /∈ B) → I (X δ

∗; Y∗|X δ
∗ /∈ B) by the third

claim of Lemma 10 since lim supn E[
(
X δ

n
)2 |X δ

n /∈ B] <
∞ due to the fact that supn E[X2

n] < ∞ and P(X δ
n /∈

B)→ P(X δ
∗ /∈ B), a positive constant.

As we take b→∞, continuity of the binary entropy function
and Lemma 16 together imply the latter two terms in the RHS
of (95) vanish, yielding the inequality

lim inf
n→∞ Fλ(Xn) ≥ Fλ,(σ 2−2δ)(X δ

∗). (96)

We finally arrive at the point where the hypothesis X∗ ∼
N(0, σ 2) is needed. In particular, since δ was arbitrary and
Fλ,(σ 2−2δ)(X δ

∗) is continuous in δ by Lemma 17, the proof is
complete by letting δ ↓ 0. !
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