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Abstract—We tighten the entropy power inequality (EPI) when
one of the random summands is Gaussian. Our strengthening is
closely related to strong data processing for Gaussian channels
and generalizes the (vector extension of) Costa’s EPI. This leads
to a new reverse EPI and, as a corollary, sharpens Stam’s inequal-
ity relating entropy power and Fisher information. Applications
to network information theory are given, including a short self-
contained proof of the converse for the two-encoder quadratic
Gaussian source coding problem. The proof of our main result
is based on weak convergence and a doubling argument for
establishing Gaussian optimality via rotational-invariance.

I. INTRODUCTION AND MAIN RESULT

For a random variable X with density f , the differential
entropy of X is defined by1

h(X) = −
∫
f(x) log f(x)dx. (1)

Similarly, h(X) is defined to be the differential entropy of a
random vector X on Rn. Shannon’s celebrated entropy power
inequality (EPI) asserts that for X,W independent

22h(X+W ) ≥ 22h(X) + 22h(W ). (2)

Under the assumption that W is Gaussian, we prove the
following strengthening of (2):

Theorem 1. Let X ∼ PX , and let W ∼ N(0, σ2) be
independent of X . For any V satisfying X → (X+W )→ V ,

22(h(X+W )−I(X;V )) ≥ 22(h(X)−I(X+W ;V )) + 22h(W ). (3)

The notation X → (X + W ) → V indicates that the
random variables X , X + W and V form a Markov chain,
in that order. Throughout, we write X → Y → V |Q to denote
random variables X,Y, V,Q with joint distribution factoring
as PXY V Q = PXQPY |XQPV |Y Q. That is, X → Y → V form
a Markov chain conditioned on Q.

To familiarize the reader with (3), we remark that the
function

gI(t, PAB) = sup
V :A→B→V

{I(V ;A) : I(V ;B) ≤ t} , (4)

is the best-possible (or strong) data-processing function
(cf. [1]) for the pair (A,B) ∼ PAB since I(V ;A) ≤
gI(I(V ;B), PAB) for any V satisfying A → B → V .
Adopting the notation of Theorem 1 and defining Y = X+W ,
inequality (3) may be restated as

22(h(Y )−gI(t,PXY )) ≥ 22(h(X)−t) + 22h(W ) for all t ≥ 0.

Hence, the slack in Shannon’s EPI (2) for Gaussian W (due
to non-Gaussianness of X) can be improved by choosing
an appropriate point on the strong data processing curve
gI(·, PXY ). In view of this, (3) might be called a strong EPI.

This work was supported by NSF Grants CCF-1528132 and CCF-0939370
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1When the integral (1) does not exist, or if X does not have density, then
we adopt the convention that h(X) = −∞.

We remark that there exist various improvements of the EPI
in the literature (e.g,. [2] for log-concave densities, and [3] for
subsets), however none are notably similar to that presented
here. The reader is referred to the recent survey [4] for an
overview.

A conditional version of the EPI is often useful in applica-
tions. Theorem 1 easily generalizes along these lines. Indeed,
due to joint convexity of log(2x + 2y) in x, y, we obtain the
following corollary of Theorem 1:

Corollary 1. Suppose X,W are conditionally independent
given Q, and moreover that W is conditionally Gaussian given
Q. Then, for any V satisfying X → (X +W )→ V |Q,

22(h(X+W |Q)−I(X;V |Q))

≥ 22(h(X|Q)−I(X+W ;V |Q)) + 22h(W |Q). (5)

As one would expect, Theorem 1 also admits a vector
generalization, which may be regarded as our main result:

Theorem 2. Suppose X,W are n-dimensional random vec-
tors that are conditionally independent given Q, and moreover
that W is conditionally Gaussian given Q. Then, for any V
satisfying X→ (X + W)→ V |Q,

2
2
n (h(X+W|Q)−I(X;V |Q))

≥ 2
2
n (h(X|Q)−I(X+W;V |Q)) + 2

2
nh(W|Q). (6)

The restriction of W to be conditionally Gaussian in Theo-
rem 2 should not be viewed as a severe limitation. Indeed, in
typical applications of the EPI, one of the variables is Gaussian
as surveyed by Rioul [5, Section I].

In the following section, we demonstrate several applica-
tions of Theorem 2. In particular, we show that Costa’s EPI [6]
and its generalization [7] are immediate corollaries of Theorem
2, along with a new reverse EPI and a sharpening of the
Stam-Gross logarithmic Sobolev inequality. Also, we will see
that Theorem 2 leads to a very brief proof of the converse for
the rate region of the quadratic Gaussian two-encoder source-
coding problem [8]. Finally, an application to the one-sided
Gaussian interference channel is discussed. Proofs of the main
results are sketched in Section III.

II. APPLICATIONS

A. Generalized Costa’s EPI and a New Reverse EPI

Costa’s EPI [6] asserts concavity of entropy power, and
has been generalized to a vector setting by Liu et al. [7].
We demonstrate below that this generalization follows as a
corollary to Theorem 2 by taking V equal to X contaminated
by additive Gaussian noise. In this sense, Theorem 2 may be
interpreted as a further generalization of Costa’s EPI, where
the additive noise is no longer restricted to be Gaussian. First,
we have the following new EPI for three random summands
(one of which is Gaussian):
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Theorem 3. Let X ∼ PX,Z ∼ PZ and W ∼ N(0,Σ) be
independent, n-dimensional random vectors. Then

2
2
n (h(X+W)+h(Z+W))

≥ 2
2
n (h(X)+h(Z)) + 2

2
n (h(X+Z+W)+h(W)). (7)

Proof. This is an immediate consequence of Theorem 2 by
putting V = X + Z + W and rearranging exponents.

The vector generalization of Costa’s EPI now follows:

Theorem 4. [7] Let X ∼ PX and N ∼ N(0,Σ) be
independent, n-dimensional random vectors. For a positive
semidefinite matrix A � I ,

2
2
nh(X+A1/2N) ≥ |I −A|1/n2

2
nh(X) + |A|1/n2

2
nh(X+N).

Proof. Let N1,N2 be independent copies of N, and put W =
A1/2N1 and Z = (I − A)1/2N2. Since N = Z + W in
distribution, the claim follows from Theorem 3.

Theorem 3 also yields a new reverse EPI as a corollary,
which sharpens Stam’s inequality. Toward this end, suppose
X has smooth density f and define the entropy power N(X)
and Fisher information J(X) as

N(X) = 1
2πe2

2
nh(X) J(X) = E‖∇ ln f(X)‖2. (8)

Letting W ∼ N(0, tI) in Theorem 3 and applying de Bruijn’s
Identity as t→ 0, we obtain the following reverse EPI:

Theorem 5. Let X ∼ PX,Z ∼ PZ be independent, n-
dimensional random vectors with smooth densities. Then

nN(X + Z) ≤ N(X)N(Z) (J(X) + J(Z)) . (9)

In contrast to other reverse EPIs that tend to be more
restrictive in their assumptions (e.g., log-concavity of densities
[9]), inequality (9) applies generally and bounds the entropy
power N(X+Z) in terms of the marginal entropy powers and
Fisher informations. We refer the reader to the survey [4] for
an overview of other known reverse EPIs.

Stam’s inequality [10] (or, equivalently, the Gaussian log-
arithmic Sobolev inequality [11]) states N(X)J(X) ≥ n.
By taking X,Z to be IID in (9), we have sharpened Stam’s
inequality:

N(X)J(X) ≥ n
N
(

1√
2
(X + Z)

)
N(X)

. (10)

Finally, we note that Stam’s inequality controls the deficit in
the classical EPI in the following sense: if both X and Z nearly
saturate Stam’s inequality, then (9) can be rearranged to show
the classical EPI will also be nearly saturated for the sum
X+Z. A similar statement holds for the convolution inequality
for Fisher information. Indeed, applying Stam’s inequality to
the sum X + Z, inequality (9) yields:

1

J(X + Z)
≤
(

1

J(X)
+

1

J(Z)

)
p(X)p(Z), (11)

where p(X) := 1
nN(X)J(Z) ≥ 1, and p(Z) is defined

similarly.

B. Two-Encoder Quadratic Gaussian Source Coding

The converse for the two-encoder quadratic Gaussian source
coding problem was a longstanding open problem in the field
of network information theory until its ultimate resolution by
Wagner et al. [8]. Wagner et al.’s work built upon Oohama’s
earlier solution to the one-helper problem [12] and the in-
dependent solutions to the Gaussian CEO problem [13], [14].

Since Wagner et al.’s original proof of the sum-rate constraint,
other proofs have been proposed (e.g., [15]), however all
known proofs are quite complex. Below, we show that the
converse result for the entire rate region is a direct consequence
of Theorem 2, thus unifying the results of [8] and [12] under
a common and succinct EPI.

Theorem 6. [8] Let X,Y = {Xi, Yi}ni=1 be independent
identically distributed pairs of jointly Gaussian random vari-
ables with correlation ρ. Let φX : Rn → {1, . . . , 2nRX} and
φY : Rn → {1, . . . , 2nRY }, and define

dX ,
1

n
E
[
‖X− E[X|φX(X), φY (Y)]‖2

]
(12)

dY ,
1

n
E
[
‖Y − E[Y|φX(X), φY (Y)]‖2

]
. (13)

Then, for β(D) , 1 +
√

1 + 4ρ2D
(1−ρ2)2 ,

RX ≥
1

2
log

(
1

dX

(
1− ρ2 + ρ22−2RY

))
(14)

RY ≥
1

2
log

(
1

dY

(
1− ρ2 + ρ22−2RX

))
(15)

RX +RY ≥
1

2
log

(1− ρ2)β(dXdY )

2dXdY
. (16)

Our proof hinges on a simple corollary2 of Theorem 2:

Proposition 1. For X,Y as above,

2−
2
n (I(Y;U)+I(X;V |U)) ≥ ρ2 2−

2
n (I(X;U)+I(Y;V |U)) + 1− ρ2

for any U, V satisfying U → X→ Y → V .

Proof. Since mutual information is invariant to scaling, we
may assume without loss of generality that Yi = ρXi + Zi,
where Xi ∼ N(0, 1) and Zi ∼ N(0, 1 − ρ2), independent of
Xi. Now, Theorem 2 implies

2
2
n (h(Y|U)−I(X;V |U))≥ 2

2
n (h(ρX|U)−I(Y;V |U)) + 2

2
nh(Z)

= ρ22
2
n (h(X|U)−I(Y;V |U))+2πe(1− ρ2).

Since 2−
2
nh(Y) = 2−

2
nh(X) = 1

2πe , multiplying through by
1

2πe establishes the claim.

Proof of Theorem 6. For convenience, put U = φX(X) and
V = φY (Y). Using the Markov relationship U → X→ Y →
V , we may rearrange the exponents in Proposition 1 to obtain
the equivalent inequality

2−
2
n (I(X;U,V )+I(Y;U,V ))

≥ 2−
2
n I(X,Y;U,V )

(
1− ρ2 + ρ22−

2
n I(X,Y;U,V )

)
. (17)

The left- and right-hand sides of (17) are monotone decreasing
in 1

n (I(X;U, V ) + I(Y;U, V )) and 1
nI(X,Y;U, V ), respec-

tively. Therefore, if 1
nI(X,Y;U, V ) ≤ R and

1

n
(I(X;U, V ) + I(Y;U, V )) ≥ 1

2
log

1

D
(18)

for some pair (R,D), then we have D ≥
2−2R

(
1− ρ2 + ρ22−2R

)
, which is a quadratic inequality

with respect to the term 2−2R. This is easily solved using the
quadratic formula to obtain:

2−2R ≤ 2D

(1− ρ2)β(D)
=⇒ R ≥ 1

2
log

(1− ρ2)β(D)

2D
,

2Proposition 1 was first established by the author and Jiao in [16].
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where β(D) , 1 +
√

1 + 4ρ2D
(1−ρ2)2 . Note that Jensen’s inequal-

ity and the maximum-entropy property of Gaussians imply
1
nI(X;U, V ) ≥ 1

2 log 1
dX

and 1
nI(Y;U, V ) ≥ 1

2 log 1
dY

, so
that

1

n
(I(X;U, V ) + I(Y;U, V )) ≥ 1

2
log

1

dXdY
, (19)

establishing (16) since 1
nI(X,Y;U, V ) ≤

1
n (H(U) +H(V )) ≤ RX + RY . Similarly, Proposition
1 implies

22RX+log dX ≥ 2
2
n (I(X;U |V )−I(X;U,V )) = 2−

2
n I(X;V ) (20)

≥ (1− ρ2) + ρ22−
2
n I(Y;V ) (21)

≥ (1− ρ2) + ρ22−2RY . (22)

Rearranging (and symmetry) yields (14)-(15).

C. One-sided Gaussian Interference Channel

We now briefly discuss how Theorem 2 might be applied to
the interference channel3. Recall that the one-sided Gaussian
interference channel (GIC) is a memoryless channel, with
input-output relationship given by

Y1 = X1 +W (23)
Y2 = αY1 +X2 +W2, (24)

where Xi and Yi are the channel inputs and observations
corresponding to Encoder i and Decoder i, respectively, for
i = 1, 2. Here, W ∼ N(0, 1) and W2 ∼ N(0, 1 − α2) are
independent of each other and of the channel inputs X1, X2.
We assume |α| < 1 since the capacity is known in the
strong interference regime of |α| > 1. Observe that we have
expressed the one-sided GIC in degraded form, which has
capacity region identical to the corresponding non-degraded
version [18]. The capacity region of the one-sided GIC remains
unknown in the regime of |α| < 1.

For convenience, define Y0 = αY1 + W2, and let
C (α, P1, P2) denote the set of achievable rate pairs (R1, R2)
for the one-sided GIC described above, when user i is subject
to power constraint Pi, i = 1, 2. See [19] for formal defini-
tions.

Theorem 7. (R1, R2) ∈ C (α, P1, P2) only if

2−2R2+o(1) ≥ 2−
2
n
I(Xn

1 ,X
n
2 ;Y n

2 )

× sup
V :Y n

1 →Y
n
0 →V

{
α222R1− 2

n
I(Y n

0 ;V |Y n
1 ) + (1− α2)2

2
n
I(Y n

1 ;V )
}
,

for some PXn
1 X

n
2

= PXn
1
PXn

2
satisfying E[‖Xn

i ‖2] ≤ nPi,
i = 1, 2.

Proof. The proof is a direct consequence of Fano’s inequal-
ity and Theorem 2 applied to any V such that Y n1 →
Y n2 → V |Xn

2 . Since I(Y n2 ;V |Xn
2 ) = I(Y n0 ;V,Xn

2 ) and
I(Y n1 ;V |Xn

2 ) = I(Y n1 ;V,Xn
2 ), the supremum can be taken

over V : Y n1 → Y n0 → V instead of Y n1 → Y n2 → V |Xn
2 .

The Han-Kobayashi achievable region [19], [20] evaluated
for Gaussian inputs (without power control) can be expressed
as the set of rate pairs (R1, R2) satisfying Ri ≤ 1

2 log(1+Pi),
i = 1, 2 and

2−2R2 ≥ α2 P2 2
2R1

(P2 + 1− α2)(1 + α2P1 + P2)
+

1− α2

P2 + 1− α2
. (25)

3Costa’s EPI plays a role in GIC converse results (e.g., [17]). Since we have
seen that Theorem 2 subsumes Costa’s EPI, the GIC is a natural application.

Interestingly, (25) this takes a similar form to the outer
bound of Theorem 7; however, it is known that transmission
without power control is suboptimal for the Gaussian Z-
interference channel in general [21], [22]. Nevertheless, it may
be possible to identify a random variable V in the supremum
in Theorem 7, possibly depending on Xn

2 , which ultimately
improves known bounds.

III. PROOF SKETCH

Here we sketch the proofs of Theorems 1 and 2, complete
details can be found in [23]. For random variables X,Y ∼
PXY , we write X|{Y = y} to denote the random variable
X conditional on {Y = y}. A sequence of random variables
{Xn, n ≥ 1} will be denoted by the shorthand {Xn}, and
convergence of {Xn} in distribution to a random variable X∗
is written Xn

D−→ X∗.
We begin with an optimization problem: For a random

variable X ∼ PX , let Y be defined via the additive Gaussian
noise channel PY |X given by Y =

√
snrX + Z, where

Z ∼ N(0, 1), and define the family of functionals

sλ(X, snr) = −h(X) + λh(Y ) (26)

+ inf
V :X→Y→V

{
I(Y ;V )− λI(X;V )

}
parameterized by λ ≥ 1. For (X,Y,Q) ∼ PXQPY |X , define
the functional of PXQ

sλ(X, snr|Q) = −h(X|Q) + λh(Y |Q) (27)

+ inf
V :X→Y→V |Q

{
I(Y ;V |Q)− λI(X;V |Q)

}
.

We consider the optimization problem

Vλ(snr) = inf
PXQ :E[X2]≤1

sλ(X, snr|Q). (28)

In (28), it suffices to consider Q ∈ Q with |Q| ≤ 2. By
Fenchel-Caratheodory-Bunt, this is sufficient to preserve the
values of E[X2] =

∑
q p(q)E[X2|Q = q] and sλ(X, snr|Q) =∑

q p(q)sλ(X, snr|Q = q).
The essence of Theorem 1 is the explicit characterization:

Theorem 8.

Vλ(snr)=


1
2

[
λ log

(
λ2πe
λ−1

)
− log

(
2πe
λ−1

)
+ log(snr)

]
snr ≥ 1

λ−1

1
2

[
λ log (2πe(1 + snr))− log (2πe)

]
snr ≤ 1

λ−1
.

The idea behind proving Theorem 8 is that we only need to
consider Gaussian random variables in optimization problem
(28). Our argument is based on weak convergence and draws
inspiration from a technique employed by Geng and Nair for
establishing Gaussian optimality via rotational-invariance [24],
which has roots in a doubling trick applied successfully in the
study of functional inequalities (e.g., [25]–[27]). The critical
ingredients can be summarized as follows:

Lemma 1. There exists a sequence {Xn, Qn} satisfying

lim
n→∞

sλ(Xn, snr|Qn) = Vλ(snr) (29)

E[X2
n] ≤ 1 (30)

and (Xn, Qn)
D−→ (X∗, Q∗), with X∗|{Q∗ = q} ∼ N(µq, σ

2
X)

for PQ∗ -a.e. q, with σ2
X ≤ 1 not depending on q.

Lemma 2. If Xn
D−→ X∗ ∼ N(µ, σ2

X) and supn E[X2
n] <∞,

then lim infn→∞ sλ(Xn, snr) ≥ sλ(X∗, snr).
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The proof of Lemma 1 is sketched in Section III-A. The
proof of Lemma 2 is more mechanical (though, nontrivial)
and is omitted due to space constraint.

With the above Lemmas in hand, the proof of Theorem
8 follows from calculus and the classical EPI. We require
the following proposition, which is an easy corollary of the
conditional EPI.

Proposition 2. Let X ∼ N(0, γ) and Z ∼ N(0, 1) be
independent, and define Y =

√
snrX + Z. Then for λ ≥ 1,

inf
V :X→Y→V

(
I(Y ;V )− λI(X;V )

)
=

{
1
2

[
log ((λ− 1)γ snr)−λ log

(
λ−1
λ

(1 + γ snr)
)]

γ snr ≥ 1
λ−1

0 γ snr ≤ 1
λ−1

.

Proof of Theorem 8. Noting that sλ(X, snr) is invariant to
translations of E[X], it follows from Lemmas 1 and 2 that

Vλ(snr) = inf
0≤γ≤1

sλ(Xγ , snr), where Xγ ∼ N(0, γ).

Recalling the definition of sλ( · , snr), Proposition 2 implies

sλ(Xγ , snr)

=

{
1
2

[
λ log

(
λ2πe
λ−1

)
− log

(
2πe
λ−1

)
+ log(snr)

]
if γ snr ≥ 1

λ−1

1
2
[λ log (2πe (1 + γ snr))− log (2πeγ)] if γ snr ≤ 1

λ−1
.

Differentiating with respect to the quantity γ, we find that
1
2 [λ log (2πe (1 + γ snr))− log (2πeγ)] is decreasing in γ
provided γ snr ≤ 1

λ−1 . Therefore, taking γ = 1 minimizes
sλ(Xγ , snr) over the interval γ ∈ [0, 1], proving the claim.

Given the explicit characterization of Vλ(snr), a dual form
of (3), we are now in a position to prove Theorem 1.

Proof of Theorem 1. We first establish (3) under the addi-
tional assumption that E[X2] < ∞. Toward this goal, since
mutual information is invariant to scaling, it is sufficient to
prove that, for Y =

√
snrX + Z with E[X2] ≤ 1 and

Z ∼ N(0, 1) independent of X , we have

22(h(Y )−I(X;V )) ≥ snr 22(h(X)−I(Y ;V )) + 22h(Z) (31)

for V satisfying X → Y → V . Multiplying both sides by σ2

and choosing snr := Var(X)
σ2 gives the desired inequality (3)

when E[X2] <∞. Thus, to prove (31), observe by definition
of Vλ(snr) that

−h(X) + I(Y ;V ) ≥ λ(I(X;V )− h(Y )) + Vλ(snr). (32)

Minimizing the RHS over λ proves the inequality. In particular,
elementary calculus shows that the RHS of (32) is minimized
when λ satisfies λ

λ−1 = 1
2πe2−2(I(X;V )−h(Y )). Substituting

into (32) and recalling 22h(Z) = 2πe proves (31).
The assumption that E[X2] < ∞ can be eliminated via a

truncation argument. See [23].

A. Proof of Lemma 1

We now sketch the proof of Lemma 1, the most significant
technical ingredient needed to establish Theorem 8. We begin
with two lemmas, stated without proof (see [23] for details).
The first is a superadditive property enjoyed by sλ(X, snr|Q)
on doubling, and the second is a characterization of the normal
distribution in the context of weak convergence.

Lemma 3. Let PY |X be the Gaussian channel Y =
√
snrX+

Z, where Z ∼ N(0, 1) is independent of X . Now, sup-
pose (X,Y,Q) ∼ PXQPY |X , and let (X1, Y1, Q1) and

(X2, Y2, Q2) denote two independent copies of (X,Y,Q).
Define

X+ =
1√
2

(X1 +X2) X− =
1√
2

(X1 −X2) , (33)

and in a similar manner, define Y+, Y−. Letting Q = (Q1, Q2),
we have for λ ≥ 1

2sλ(X, snr|Q) ≥ sλ(X+, snr|X−,Q) + sλ(X−, snr|Y+,Q)

2sλ(X, snr|Q) ≥ sλ(X+, snr|Y−,Q) + sλ(X−, snr|X+,Q).

Lemma 4. Suppose (X1,n, X2,n)
D−→ (X1,∗, X2,∗) with

supn E[X2
i,n] < ∞ for i = 1, 2. Let (Z1, Z2) ∼ N(0, σ2I)

be pairwise independent of (X1,n, X2,n) and, for i = 1, 2,
define Yi,n = Xi,n + Zi. If X1,n, X2,n are independent and

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n, Y2,n) = 0, (34)

then X1,∗, X2,∗ are independent Gaussian random variables
with identical variances.

The proof of Lemma 4 is omitted due to space constraint.
However, we point out that it is similar in spirit to a famous
result of Bernstein: If X1, X2 are independent random vari-
ables such that X1 +X2 and X1 −X2 are independent, then
X1 and X2 are normal, with identical variances.

Proof of Lemma 1. For convenience, we will refer to any
sequence {Xn, Qn} satisfying (29)-(30) as admissible. Since
sλ(Xn, snr|Qn) is invariant to translations of the mean of
Xn, we may restrict our attention to admissible sequences
satisfying E[Xn] = 0 without any loss of generality.

Begin by letting {Xn, Qn} be an admissible sequence with
the property that

lim
n→∞

(h(Yn|Qn)− h(Xn|Qn)) ≤ lim inf
n→∞

(
h(Y ′n|Q′n)− h(X ′n|Q′n)

)
(35)

for any other admissible sequence {X ′n, Q′n}. Such a sequence
can always be constructed by a diagonalization argument, and
therefore exists. Moreover, we can show that the LHS of (35)
is finite due to Vλ(snr) <∞ and conditioning reduces entropy.

By the same logic as in the remark following (28), we
may assume that Qn ∈ Q, where |Q| = 3, since this is
sufficient to preserve the values of E[X2

n], sλ(Xn, snr|Qn)
and (h(Yn|Qn)− h(Xn|Qn)). Thus, since Q is finite and
E[X2

n] ≤ 1, the sequence {Xn, Qn} is tight. By Prokhorov’s
theorem, we may assume that there is some (X∗, Q∗) for
which (Xn, Qn)

D−→ (X∗, Q∗) by restricting our attention to
a subsequence of {Xn, Qn} if necessary. Moreover, E[X2

∗ ] ≤
lim infn→∞ E[X2

n] ≤ 1 by Fatou’s lemma.
Next, for a given n, let (X1,n, Q1,n) and (X2,n, Q2,n)

denote two independent copies of (Xn, Qn). Define

X+,n =
1√
2

(X1,n +X2,n) X−,n =
1√
2

(X1,n −X2,n),

In a similar manner, define Y+,n, Y−,n, and put Qn =
(Q1,n, Q2,n). Applying Lemma 3, we obtain

2sλ(Xn, snr|Qn)

≥ sλ(X+,n, snr|X−,nQn) + sλ(X−,n, snr|Y+,nQn), (36)

and the symmetric inequality

2sλ(Xn, snr|Qn)

≥ sλ(X+,n, snr|Y−,nQn) + sλ(X−,n, snr|X+,nQn). (37)
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By independence of X1,n and X2,n and the assumption that
E[Xn] = 0, we have

E[X2
+,n] = E[X2

−,n] =
1

2
E[X2

1,n] +
1

2
E[X2

2,n] = E[X2
n] ≤ 1.

Hence, it follows that the terms in the RHS of (36) and
the RHS of (37) are each lower bounded by Vλ(snr). Since
limn→∞ sλ(Xn, snr|Qn) = Vλ(snr) by definition, we find that

Vλ(snr)= lim
n→∞

1

2

(
sλ(X+,n, snr|Y−,nQn)+sλ(X−,n, snr|Y+,nQn)

)
.

In particular, by letting the random pair (X ′n, Q
′
n) correspond

to equal time-sharing between the pairs (X+,n, (Y−,nQn))
and (X−,n, (Y+,nQn)), we have constructed an admissible
sequence {X ′n, Q′n} which satisfies

lim
n→∞

sλ(X ′n, snr|Q′n) = Vλ(snr). (38)

The following identity can be shown by standard manipuation

h(Yn|Qn)− h(Xn|Qn) = h(Y ′n|Q′n)− h(X ′n|Q′n) (39)

+
1

2
I(X+,n;X−,n|Y+,n, Y−,n,Qn).

Since the sequence {X ′n, Q′n} is admissible, it must also
satisfy (35). Therefore, in view of (39) and the fact that the
LHS of (35) is finite, this implies that

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n, Y2,n,Qn) = 0.

This completes the proof since an application of Lemma 4
guarantees that, for PQ∗ -a.e. q, the random variable X∗|{Q∗ =
q} is normal with variance not depending on q, and moreover
we have already observed that E[X2

∗ ] ≤ 1, so the variance of
X∗|{Q∗ = q} is at most unity as claimed.

B. Extension to Random Vectors

The vector generalization of Shannon’s EPI is proved by
a combination of conditioning, Jensen’s inequality and induc-
tion. The same argument does not appear to readily apply in
generalizing Theorem 1 to its vector version due to complica-
tions arising from the Markov constraint X→ (X+W)→ V .
However, the desired generalization may be established by
noting an additivity property enjoyed by the dual form.

For a random vector X ∼ PX, let Y be defined via the
additive Gaussian noise channel Y = Γ1/2X+Z, where Z ∼
N(0, I) is independent of X and Γ is a diagonal matrix with
nonnegative diagonal entries. Analogous to the scalar case,
define for λ ≥ 1

sλ(X,Γ|Q) = − h(X|Q) + λh(Y|Q) (40)

+ inf
V :X→Y→V |Q

{
I(Y;V |Q)− λI(X;V |Q)

}
,

and consider the optimization problem

Vλ(Γ) = inf
PXQ :E[X2

i ]≤1,i∈[n]
sλ(X,Γ|Q). (41)

Theorem 9. If Γ = diag(snr1, snr2, . . . , snrn), then

Vλ(Γ) =
n∑
i=1

Vλ(snri).

Proof. Let Γ be a block diagonal matrix with blocks given by
Γ = diag(Γ1,Γ2). Partition X = (X1,X2) and Z = (Z1,Z2)

such that Yi = Γ
1/2
i Xi + Zi for i = 1, 2. Then, for any V

such that X→ Y → V |Q, it is shown in [23] that

sλ(X,Γ|Q) ≥ sλ(X1,Γ1|X2, Q) + sλ(X2,Γ2|Y1, Q). (42)

Hence, Vλ(Γ) ≥
∑2
i=1 Vλ(Γi). Induction proves the claim.

To finish, the proof of Theorem 2 follows similarly to that of
Theorem 1, but by first whitening W and employing Theorem
9 in place of Theorem 8.
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