
Optimal Exchange of Packets for Universal
Recovery in Broadcast Networks

Thomas A. Courtade, Student Member, IEEE, Bike Xie, Student Member, IEEE,
and Richard D. Wesel, Senior Member, IEEE

Abstract—Consider an arbitrarily connected broadcast net-
work of N nodes that all wish to recover k desired packets.
Each node begins with a subset of the desired packets and
broadcasts messages to its neighbors. For the case where nodes
must transmit an integer number of packets, this paper provides
necessary and sufficient conditions which characterize the set
of all transmission schemes that permit universal recovery (in
which every node learns all k packets). By relaxing the integer
transmission constraint, this paper gives a computable lower-
bound on the amount of information required to be broadcast to
achieve universal recovery. Furthermore, a network-coding-based
scheme (computable in polynomial time) can always achieve
this lower bound if packet splitting is permitted. In this way,
packet splitting can provide a significant reduction in the amount
of communication required for universal recovery. For cliques
with N nodes, this paper shows that splitting the packet into
N − 1 chunks allows the lower bound to be achieved with high
probability.

I. INTRODUCTION

CONSIDER an arbitrary network of N nodes that all wish
to recover k desired packets. Each node begins with

a subset of the desired packets and broadcasts messages to
its neighbors over discrete, memoryless, and interference-free
channels. Furthermore, every node knows which packets are
already known by each node and knows the topology of the
network. How many transmissions are required to disseminate
the k packets to every node in the network? How should this
be accomplished? These are the essential questions addressed.

This model has several applications to tactical networks,
and we give one of them here. Consider a scenario in which
an aircraft flies over a group of nodes on the ground and
tries to deliver a video stream. Each ground node might
only receive a subset of the packets due to interference,
obstructions, and other signal integrity issues. In order to
recover the transmission, the nodes are free to communicate
with their neighbors, but would like to minimize the number
of transmissions in order to conserve battery power (or avoid
detection, etc.). How should the nodes share information, and
what is the minimum number of transmissions required so that
the entire network can recover the video stream?

For the special case when the network is a clique, upper and
lower bounds for this problem have been recently described in
[14]. Our paper provides results for the general case, describes
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the performance improvement facilitated by packet splitting,
and derives precise results on the advantage of packet splitting
for the special case of a clique.

The problem addressed in this paper is related to the index
coding problem originally introduced by Birk and Kol in [4].
Specifically, generalizing the index coding problem to permit
each node to be a transmitter (instead of having a single server)
and further generalizing so that the network need not be a
single hop network leads to a class of problems that includes
our problem as a special case in which each node desires to
receive all packets.

One significant result in index coding is that nonlinear index
coding outperforms the best linear index code in certain cases
(See [12], [2].). As discussed above, our problem is distinct
from the index coding problem, and it turns out that linear
encoding does achieve the minimum number of transmissions
required for universal recovery and at least sometimes this
solution is computable in polynomial time.

This paper is organized as follows. Section II defines the
problem and introduces basic definitions and notation. Section
III describes our main results: (1) necessary and sufficient
conditions describing all transmission strategies allowing uni-
versal recovery, and (2) achievability of a (polynomial-time)
computable lower bound using packet-splitting. These results
for general networks are specialized and strengthened for the
special case when the network is a clique. Section IV sketches
the proofs for these results. Section V delivers the conclusions
and discusses directions for future work.

II. SYSTEM MODEL

This paper considers an arbitrary network T of N nodes.
The network must be connected, but it need not be fully
connected (a clique). A graph GT = (V, E) describes the
specific connections in the network, where V is the set of
vertices {vi : i ∈ {1, . . . , N}} (each corresponding to a node)
and E is the set of edges connecting nodes. We assume that
the edges in E are undirected, but our work easily extends to
directed graphs. We frequently use the notation [m] to denote
the set {1, . . . ,m} throughout.

Each node wishes to recover the same k desired packets,
and each node begins with a (possibly empty) subset of the
desired packets. Pi ⊆ {p1, . . . , pk} is the set of packets
originally available at node i, and {Pi}N

i=1 satisfies
⋃N

i=1 Pi =
{p1, . . . , pk}. Each pj ∈ F, where F is some finite field (e.g.
F = GF(2m)).
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Let the set Γ(i) be the neighbors of node i. There exists an
edge e ∈ E connecting two vertices vi, vj ∈ V iff i ∈ Γ(j).
For convenience, i ∈ Γ(i). Node i broadcasts messages to its
neighbors Γ(i) over discrete, memoryless, and interference-
free channels. If S is a set of nodes, then we define Γ(S) =
∪i∈SΓ(i).

This paper seeks to determine the minimum amount of
communication required to achieve universal recovery of the
k packets. An important consideration is whether packets are
considered indivisible (so that the smallest unit of transmission
is a packet) or packets may be split into chunks so that a
fraction of a packet may be transmitted. We will consider both
cases and ultimately show the benefit of packet splitting.

A. Indivisible Packets

When packets are deemed indivisible, a single transmission
by user i consists of sending a packet (some z ∈ F) to all nodes
j ∈ Γ(i). Following [2], let B(T ) be the minimum required
number of such transmissions that allow universal recovery.
Throughout this paper, we assume error-free broadcast chan-
nels and orthogonal multiple-access channels (i.e. there is no
interference from simultaneous transmissions). Thus, the task
of determining B(T ) is combinatorial.

Example 1 (Line Network): Suppose T is a network of
nodes connected along a line as follows: V = {v1, v2, v3},
E = {(v1, v2), (v2, v3)}, P1 = {p1}, P2 = ∅, and P3 = {p2}.
Note that each node must transmit at least once in order for all
nodes to recover {p1, p2}, hence B(T ) ≥ 3. Suppose node 1
transmits p1 and node 3 transmits p2. Then (upon receipt of p1

and p2 from nodes 1 and 3) node 2 transmits p1⊕p2, where ⊕
indicates addition in the finite field F. This strategy requires 3
transmissions and allows each user to recover {p1, p2}. Hence
B(T ) = 3.

Example 1 demonstrates a transmission strategy that uses
two rounds of communication. The broadcasts by node i in
a particular round of communication can depend only on the
information available to node i prior to that round (i.e. Pi and
previously received transmissions from neighboring nodes). In
other words, the broadcasts are causal.

Example 2 (Clique): Suppose T is a network of nodes
that are fully connected so as to form a clique as follows:
Pi = {p1, p2, p3}\pi, and GT is a clique of size 3. Clearly
one transmission is not sufficient, thus B(T ) ≥ 2. It can be
seen that two transmissions suffice: let node 1 transmit p2

which lets node 2 have P2 ∪ p2 = {p1, p2, p3}. Now, node
2 transmits p1 ⊕ p3, allowing nodes 1 and 3 to each recover
all three packets. Thus B(T ) = 2. Since each transmission
was only a function of the packets originally available at
the corresponding node, this transmission strategy can be
accomplished in a single round of communication.

B. Divisible Packets

Suppose that we can split each packet into t equally sized
chunks (i.e. pi ∈ Ft). The resulting problem has the same
general form as the original problem except that the original
k packets are replaced by kt smaller packets (chunks) and

the t chunks that form one of the original packets are either
all present or all absent from any particular node. Using the
notation of [2], we denote the new network of kt packets as
the product of t instances of the original network T ×· · ·×T
(t times) or simply T t.

Note that B(T t) for the network T t created by splitting
each packet into t chunks will be the number of “chunk”
transmissions. Each chunk transmission has length only 1/t
of an original packet transmission. To normalize so that we
can properly evaluate the benefit of packet splitting, define
Bt(T ) = B(T t)

t (as in [2]).
Example 3 (Clique with Packet Splitting): Let T be the

network of Example 2 and consider the network T 2 = T ×T .
Using superscripts to identify the chunks of a given packet,
we can express each Pi as follows:

Pi = {p(1)
1 , p

(2)
1 p

(1)
2 , p

(2)
2 , p

(1)
3 , p

(2)
3 }\{p(1)

i , p
(2)
i }.

Three chunk transmissions allow universal recovery as
follows: Node 1 transmits p

(2)
2 ⊕ p

(2)
3 . Node 2 transmits

p
(1)
1 ⊕p

(1)
3 . Node 3 transmits p

(2)
1 ⊕p

(1)
2 . Thus, B(T 2) = 3 and

B2(T ) = 1.5. Hence, if we were allowed to split the packets
of Example 2 into two symbols each (e.g. pi → (p(1)

i , p
(2)
i )),

it would suffice to transmit 3 chunks (i.e. 1.5 packets instead
of 2 packets).

Note that the benefit of packet splitting is not monotonic.
This can be observed by considering B3(T ) for the network
T defined in Example 2.

III. MAIN RESULTS

In this section, we state our main results. In subsection
III-A, we give results that are applicable to an arbitrary
broadcast network. In subsection III-B, we give several results
that are specialized to clique networks.

A. Arbitrarily Connected Networks

Let bj
i be the number of transmissions from node i during

round j. In this way, the total number of packet transmissions
summing over all rounds is

∑N
i=1

∑r
j=1 bj

i . Also, let {bj
i}

denote the set of bj
i values for i ∈ [N ] and j ∈ [r].

Define the region Rr ⊂ ZN×r
+ as follows:

{bj
i} ∈ Rr if and only if:
∀ ∅ ( S0 ⊆ · · · ⊆ Sr ( [N ] satisfying Sj ⊆ Γ(Sj−1)
for each j ∈ [r], the following inequalities hold :

r∑

j=1

∑

i∈Sc
j
∩Γ(Sj−1)

b
(r+1−j)
i ≥

∣∣∣∣∣
⋂

i∈Sr

Pc
i

∣∣∣∣∣ . (1)

Theorem 1: For a fixed number of communication rounds
r, a transmission strategy in which node i makes exactly bj

i

transmissions during the jth round of communication permits
universal recovery if and only if {bj

i} ∈ Rr.
Thus, the family of inequalities defining Rr are necessary

and sufficient for universal recovery. These inequalities utilize
sequences of sets of the form ∅ ( S0 ⊆ · · · ⊆ Sr ( [N ]
satisfying Sj ⊆ Γ(Sj−1) for each j ∈ [r]. The inequalities
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can be thought of as “generalized cutset bounds” which govern
the information flow in the multihop broadcast networks under
consideration.

Remark 1: As the proof of Theorem 1 (given in Section IV)
demonstrates, for any feasible vector {bj

i} (i.e. {bj
i} ∈ Rr),

a corresponding transmission strategy in which user i makes
exactly bj

i transmissions during round j can be computed
in polynomial time using the algorithm described in [15].
Therefore, the difficulty in solving the broadcast problem lies
solely in finding the optimal solution to the ILP defined by
minimizing

∑N
i=1

∑r
j=1 bj

i subject to {bj
i} ∈ Rr.

We give two brief examples to demonstrate the utility of
Theorem 1.

Example 4 (Reduction to Cutset Bounds): In their most
general form, the constraints defining Rr may be difficult to
interpret, however they reduce to the familiar cutset bounds
when S0 = · · · = Sr = S for some nonempty S ( [N ]:

∑

i∈Sc∩Γ(S)

r∑

j=1

bj
i ≥

∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣ .

In words, the total number of packets that flow into the set
of nodes S must be greater than or equal to the number of
packets that no node in S has.

Example 5 (Line Network Revisited): In the 3-node line
network of Example 1, the reader can verify that R2 reduces
to:

b1
1 ≥ 1, b1

3 ≥ 1, b2
2 ≥ 1

after eliminating redundant constraints.
From this example (in particular since b2

2 ≥ 1), it is clear
that multiple rounds may be necessary. The delay created
by information propagating through a multihop network is
captured by the constraints defining Rr.

While the above examples are relatively simple, some more
interesting applications of this theorem to clique networks are
given in subsection III-B.

Although Theorem 1 defines an ILP which can be solved to
obtain B(T ), solving an ILP is NP-hard in general. Thus, it is
only practical to compute B(T ) for relatively small networks.
However, a lower bound for B(T ) can be efficiently computed
by solving a corresponding Linear Program (LP) relaxation.
In particular, let RLP

r ⊂ RN×r be defined in exactly the same
way asRr with the integer constraint on bj

i replaced by bj
i ≥ 0.

This yields the following LP1:

min
{{bj

i
}:{bj

i
}∈RLP

r }

N∑

i=1

r∑

j=1

bj
i . (2)

Define BLP (T ) to be the optimal value of LP (2) for
a network T and r sufficiently large. Because the LP is a
relaxation of the original ILP, BLP (T ) ≤ B(T ). However, it

1As posed, LP (2) has an exponential number of constraints. However, it can
be recast in terms of N different max-flow problems, each with a polynomial
number of constraints and variables. Thus, solving LP (2) has polynomial
complexity. This argument is omitted due to space constraints.

turns out that BLP (T ) is achievable with packet splitting as
stated in the following theorem:

Theorem 2: For any network T , we have:

lim
t→∞

Bt(T ) = BLP (T ).

Moreover, there exists a finite t0 ∈ N such that Bt0(T ) =
BLP (T ).

In other words, Theorem 2 states that one can achieve the
LP lower bound (which is efficiently computable) by packet-
splitting (i.e. splitting the packets into smaller sub-packets).
This was observed in Example 3, where B2(T ) = BLP (T ) =
1.5 and B(T ) = 2.

A natural question is whether or not t0 can be determined
for specific networks of interest. This is explored for clique
networks in the following subsection.

B. Clique Networks

Theorems 1 and 2 can be applied to specific networks or
topologies of interest to obtain results that can be practical and
powerful. In this paper, due to space limitations, we focus our
attention on the special case of clique networks as an important
example. Extensions to a much broader class of networks can
be found in the follow-on paper [16] by the present authors.

Theorem 3: For a given network T , if GT is a clique of size
N , then B(T ) is the optimal value of the following Integer
Linear Program (ILP):

minimize
N∑

i=1

bi (3)

subject to:
∑

i∈S
bi ≥

∣∣∣∣∣
⋂

i∈Sc

Pc
i

∣∣∣∣∣ , ∀∅ ( S ( [N ].

(bi is integral.)

Moreover, if {b∗i } is an optimal solution to the above ILP,
then there exists an optimal transmission strategy in which
each node i makes exactly b∗i transmissions.

The constraints in the ILP of Theorem 3 are equivalent to
{bi} ∈ R1 (i.e., the traditional cutset bounds), and hence one
round of communication is sufficient for achieving the min-
imum number of transmissions when the broadcast network
is a clique. This implies that node i only needs to transmit
functions of Pi. Adaptation based on previous transmissions
is not necessary.

In many real-world scenarios, packets are available at each
node according to some random process. For the following
theorem, consider a model in which packets are distributed
randomly in a network. Specifically, let each packet be avail-
able at each node (independently) with probability q.

In this context universal recovery means that all nodes
recover all of the packets that at least one node had originally.
In other words, we disregard the packets that aren’t available
at any node. This induces a probability measure on the set of
possible networks where k = |∪N

i=1Pi| is fixed. In the sequel,
probabilities are with respect to this measure.
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Theorem 4: With probability arbitrarily close to 1 as k →
∞, the following relationship holds:

BN−1(T ) = BLP (T ) =
1

N − 1

N∑

i=1

|Pc
i |,

and an optimal {b∗i } is:

b∗i =
1

N − 1

N∑

j=1

|Pc
j | − |Pc

i | for i ∈ [N ].

In other words, splitting the packets into at most N − 1
chunks will achieve the LP lower bound with high probability.
Moreover, with high probability, we have the remarkable result
that

∑
j 6=i b∗j = |Pc

i | for all i (i.e., each node receives exactly
the number of packets it needed, and no more).

Theorem 4 is stronger than Theorem 2 in the sense that
it provides an exact value of t0. However its strength is
weakened because it holds with high probability instead of
with probability one. Below, we conjecture that further packet-
splitting is never required in a clique network.

Conjecture 1: Splitting packets into at most N − 1 chunks
is sufficient to achieve the LP lower bound on the number of
broadcasts required in a clique network.

Remark 2: Clearly the conjecture holds for N = 2. It can
be verified (somewhat tediously) that the conjecture also holds
for N = 3 by manipulating the constraints of Theorem 3.
Monte Carlo experiments for N ≤ 12 and a variety of k values
support this conjecture.

IV. PROOFS

This section contains the proofs of the results presented in
section III.

A. Arbitrary Networks

Proof of Theorem 1 : Due to space limitations, the com-
plete proof of Theorem 1 has been omitted and can be found in
the follow-on paper [16] by the present authors. This proof is
accomplished by reducing the problem at hand to an instance
of a single-source network coding problem and invoking the
Max-Flow Min-Cut Theorem for network information flow [6].
Then, it can be shown that it is both necessary and sufficient to
consider cuts which are characterized by the set of inequalities
described by (1).

Definition 1: A rational LP is a linear program in which the
constraint coefficients and cost vector coefficients are rational
numbers.

Lemma 1: If the triple (A, b, c) defines a rational LP that
is feasible and bounded from below, then there exists a vector
x∗ with rational coefficients which minimizes cT x subject to
Ax ≤ b.

Proof: If the LP is feasible and bounded from below, then
the optimum is achieved at some extreme point x∗ which can
be obtained by solving a rational system of equations, and
hence is rational itself.

Definition 2: A sequence {an}∞n=1 is subadditive if
am+n ≤ am + an for all m, n ∈ N.

Lemma 2: Bt(T ) is subadditive.
Proof: Let t = t1 + t2. Note that B(T t) ≤ B(T t1) +

B(T t2) since B(T t1) + B(T t2) broadcasts are achievable
for the network T t by concatenating the optimal broadcast
strategies for networks T t1 and T t2 . Thus: B(T t) = B(T t)

t ≤
B(T t1 )+B(T t2 )

t1+t2
≤ Bt1(T ) + Bt2(T ).

Lemma 3 (Fekete’s Lemma [17] ): If {an}∞n=1 is a subad-
ditive sequence of nonnegative terms, then limn→∞ an

n exists
and is equal to inf{an

n : n ∈ N}.
Proof of Theorem 2 : By Lemma 1, there is a set of

rational numbers {b∗ji }i,j which minimizes LP (2). Express
each b∗ji in its rational form as b∗ji = pi,j/qi,j , where
pi,j , qi,j ∈ N. Let t0 = LCM({qi,j}i,j). Then, each b∗ji =
p′i,j/t0, where p′i,j ∈ N. If we consider the network T t0 ,
then | ∩i∈S Pc

i | 7→ t0| ∩i∈S Pc
i | and defines the corresponding

region Rt0
r for T t0 . It follows that the set of integers {p′i,j}i,j

minimizes the following ILP, which, by definition, has optimal
value equal to Bt0(T ):

min
{{bj

i
}:{bj

i
}∈Rt0

r }
1
t0

N∑

i=1

r∑

j=1

bj
i .

Thus, BLP (T ) = Bt0(T ) for some finite t0 ∈ N. By Lem-
mas 2 and 3, this establishes that limt→∞Bt(T ) = BLP (T ).

B. Clique Networks

Proof of Theorem 3: In the case where the broadcast
network is a clique of size N , we have that Sc

j ∩Γ(Sj−1) = Sc
j

for any ∅ ( Sj−1 ⊆ Sj ( [N ]. Therefore, the constraints
defining Rr in Theorem 1 become:

r∑

j=1

∑

i∈Sc
j

br+1−j
i ≥

∣∣∣∣∣
⋂

i∈Sr

Pc
i

∣∣∣∣∣ . (4)

Now, suppose some {bj
i}i,j satisfy the conditions of (4) for any

appropriate increasing sequence of sets {Sj}r
j=1, and consider

a modified set {b̃j
i}i,j defined as: b̃r

i =
∑r

j=1 bj
i and b̃j

i = 0
for j ∈ [r − 1]. By construction, Sc

j+1 ⊆ Sc
j , therefore, using

the definition of {b̃j
i}i,j , we have:

∑

i∈Sc
1

b̃r
i ≥

r∑

j=1

∑

i∈Sc
j

br+1−j
i ≥

∣∣∣∣∣
⋂

i∈Sr

Pc
i

∣∣∣∣∣ .

Since
∣∣⋂

i∈S1
Pc

i

∣∣ ≥ ∣∣⋂
i∈Sr

Pc
i

∣∣, when the broadcast net-
work is a clique of size N , it is sufficient to consider
constraints of the form:

∑

i∈Sc

bi ≥
∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣ , ∀∅ ( S ( [N ]. (5)

In the model where packets are randomly distributed, quan-
tities such as |Pi| and | ∪i∈S Pi| are random variables. We
continue to adopt the notation that | ∪N

i=1 Pi| = k. Consider a
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single packet pj . The following observation will be useful in
what follows:

Pr

(
pj ∈

⋂

i∈S
Pc

i

)
=

(1− q)|S| − (1− q)N

1− (1− q)N
. (6)

This observation follows by conditioning on the fact that
packets not available to any node are excluded. The following
lemma will also be useful:

Lemma 4: If 0 < q < 1 is fixed, then there exists some
δ > 0 such that the following inequality holds for all ` ∈
{2, . . . , N − 1}:

N − `

N − 1
≥ (1− q)` − (1− q)N

1− q − (1− q)N
+ δ.

Proof: We write ` = θ · 1 + (1− θ) ·N , where θ = N−`
N−1 .

Since (1− q)x is strictly convex in x, by Jensen’s inequality
we have:

(1− q)` − (1− q)N

1− q − (1− q)N
<

N − `

N − 1
.

Taking δ to be the minimum gap in the above inequality for
the values ` ∈ {2, . . . , N − 1} completes the proof.

Proof of Theorem 4 : The proof of the theorem is carried
out in two steps: verifying feasibility of the solution and
verifying optimality of the solution. This is accomplished in
Lemmas 5 and 6.

First, consider the following set of inequalites which are a
subset of the inequalities described by (5):

N∑

i=1
i6=j

bi ≥ |Pc
i | for 1 ≤ j ≤ N. (7)

These form a set of N linearly independent inequalities, hence
the vector {b̃i}N

i=1 which satisfies each inequality in (7) with
equality is uniquely defined. In fact, some algebra reveals that
each b̃j can be expressed as:

b̃j =
1

N − 1

N∑

i=1

|Pc
i | − |Pc

j |. (8)

Lemma 5 (Feasibility of {b̃i}N
i=1): As k → ∞, {b̃i}N

i=1 is
feasible with probability approaching 1.

Proof: We must verify that:

∑

i∈Sc

b̃i ≥
∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣ (9)

holds with high probability for all subsets S ⊆ [N ] satisfying
2 ≤ |S| ≤ N − 1 (the case |S| = 1 is satisfied by the
definition of {b̃i}N

i=1). Substitution of (8) into (9) along with
some algebra yields that the following equivalent conditions
must hold:

(
N − |S|
N − 1

) N∑

i=1

1
k
|Pc

i | −
∑

i∈Sc

1
k
|Pc

i | ≥
1
k

∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣

Now, note that for any S ,
∣∣⋂

i∈S Pc
i

∣∣ is a random variable
which can be expressed as

∣∣⋂
i∈S Pc

i

∣∣ =
∑k

j=1 XS
j , where

XS
j is an indicator random variable taking the value 1 if pj ∈⋂
i∈S Pc

i and 0 otherwise. From (6) we have:

Pr
(
XS

j = 1
)

=
(1− q)|S| − (1− q)N

1− (1− q)N
.

By the Law of Large Numbers, for any η > 0:

Pr

(∣∣∣∣∣
1
k

∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣−
(1− q)|S| − (1− q)N

1− (1− q)N

∣∣∣∣∣ > η

)
< εk,

where εk → 0 as k →∞. Thus, by the union bound, Lemma
4, and taking η sufficiently small, the following string of
inequalities holds with arbitrarily high probability as k →∞:

(
N − |S|
N − 1

) N∑

i=1

1
k
|Pc

i | −
∑

i∈Sc

1
k
|Pc

i |

≥
(

N − |S|
N − 1

)(
(1− q)− (1− q)N

1− (1− q)N
− (2N − 1)η

)

≥ (1− q)S − (1− q)N

1− (1− q)N
+ η

≥ 1
k

∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣ .

Lemma 6 (Optimality of {b̃i}N
i=1): If N is a clique, then

the following inequality holds:

BLP (N ) ≥ 1
N − 1

N∑

i=1

|Pc
i | =

N∑

i=1

b̃i. (10)

Proof: The equality in (10) follows by definition of
{b̃i}N

i=1.
Consider the dual of the LP relaxation of (3). The dual LP

can be expressed as:

maximize
∑

S
λS

∣∣∣∣∣
⋂

i∈S
Pc

i

∣∣∣∣∣ (11)

subject to: ∑

S
λSI(i /∈ S) ≤ 1, ∀i ∈ [N ]

λS ≥ 0.

In the above formulation, there is a dual variable λS for each
nonempty subset S ( [N ], and I(·) is the usual indicator
function.

Consider the following choice of dual variables:

λS =
{

1
N−1 if S = {j} for some j

0 otherwise.

A quick check shows that
∑
S λSI(i /∈ S) = 1 for all

i, hence this choice of dual variables corresponds to a dual
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feasible point. Further, the objective function evaluated at this
point is:

∑

S
λS |

⋂

i∈S
Pc

i | =
1

N − 1

N∑

i=1

|Pc
i |.

Since the dual objective function evaluated at any feasible
point provides a lower bound on the optimal value in the
primal problem, the lemma is proved.

V. CONCLUSIONS

This paper studies an arbitrarily connected broadcast net-
work of N nodes that all wish to recover k desired packets
originally dispersed among the nodes. For the case where
nodes must transmit an integer number of packets, we derive
necessary and sufficient conditions which characterize the set
of transmission strategies permitting universal recovery.

Relaxing the integer transmission constraint provides a com-
putable lower-bound on the amount of information required
to be broadcast to achieve universal recovery. Furthermore,
a network-coding-based scheme (computable in polynomial
time) can always achieve this lower bound if packet splitting
is permitted. In this way, packet splitting can provide a
significant reduction in the amount of communication required
for universal recovery.

For cliques with N nodes, this paper shows that splitting
the packet into N − 1 chunks allows the lower bound to be
achieved with high probability. In fact, this high probability
result includes explicit construction for an optimal transmis-
sion strategy. This solution is completely efficient in the sense
that every node receives an amount of information that exactly
equals its number of missing packets.
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