
1136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Coded Cooperative Data Exchange in
Multihop Networks

Thomas A. Courtade, Member, IEEE, and Richard D. Wesel, Senior Member, IEEE

Abstract— Consider a connected network of n nodes that
all wish to recover k desired packets. Each node begins with
a subset of the desired packets and exchanges coded packets
with its neighbors. This paper provides necessary and sufficient
conditions that characterize the set of all transmission strategies
that permit every node to ultimately learn (recover) all k packets.
When the network satisfies certain regularity conditions and
packets are randomly distributed, this paper provides tight
concentration results on the number of transmissions required
to achieve universal recovery. For the case of a fully connected
network, a polynomial-time algorithm for computing an opti-
mal transmission strategy is derived. An application to secrecy
generation is discussed.

Index Terms— Coded cooperative data exchange, universal
recovery, network coding.

I. INTRODUCTION

CONSIDER a connected network of n nodes that all wish
to recover k desired packets. Each node begins with

a subset of the desired packets and broadcasts messages to
its neighbors over discrete, memoryless, and interference-free
channels. Furthermore, every node knows which packets are
already known by each node and knows the topology of the
network. How many transmissions are required to disseminate
the k packets to every node in the network? How should this be
accomplished? These are the essential questions addressed. We
refer to this as the Coded Cooperative Data Exchange (CCDE)
problem, or just the Cooperative Data Exchange problem.

This work is motivated in part by emerging issues in
distributed data storage. Consider the problem of backing
up data on servers in a large data center. One commonly
employed method to protect data from corruption is replica-
tion. Using this method, large quantities of data are replicated
in several locations so as to protect from various sources
of corruption (e.g., equipment failure, power outages, natural
disasters, etc.). As the quantity of information in large data

Manuscript received March 15, 2012; revised May 31, 2013; accepted
July 5, 2013. Date of publication November 14, 2013; date of current version
January 15, 2014. This work was supported in part by Rockwell Collins
under Contract 4502769987 and in part by the NSF Center for Science of
Information under Grant CCF-0939370. This paper was presented at the
2010 Military Communications Conference [1] and the 2010–2011 Allerton
Conference on Communication, Control, and Computing [2], [3].

T. A. Courtade was with the Department of Electrical Engineering,
University of California, Los Angeles, CA 90095 USA. He is now with
the Department of Electrical Engineering, Stanford University, Stanford, CA
94305 USA (e-mail: courtade@stanford.edu).

R. D. Wesel is with the Electrical Engineering Department, University of
California, Los Angeles, CA 90095 USA (e-mail: wesel@ee.ucla.edu).

Communicated by M. Franceschetti, Associate Editor for Communications.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2290993

centers continues to increase, the number of file transfers
required to complete a periodic replication task is becoming an
increasingly important consideration due to time, equipment,
cost, and energy constraints. The results contained in this paper
address these issues by characterizing the minimum number
of multicast transmissions that must take place in order to
successfully replicate the data collectively held by the servers
at all locations.

This model also has natural applications in the context of
tactical networks, and we give one of them here. Consider a
scenario in which an aircraft flies over a group of nodes on
the ground and tries to deliver a video stream. Each ground
node might only receive a subset of the transmitted packets
due to interference, obstructions, and other signal integrity
issues. In order to recover the transmission, the nodes are
free to communicate with their nearby neighbors, but would
like to minimize the number of transmissions in order to
conserve battery power (or avoid detection, etc.). How should
the nodes share information, and what is the minimum number
of transmissions required so that the entire network can recover
the video stream? The results in the present paper provide
insight into how a cooperative protocol at the application-layer
(so that communication links appear noiseless and error-free)
can be optimized.

Beyond the examples mentioned above, the results presented
herein can also be applied to practical secrecy generation
amongst a collection of nodes. We consider this application
in detail in Section IV.

A. Related Work

Distributed data exchange problems have received a great
deal of attention over the past several years. The powerful
techniques afforded by network coding [4], [5] have paved
the way for cooperative communications at the packet-level.

The coded cooperative data exchange problem (also called
the universal recovery problem in [1]–[3]) was originally intro-
duced by El Rouayheb et al. in [6], [7] for a fully connected
network (i.e., a single-hop network). For this special case,
a randomized algorithm for finding an optimal transmission
strategy was given in [8], and the first deterministic algorithm
was recently given in [9]. In the concluding remarks of [9], the
weighted universal recovery problem (in which the objective is
to minimize the weighted sum of transmissions by nodes) was
posed as an open problem. However, this was solved using a
variant of the same algorithm in [10], and independently by the
present authors using the submodular optimization algorithm
presented herein (originally appearing in [3]).

0018-9448 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1137

The coded cooperative data exchange problem is related
to the index coding problem originally introduced by
Birk and Kol in [11]. Specifically, generalizing the index
coding problem to permit each node to be a transmitter (instead
of having a single server) and further generalizing so that the
network need not be a single hop network leads to a class of
problems that includes our problem as a special case in which
each node desires to receive all packets.

Also closely related to the cooperative data exchange prob-
lem is the extensive work on gossip algorithms for information
dissemination (cf. [12, Chapter 3] and the references therein).
Gossip algorithms are defined as a class of decentralized
network communication protocols which can be employed
to disseminate data within a network. Gossip algorithms for
data dissemination assume each node initially begins with a
unique piece of data and that nodes communicate in a unicast
fashion. In contrast, the coded cooperative data exchange
problem allows for nodes to initially possess common data
and permits multicast transmissions. Moreover, typical results
in the literature on gossip algorithms show that a gossip
protocol can disseminate data in order-optimal time, whereas
in the coded cooperative data exchange problem, we seek to
characterize the exact number of transmissions which must
take place in order to successfully disseminate data. Despite
these fundamental differences, we would like to point out that
the work on gossip algorithms that is most closely related to
the present paper is [13]. In [13], the authors show that a gossip
algorithm employing random linear network coding can attain
order optimal dissemination time. Similarly, in the present
paper, we show that linear network coding is sufficient to
optimally solve the coded cooperative data exchange problem.

This paper applies principles of cooperative data exchange
to generate secrecy in the presence of an eavesdropper. In
this context, the secrecy generation problem was originally
studied in [14]. In [14], Csiszar and Narayan gave single-letter
characterizations of the secret-key and private-key capacities
for a network of nodes connected by an error-free broad-
cast channel. While general and powerful, these results left
two practical issues as open questions. First, (as with many
information-theoretic investigations) the results require the
nodes to observe arbitrarily long sequences of i.i.d. source
symbols, which is generally not practical. Second, no construc-
tive algorithm is provided in [14] which achieves the respective
secrecy capacities. More recent work in [15], [16] addressed
the latter point. Also related, though to a lesser extent, is the
body of work on secret-sharing schemes. We refer the reader
to the survey [17] and the references therein for further details.

B. Our Contributions

In this paper, we provide necessary and sufficient conditions
for achieving universal recovery1 in arbitrarily connected mul-
tihop networks. We specialize these necessary and sufficient
conditions to obtain precise results in the case where the
underlying network topology satisfies some modest regularity
conditions.

1In this paper, we use the term universal recovery to refer to the ultimate
condition where every node has successfully recovered all packets.

For the case of a fully connected network, we provide an
algorithm based on submodular optimization which solves
the cooperative data exchange problem. This algorithm is
unique from the others previously appearing in the literature
(cf. [8]–[10]) in that it exploits submodularity2. As a corollary,
we provide exact concentration results when packets are
randomly distributed in a network.

In this same vein, we also obtain tight concentration results
and approximate solutions when the underlying network is
d-regular and packets are distributed randomly.

Furthermore, if packets are divisible (allowing transmissions
to consist of partial packets), we prove that the traditional
cut-set bounds can be achieved for any network topology. In
the case of d-regular and fully connected networks, we show
that splitting packets does not typically provide any significant
benefits.

Finally, for the application to secrecy generation, we lever-
age the results of [14] in the context of the cooperative data
exchange problem for a fully connected network. In doing
so, we provide an polynomial-time algorithm that achieves
the secrecy capacity without requiring any quantities to grow
asymptotically large.

C. Organization

This paper is organized as follows. Section II formally
introduces the problem and provides basic definitions and
notation. Section III presents our main results. Section IV
discusses the application of our results to secrecy generation
by a collection of nodes in the presence of an eavesdropper.
Section V contains the relevant proofs. Section VI delivers the
conclusions and discusses directions for future work.

II. SYSTEM MODEL AND DEFINITIONS

Before we formally introduce the problem, we establish
some notation. Let N = 0, 1, 2, . . . denote the set of natural
numbers. For two sets A and B , the relation A ⊂ B implies
that A is a proper subset of B (i.e., A ⊆ B and A �= B). If it
is clear from context that A is a subset of a ground set B , the
shorthand notation Ac will be used to denote B\A. For a set
A, the corresponding power set is denoted 2A := {B : B ⊆ A}.
We use the notation [m] to denote the set {1, . . . , m}.

This paper considers a network of n nodes. The network
must be connected, but it need not be fully connected (i.e., it
need not be a complete graph). A graph G = (V , E) describes
the specific connections in the network, where V is the set of
vertices {vi : i ∈ {1, . . . , n}} (each corresponding to a node)
and E is the set of edges connecting nodes. We assume that
the edges in E are undirected.

Each node wishes to recover the same k desired packets, and
each node begins with a (possibly empty) subset of the desired
packets. Formally, let Pi ⊆ {p1, . . . , pk} be the (indexed) set
of packets originally available at node i , and {Pi }ni=1 satisfies⋃n

i=1 Pi = {p1, . . . , pk}. Each p j ∈ F, where F is some

2We note that [18], which appeared around the same time as [3], proposed
an algorithm exploiting submodularity for computing optimal rate allocations
in the closely related communication for omniscience problem (see [14]). We
comment on the relationship in Section III-D and Appendix A.

1138 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Fig. 1. For the given graph, a set of vertices S and its neighborhood �(S) are
depicted. The set ∂(S) (i.e., the boundary of S) consists of the four vertices
in �(S) which are not in S.

finite field3 (e.g.F = GF(2m)). For our purposes, it suffices
to assume |F| ≥ 2n. The set of packets initially missing at
node i is denoted Pc

i := {p1, . . . , pk}\Pi .
Throughout this paper, we assume that each packet

pi ∈ {p1, . . . , pk} is equally likely to be any element of
F. Moreover, we assume that packets are independent of one
another. Thus, no correlation between different packets or prior
knowledge about unknown packets can be exploited.

To simplify notation, we will refer to a given problem
instance (i.e., a graph and corresponding sets of packets
available at each node) as a network T = {G, P1, . . . , Pn}.
When no ambiguity is present, we will refer to a network
by T and omit the implicit dependence on the parameters
{G, P1, . . . , Pn}.

Let the set �(i) be the neighborhood of node i . There
exists an edge e ∈ E connecting two vertices vi , v j ∈ V
iff i ∈ �(j). For convenience, we put i ∈ �(i). Node i
sends (possibly coded) packets to its neighbors �(i) over
discrete, memoryless, and interference-free channels. In other
words, if node i transmits a message, then every node in
�(i) receives that message. If S is a set of nodes, then we
define �(S) = ∪i∈S�(i). In a similar manner, we define
∂(S) = �(S)\S to be the boundary of the vertices in S. An
example of sets S, �(S), and ∂(S) is given in Figure 1.

This paper seeks to determine the minimum number of
transmissions required to achieve universal recovery (when
every node has learned all k packets). With the exception of
the results given in Section III-D, we focus exclusively on
the case where packets are deemed indivisible, motivating the
following definitions:

Definition 1: A transmission by node i consists of sending
a packet (i.e., some z ∈ F) to all nodes j ∈ �(i).

Definition 2: Given a network T , the minimum number of
transmissions required to achieve universal recovery is denoted
M∗(T).

To clarify these definitions, we briefly consider two exam-
ples:

Example 1 (Line Network): Suppose T is a network of
nodes connected along a line as follows: V = {v1, v2, v3},

3We restrict packets to be an element of a field F for notational simplicity.
In practice, packets are typically comprised of a vector of field elements,
and arithmetic in the vector space is performed using the operations inherited
from F.

Fig. 2. An illustration of the transmission strategy employed in Example 1.
During the first time instant, Nodes 1 and 3 broadcast packets p1 and p2,
respectively. During the second time instant, Node 2 broadcasts the XOR of
packets p1 and p2. This strategy requires three transmissions and achieves
universal recovery.

E = {(v1, v2), (v2, v3)}, P1 = {p1}, P2 = ∅, and P3 = {p2}.
Note that each node must transmit at least once in order for
all nodes to recover {p1, p2}, hence M∗(T) ≥ 3. Suppose
node 1 transmits p1 and node 3 transmits p2. Then (upon
receipt of p1 and p2 from nodes 1 and 3, respectively) node 2
transmits p1⊕ p2, where ⊕ indicates addition in the finite field
F. This strategy requires 3 transmissions and allows each node
to recover {p1, p2}. Hence M∗(T) = 3.

Example 1 demonstrates a transmission schedule that uses
two rounds of communication. The transmissions by node i in
a particular round of communication can depend only on the
information available to node i prior to that round (i.e.Pi and
previously received transmissions from neighboring nodes). In
other words, the transmissions are causal. The transmission
strategy employed in Example 1 is illustrated in Figure 2.

Example 2 (Fully Connected Network): Suppose T is a
3-node fully connected network in which G is a complete
graph on 3 vertices, and Pi = {p1, p2, p3}\pi . Clearly one
transmission is not sufficient, thus M∗(T) ≥ 2. It can be seen
that two transmissions suffice: let node 1 transmit p2 which
lets node 2 have P2 ∪ {p2} = {p1, p2, p3}. Now, node 2
transmits p1 ⊕ p3, allowing nodes 1 and 3 to each recover
all three packets. Thus M∗(T) = 2. Since each transmission
was only a function of the packets originally available at
the corresponding node, this transmission strategy can be
accomplished in a single round of communication.

In the above examples, we notice that the transmission
strategies are partially characterized by a schedule dictating
which nodes transmit during which round of communication.
We formalize this notion with the following definition:

Definition 3 (Transmission Schedule): A set of integers
{b j

i : i ∈ [n], j ∈ [r], b j
i ∈ N} is called a transmission

schedule for r rounds of communication if node i makes
exactly b j

i transmissions during communication round j .
When the parameters n and r are clear from context,

a transmission schedule will be denoted by the shorthand
notation {b j

i }. Note that b j
i can exceed one, implying that

multiple transmissions per communication round are per-
mitted. However, any transmission schedule with multiple

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1139

transmissions per round can easily be transformed to a trans-
mission schedule with one or fewer transmissions per round
by simply increasing r .

Although finding a transmission schedule that permits uni-
versal recovery is relatively easy (e.g., each node transmits all
packets in their possession at each time instant), finding one
that permits universal recovery with M∗(T) transmissions can
be extremely difficult. This is demonstrated by the following
example:

Example 3 (Optimal CCDE is NP-Hard.): Suppose T is a
network with k = 1 corresponding to a bipartite graph with left
and right vertex sets VL and VR respectively. Let Pi = {p1}
for each i ∈ VL , and let Pi = ∅ for each i ∈ VR . In this case,
M∗(T) is given by the minimum number of sets in {�(i)}i∈VL

which cover all vertices in VR . Thus, finding M∗(T) is at
least as hard as the Minimum Set Cover problem, which is
NP-complete [19].

Recently, Gonen and Langberg have studied the hardness of
the cooperative coded data exchange problem in greater detail.
Since we do not address this issue beyond the example above,
we refer the reader to their work [20] for a detailed treatment.

Several of our results are stated in the context of randomly
distributed packets. Assume 0 < q < 1 is given. Our model
is essentially that each packet is available independently at
each node with probability q . However, we must condition on
the event that each packet is available to at least one node.
Thus, when packets are randomly distributed, the underlying
probability measure is given by

Pr

⎡

⎣pi ∈
⋃

j∈S

Pj

⎤

⎦ = 1− (1− q)|S|

1− (1− q)n
(1)

for all i ∈ [k] and all nonempty S ⊆ V = [n].
Finally, we introduce one more definition which links

the network topology with the number of communication
rounds, r .

Definition 4: For a graph G = (V , E) on n vertices, define
S(r)(G) ⊂ (2V)r+1 as follows: (S0, S1, . . . , Sr) ∈ S(r)(G)
if and only if the sets {Si }ri=0 satisfy the following two
conditions:

∅ ⊂ Si ⊂ V for each 0 ≤ i ≤ r , and

Si−1 ⊆ Si ⊆ �(Si−1) for each 1 ≤ i ≤ r .

In words, any element in S(r)(G) is a nested sequence of
subsets of vertices of G. Moreover, the constraint that each set
in the sequence is contained in its predecessor’s neighborhood
implies that the sets cannot expand too quickly relative to the
topology of G. Note that, for any graph G, the set S(r)(G) ⊂
(2V)r+1 is unique.

To make the definition of S(r)(G) more concrete, we have
illustrated a sequence (S0, S1, S2) ∈ S(2)(G) for a particular
choice of graph G in Figure 3.

III. MAIN RESULTS

In this section, we present our main results. Proofs are
delayed until Section V.

Fig. 3. An example of a sequence (S0, S1, S2) ∈ S(2)(G) for a particular
choice of graph G.

A. Necessary and Sufficient Conditions for Universal
Recovery

First, we provide necessary and sufficient conditions for
achieving universal recovery in a network T . It turns out
that these conditions are characterized by a particular set of
transmission schedules Rr (T) which we define as follows:

Definition 5: For a network T = {G, P1, . . . , Pn}, define
the region Rr (T) ⊆ N

n×r to be the set of all transmission
schedules {b j

i } satisfying:

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

b(r+1− j)
i ≥

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

(2)

for each (S0, . . . , Sr) ∈ S(r)(G).
For a given network T , the region Rr (T) character-

izes a subset of transmission schedules. While the def-
inition of Rr (T) may initially appear somewhat heavy-
handed, its importance is revealed through the following
theorem.

Theorem 1: For a network T , a transmission schedule {b j
i }

permits universal recovery in r rounds of communication if
and only if {b j

i } ∈ Rr (T).
Theorem 1 reveals that the set of transmission schedules

permitting universal recovery is characterized precisely by
the region Rr (T). In fact, given a transmission schedule in
Rr (T), a corresponding coding scheme that achieves universal
recovery can be computed in polynomial time using the algo-
rithm in [21] applied to the network coding graph discussed
in the proof of Theorem 1. Alternatively, one could employ
random linear network coding over a sufficiently large field
size [22]. If transmissions are made in a manner consistent
with a schedule in Rr (T), universal recovery will be achieved
with high probability.

Thus, the problem of achieving universal recovery with
the minimum number of transmissions reduces to solving
a combinatorial optimization problem over Rr (T). As this
problem was shown to be NP-hard in Example 3, we do not
attempt to solve it in its most general form. Instead, we apply
Theorem 1 to obtain surprisingly simple characterizations for
several cases of interest.

Before proceeding, we provide a few examples to shed some
light on the region Rr (T). First, we show how the traditional
cut-set bounds can be recovered from Theorem 1.

1140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Example 4 (Cut-Set Bounds): Considering the constraint
defining Rr (T) in which the nested subsets that form S(r)(G)
are all identical. That is, (S, S, . . . , S) ∈ S(r)(G) for some
nonempty S ⊂ V . We see that any transmission schedule
{b j

i } ∈ Rr (T) must satisfy the familiar cut-set bounds:

r∑

j=1

∑

i∈∂(S)

b j
i ≥

∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣
. (3)

In words, the total number of packets that flow into the set
of nodes S must be greater than or equal to the number of
packets that the nodes in S are collectively missing.

As a second example, we apply Theorem 1 to the line net-
work T considered in Example 1 to find the set of permissible
transmission schedules for r = 2 rounds of communication.
Although it is a tedious application of Theorem 1, we will see
that it supplies the desired result.

Example 5: Let T be the line network considered in Exam-
ple 1, and let G be the corresponding graph. Three different
choices of (S0, S1, S2) ∈ S(2)(G) are given below with the
corresponding constraints induced by R2(T).

S0 S1 S2 induced constraint

{1} {1} {1, 2} b2
2 ≥ 1

{1} {1, 2} {1, 2} b1
3 ≥ 1

{3} {2, 3} {2, 3} b1
1 ≥ 1

In words, the above constraints imply that nodes 1 and 3 must
each transmit once in the first communication round, and node
2 must transmit once in the second communication round.
Arguing along the lines of Example 1, these conditions are
both necessary and sufficient for a transmission schedule to
permit universal recovery in r = 2 rounds of communication.
Indeed, the reader can check that any (S0, S1, S2) ∈ S(2)(G)
not listed in the table above induces a constraint via R2(T)
that is a linear combination of those given above.

B. Fully Connected Networks

When T is a fully connected network, the graph G is a
complete graph on n vertices. This is perhaps one of the most
practically important cases to consider. For example, in a wired
computer network, clients can multicast their messages to all
other terminals which are cooperatively exchanging data. In
wireless networks, broadcast is a natural transmission mode.
Indeed, there are protocols tailored specifically to wireless
networks which support reliable network-wide broadcast capa-
bilities (cf. [23]–[26]). It is fortunate then, that the cooperative
data exchange problem can be solved in polynomial time for
fully connected networks:

Theorem 2: For a fully connected network T , a trans-
mission schedule requiring only M∗(T) transmissions can
be computed in polynomial time. Necessary and sufficient
conditions for universal recovery in this case are given by the
cut-set constraints (3). Moreover, a single round of communi-
cation is sufficient to achieve universal recovery with M∗(T)
transmissions.

For the fully connected network in Example 2, we
remarked that only one round of transmission was required.

Theorem 2 states that this property extends to any fully con-
nected network. Moreover, an optimal transmission schedule
requiring M∗(T) transmissions can be computed using the
algorithm derived in Appendix A.

Although Theorem 2 applies to arbitrary sets of packets
P1, . . . , Pn , it is insightful to consider the case where packets
are randomly distributed in the network according to (1).
In this case, the minimum number of transmissions required
for universal recovery converges in probability to a simple
function of the (random) sets P1, . . . , Pn .

Theorem 3: If T is a fully connected network and packets
are randomly distributed, then

M∗(T) =
⌈

1

n − 1

n∑

i=1

|Pc
i |
⌉

. (4)

with probability approaching 1 as the number of packets
k →∞.

We remark that, if packets are randomly distributed accord-
ing to (1), then M∗(T) is a random variable. Hence,
Theorem 3 shows that this random variable agrees with⌈

1
n−1

∑n
i=1 |Pc

i |
⌉

with high probability in k.
At first glance, it appears that the result of Theorem 3 is

independent of the parameter q , which dictates how random
packets are distributed in (1). However, q is implicitly present
in the result since it parameterizes the distribution of the
random variables |Pc

i |.

C. Networks Which Are d-Regular

Given that precise results can be obtained for fully con-
nected networks, it is natural to ask whether these results
can be extended to a larger class of networks which includes
fully connected networks as a special case. In this section, we
partially answer this question in the affirmative. To this end,
we define d-regular networks.

Definition 6 (d-Regular Networks): A network T is said to
be d-regular if ∂(i) = d for each i ∈ V and ∂(S) ≥ d for
each nonempty S ⊂ V with |S| ≤ n − d . In other words, a
network T is d-regular if the associated graph G is d-regular
and d-vertex-connected.

Immediately, we see that the class of d-regular networks
includes fully connected networks as a special case with
d = n − 1. Further, the class of d-regular networks includes
many frequently studied network topologies (e.g., cycles, grids
on tori, etc.).

Unfortunately, the deterministic algorithm of Theorem 2
does not appear to extend to d-regular networks. However,
a slightly weaker concentration result similar to Theorem 3
can be obtained when packets are randomly distributed. Before
stating this result, consider the following Linear Program (LP)
with variable vector x ∈ R

n defined for a network T :

minimize
n∑

i=1

xi (5)

subject to:
∑

i∈∂(j)

xi ≥
∣
∣
∣Pc

j

∣
∣
∣ for each j ∈ V . (6)

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1141

Let ML P (T) denote the optimal value of this LP. Interpreting
xi as

∑
j b j

i , the constraints in the LP are a subset of the
cut-set constraints of (3) which are a subset of the necessary
constraints for universal recovery given in Theorem 1. Fur-
thermore, the integer constraints on the xi ’s are relaxed. Thus
ML P (T) certainly bounds M∗(T) from below. Surprisingly,
if T is a d-regular network and the packets are randomly
distributed, M∗(T) is very close to this lower bound with
high probability:

Theorem 4: If T is a d-regular network and the packets are
randomly distributed, then

M∗(T) < ML P (T)+ n (7)

with probability approaching 1 as the number of packets
k →∞.

We make two important observations. First, M∗(T) ∈
[ML P (T), ML P (T) + n) with high probability. Hence, even
though the number of packets k may be extremely large,
M∗(T) can be estimated accurately by computing the solution
to LP (5-6) for a given instantiation of the packet distribution
{Pi }ni=1. Second, as k grows large, M∗(T) is dominated by
the local topology of T . This is readily seen since the con-
straints defining ML P (T) correspond only to nodes’ immedi-
ate neighborhoods. The importance of the local neighborhood
was also seen in [27] where network coding capacity for
certain random networks is shown to concentrate around the
expected number of nearest neighbors of the source and the
terminals.

D. Large (Divisible) Packets

We now return to general networks with arbitrarily dis-
tributed packets. However, we now consider the case where
packets are “large” and can be divided into several smaller
pieces (e.g., packets actually correspond to large files). To
formalize this, assume that each packet can be partitioned
into t chunks of equal size, and transmissions can consist
of a single chunk (as opposed to an entire packet). In this
case, we say the packets are t-divisible. To illustrate this point
more clearly, we return to Example 2, this time considering
2-divisible packets.

Example 6 (2-Divisible Packets): Let T be the network
of Example 2 and split each packet into two halves:
pi → (p(1)

i , p(2)
i). Denote this new network T ′ with corre-

sponding sets of packets:

P ′i = {p(1)
1 , p(2)

1 p(1)
2 , p(2)

2 , p(1)
3 , p(2)

3 }\{p(1)
i , p(2)

i }. (8)

Three chunk transmissions allow universal recovery as fol-
lows: Node 1 transmits p(2)

2 ⊕ p(2)
3 . Node 2 transmits

p(1)
1 ⊕ p(1)

3 . Node 3 transmits p(2)
1 ⊕ p(1)

2 . It is readily verified
from (3) that 3 chunk-transmissions are required to permit
universal recovery. Thus, M∗(T ′) = 3. Hence, if we were
allowed to split the packets of Example 2 into two halves, it
would suffice to transmit 3 chunks. Normalizing the number
of transmissions by the number of chunks per packet, we
say that universal recovery can be achieved with 1.5 packet
transmissions.

Motivated by this example, define M∗t (T) to be the mini-
mum number of (normalized) packet-transmissions required to
achieve universal recovery in the network T when packets are
t-divisible. For the network T in Example 2, we saw above
that M∗2 (T) = 1.5.

It turns out, if packets are t-divisible and t is large,
the cut-set bounds (3) are “nearly sufficient” for achieving
universal recovery. To see this, let Mcut-set(T) be the optimal
value of the LP:

minimize
n∑

i=1

xi (9)

subject to:
∑

i∈∂(S)

xi ≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

for all ∅� S⊂V . (10)

Clearly Mcut-set(T) ≤ M∗t (T) for any network T with
t-divisible packets because the LP producing Mcut-set(T)
relaxes the integer constraints and is constrained only by (3)
rather than the full set of constraints given in Theorem 1.
However, there exist transmission schedules which can
approach this lower bound. Stated more precisely:

Theorem 5: For any network T , the minimum number of
(normalized) packet-transmissions required to achieve univer-
sal recovery with t-divisible packets satisfies

lim
t→∞M∗t (T) = Mcut-set(T). (11)

Precisely how large t is required to be in order to approach
Mcut-set(T) within a specified tolerance is not clear for
general networks. Since the inequalities (10) have integer coef-
ficients, Cramer’s rule and Hadamard’s inequality imply that
t ≤ nn/2 is sufficient. However, we should anticipate a much
better estimate in general since an immediate consequence of
Theorem 3 is that t = n−1 is sufficient to achieve Mcut-set(T)
with high probability when packets are randomly distributed
in a fully connected network.

We note that [18] presents an algorithm exploiting submod-
ularity that solves LP (9) in the special case where T is a
fully connected network. This is in contrast to the algorithm
we present in Appendix VI (originally appearing in [3]),
which solves the ILP version of this problem corresponding
to indivisible packets.

Finally, we remark that it is a simple exercise to construct
examples where the cut-set bounds alone are not sufficient
to characterize transmission schedules permitting universal
recovery when packets are not divisible (e.g., a 4-node line
network with packets p1 and p2 at the left-most and right-most
nodes, respectively). Thus, t-divisibility of packets provides
the additional degrees of freedom necessary to approach the
cut-set bounds more closely.

E. Remarks

One interesting consequence of our results is that splitting
packets does not significantly reduce the required number
of packet-transmissions for many scenarios. Indeed, at most
one transmission can be saved if the network is fully con-
nected (under any distribution of packets). If the network is
d-regular, we can expect to save fewer than n transmissions

1142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

if packets are randomly distributed (in fact, at most one
transmission per node). It seems possible that this result could
be strengthened to include arbitrary distributions of packets
in d-regular networks (as opposed to randomly distributed
packets), but a proof has not been found.

The limited value of dividing packets has practical rami-
fications since there is usually some additional communica-
tion overhead associated with dividing packets (e.g.additional
headers, etc. for each transmitted chunk are required). Thus,
if the packets are very large, say each packet is a video file,
our results imply that entire coded packets can be transmitted
without significant loss, avoiding any additional overhead
incurred by dividing packets.

IV. AN APPLICATION: SECRECY GENERATION

In this section, we consider the setup of the cooperative
data exchange problem for a fully connected network T ,
but we consider a different goal. In particular, we wish
to generate a secret-key among the nodes that cannot be
derived by an eavesdropper privy to all of the transmissions
among nodes. Also, like the nodes themselves, the eaves-
dropper is assumed to know the indices of the packets ini-
tially available to each node and the communication protocol
which the nodes follow. In particular, the only information
unknown to the eavesdropper is the contents of the nodes’
packets. The goal is for the nodes to generate the maxi-
mum amount of “secrecy” that cannot be determined by the
eavesdropper.

The theory behind secrecy generation among multiple ter-
minals was originally established in [14] for a very general
class of problems in the usual information-theoretic, asymp-
totic setting. Our results should be interpreted as a practical
application of the theory originally developed in [14]. Indeed,
our proofs essentially follow those in [14], but have been
streamlined and adapted to deal with the non-asymptotic and
combinatorial scenario under consideration. The aim of the
present section is to show how secrecy can be generated
in a practical scenario. By practical, we mean that it is
possible to generate the maximum amount of secrecy (as
defined in [14]) among nodes in a fully connected network
T = {G, P1, . . . , Pn} using a polynomial time algorithm.
Moreover, this is possible in the non-asymptotic regime (i.e.,
there are no ε’s and we don’t require the number of packets
or nodes to grow arbitrarily large), and it is possible to
generate perfect secrecy instead of ε-secrecy without any
sacrifice.

A. Practical Secrecy Results

In this subsection, we state two results on secrecy generation
in fully connected networks T . Proofs are again postponed
until Section V. We begin with some definitions4. Let F denote
the set of all transmissions (all of which are available to
the eavesdropper by definition). A function K of the packets
{p1, . . . , pk} in the network is called a secret key (SK) if K

4We attempt to follow the notation of [14] where appropriate.

is recoverable by all nodes after observing F, and it satisfies
the (perfect) secrecy condition

I (K ;F) = 0, (12)

and the uniformity condition

Pr (K = key) = 1

|K| for all key ∈ K, (13)

where K is the alphabet of possible keys.
We define CS K (P1, . . . , Pn) to be the secret-key capacity for

a particular distribution of packets. We will drop the notational
dependence on P1, . . . , Pn where it doesn’t cause confusion.
By this we mean that a secret-key K can be generated if and
only if K = F

CSK . In other words, the nodes can generate
at most CS K packets worth of secret-key. Implicit in this
definition is the requirement that CS K is an integer. That is,
we are interested in the maximum integer number of packets
of secret key which can be generated. Our first result of this
section is the following analogue of [14, Theorem 1]:

Theorem 6: The secret-key capacity is given by:
CS K (P1, . . . , Pn) = k − M∗(T).

Next, consider the related problem where a subset D ⊂ V
of nodes is compromised, and assume all nodes are aware of
which nodes are compromised (i.e., D is known to all nodes).
In this problem, the eavesdropper has access to F and Pi for
i ∈ D. In this case, the secret-key should also be kept hidden
from the nodes in D (or else the eavesdropper could also
recover it). Thus, for a subset of nodes D, let PD =⋃

i∈D Pi ,
and call K a private-key (PK) if it is a secret-key which is
only recoverable by the nodes in V \D, and also satisfies the
stronger secrecy condition:

I (K ;F, PD) = 0. (14)

Similar to above, define CP K (P1, . . . , Pn, D) to be the private-
key capacity for a particular distribution of packets and subset
of nodes D. Again, we mean that a private-key K can be
generated if and only if K = F

CP K . In other words, the nodes
in V \D can generate at most CP K packets worth of private-
key. As with CS K , we require that CP K is an integer. That is,
we are interested in the maximum integer number of packets
of private key which can be generated. Note that, since PD

is known to the eavesdropper, each node i ∈ D can transmit
its respective set of packets Pi without any loss of secrecy
capacity.

Define a new network TD = {GD, {P(D)
i }i∈V \D} as follows.

Let GD be the complete graph on V \D, and let P(D)
i = Pi\PD

for each i ∈ V \D. Thus, TD is a fully connected network with
n−|D| nodes and k−|PD| packets. Our second result of this
section is the following analogue of [14, Theorem 2]:

Theorem 7: The private-key capacity is given by:

CP K (P1, . . . , Pn, D) = (k − |PD |)− M∗(TD). (15)

The basic idea for private-key generation is that the users in
V \D should generate a secret-key from {p1, . . . , pk}\PD .

By the definitions of the SK and PK capacities, Theorem 2
implies that it is possible to compute these capacities effi-
ciently (i.e., in polynomial time). Moreover, as we will see
in the achievability proofs, these capacities can be achieved

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1143

by performing coded cooperative data exchange amongst the
nodes. Thus, the algorithm developed in Appendix A com-
bined with the algorithm in [21] can be employed to solve the
secrecy generation problem we consider in polynomial time.

Remark 1: If one drops the integrality requirement for
CS K and CP K , this amounts to determining the maximum
(possibly fractional) number of packets of secret/private key
that can be generated. In this case, we simply replace M∗(T)
with ML P (T) in Theorem 6 and M∗(TD) with ML P (TD) in
Theorem 7. These fractional secret- and private-key capacities
can be approached as the field size |F| grows large. The proofs
are nearly identical to those of Theorems 6 and 7 (splitting
packets where appropriate), and are therefore omitted.

We conclude this subsection with an example to illustrate
the results.

Example 7: Consider again the network of Example 2 and
assume F = {0, 1} (i.e., each packet is a single bit). The secret-
key capacity for this network is 1 bit. After Nodes 1-3 perform
universal recovery as described in Example 2, an eavesdropper
would observe p2 and the parity p1⊕ p3. A perfect secret-key
is K = p1 (we could alternatively use K = p3). If any of the
nodes are compromised by the eavesdropper, the private-key
capacity is 0.

We remark that the secret-key in the above example can
in fact be attained by all nodes using only one transmission
(i.e., universal recovery is not a prerequisite for secret-key
generation). However, it remains true that only one bit of
secrecy can be generated.

V. PROOFS OF MAIN RESULTS

A. Necessary and Sufficient Conditions for Universal
Recovery

Proof of Theorem 1: This proof is accomplished by reducing
the problem at hand to an instance of a single-source network
coding problem and invoking the Max-Flow Min-Cut Theorem
for network information flow [4].

First, fix the number of communication rounds r to be
large enough to permit universal recovery. For a network T ,
construct the network-coding graph GNC = (VNC , ENC) as
follows. The vertex set, VNC is defined as:

VNC = {s, u1, . . . , uk} ∪
r⋃

j=0

{v j
1 , . . . , v

j
n } ∪

r⋃

j=1

{w j
1 , . . . , w

j
n }.

The edge set, ENC , consists of directed edges and is con-
structed as follows:
• For each i ∈ [k], there is an edge of unit capacity5 from

s to ui .
• If pi ∈ Pj , then there is an edge of infinite capacity from

ui to v0
j .

• For each j ∈ [r] and each i ∈ [n], there is an edge of
infinite capacity from v

j−1
i to v

j
i .

• For each j ∈ [r] and each i ∈ [n], there is an edge of
capacity b j

i from v
j−1
i to w

j
i .

• For each j ∈ [r] and each i ∈ [n], there is an edge of
infinite capacity from w

j
i to v

j
i ′ iff i ′ ∈ �(i).

5An edge of unit capacity can carry one field element z ∈ F per unit time.

Fig. 4. The graph GNC corresponding to the line network of Example 1.
Edges represented by broken lines have infinite capacity. Edges with finite
capacities are labeled with the corresponding capacity value.

The interpretation of this graph is as follows: the vertex ui

is introduced to represent packet pi , the vertex v
j
i represents

node i after the j th round of communication, and the vertex
w

j
i represents the broadcast of node i during the j th round of

communication. In other words, GNC is the “time-expanded
graph” corresponding to the universal recovery problem (the
construction of directed acyclic networks via time-expansion
originated in [4] in the context of network coding). If the
b j

i ’s are chosen such that the graph GNC admits a network
coding solution which supports a multicast of k units from s
to {vr

1, . . . , v
r
n}, then this network coding solution also solves

the universal recovery problem for the network T when node
i is allowed to make at most b j

i transmissions during the j th

round of communication. The graph GNC corresponding to the
line network of Example 1 is given in Figure 4.

We now formally prove the equivalence of the network
coding problem on GNC and the universal recovery problem
defined by T .

Suppose a set of encoding functions { f j
i } and a set decoding

functions {φi } describe a transmission strategy which solves

1144 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

the universal recovery problem for a network T in r rounds of
communication. Let b j

i be the number of transmissions made
by node i during the j th round of communication, and let I j

i
be all the information known to node i prior to the j th round of
communication (e.g.I1

i = Pi). The function f j
i is the encoding

function for user i during the j th round of communication

(i.e. f j
i (I j

i) ∈ F
b j

i), and the decoding functions satisfy:

φi
(
Ir

i ,∪i ′∈�(i){ f r
i ′ (I

r
i ′)}

) = {p1, . . . , pk}. (16)

Note that, given the encoding functions and the Pi ’s, the
I j

i ’s can be defined recursively as:

I j+1
i = I j

i ∪
⋃

i ′∈�(i)

{ f j
i ′ (I

j
i ′)}. (17)

The functions { f j
i } and {φi } can be used to generate a

network coding solution which supports k units of flow from
s to {vr

1, . . . , v
r
n} on GNC as follows:

For each vertex v ∈ VNC , let IN(v) be whatever v receives
on its incoming edges. Let gv be the encoding function at
vertex v, and gv (e, IN(v)) be the encoded message which
vertex v sends along e (e is an outgoing edge from v).

If e is an edge of infinite capacity emanating from v, let
gv (e, IN(v)) = IN(v).

Let s send pi along edge (s, ui). At this point, we
have IN(v0

i) = Pi = I1
i . For each i ∈ [n], let

gv0
i
((v0

i , w1
i), IN(v0

i)) = f 1
i (I1

i). By a simple inductive argu-

ment, defining the encoding functions g
v

j
i
((v

j
i , w

j+1
i), IN(v

j
i))

to be equal to f j+1
i yields the result that IN(vr

i) =(
Ir

i ,∪i ′∈�(i){ f r
i ′ (I

r
i ′)}

)
. Hence, the decoding function φi can

be used at vr
i to allow error-free reconstruction of the k-unit

flow.
The equivalence argument is completed by showing that

a network coding solution which supports a k-unit multicast
flow from s to {vr

1, . . . , v
r
n} on GNC also solves the universal

recovery problem on T . This is argued in a similar manner as
above, and is therefore omitted.

Since we have shown that the universal recovery problem
on T is equivalent to a network coding problem on GNC , the
celebrated max-flow min-cut result of Ahlswede et. al [4] is
applicable. In particular, a fixed vector {b j

i } admits a solution
to the universal recovery problem where node i makes at most
b j

i transmissions during the j th round of communication if and
only if any cut separating s from some vr

i in GNC has capacity
at least k.

What remains to be shown is that the inequalities defining
Rr (T) are satisfied if and only if any cut separating s from
some vr

i in GNC has capacity at least k.
To this end, suppose we have a cut (S, Sc) satisfying s ∈ Sc

and vr
i ∈ S for some i ∈ [n]. We will modify the cut (S, Sc)

to produce a new cut (S′, S′c) with capacity less than or equal
to the capacity of the original cut (S, Sc).

Define the set S0 ⊆ [n] as follows: i ∈ S0 iff vr
i ∈ S (by

definition of S, we have that S0 �= ∅).
Initially, let S′ = S. Modify the cut (S′, S′c) as follows:

M1) If i ∈ �(S0), then place wr
i into S′.

M2) If i /∈ �(S0), then place wr
i into S′c.

Modifications M1 and M2 are justified (respectively) by J1
and J2:

J1) If i ∈ �(S0), then there exists an edge of infinite capacity
from wr

i to some vr
i ′ ∈ S. Thus, moving wr

i to S ′ (if
necessary) does not increase the capacity of the cut.

J2) If i /∈ �(S0), then there are no edges from wr
i to S,

hence we can move wr
i into S′c (if necessary) without

increasing the capacity of the cut.

Modifications M1 and M2 guarantee that wr
i ∈ S′ iff

i ∈ �(S0). Thus, assume that (S′, S′c) satisfies this condition
and further modify the cut as follows:

M3) If i ∈ S0, then place vr−1
i into S′.

M4) If i /∈ �(S0), then place vr−1
i into S′c.

Modifications M3 and M4 are justified (respectively) by J3
and J4:

J3) If i ∈ S0, then there exists an edge of infinite capacity
from vr−1

i to vr
i ∈ S. Thus, moving vr−1

i to S ′ (if
necessary) does not increase the capacity of the cut.

J4) If i /∈ �(S0), then there are no edges from vr−1
i to S′

(since wr
i /∈ S′ by assumption), hence we can move vr−1

i
into S′c (if necessary) without increasing the capacity of
the cut.

At this point, define the set S1 ⊆ [n] as follows: i ∈ S1 iff
vr−1

i ∈ S′. Note that the modifications of S′ guarantee that S1
satisfies S0 ⊆ S1 ⊆ �(S0).

This procedure can be repeated for each layer of the graph
resulting in a sequence of sets ∅ � S0 ⊆ · · · ⊆ Sr ⊆ [n]
satisfying Sj ⊆ �(Sj−1) for each j ∈ [r].

We now perform a final modification of the cut (S′, S′c):
M5) If p j ∈ ∪i∈Sr Pi , then place u j into S′.
M6) If p j /∈ ∪i∈Sr Pi , then place u j into S′c.

Modifications M5 and M6 are justified (respectively) by J5
and J6:

J5) If p j ∈ ∪i∈Sr Pi , then there is an edge of infinite capacity
from u j to S′ and moving u j into S′ (if necessary) does
not increase the capacity of the cut.

J6) If p j /∈ ∪i∈Sr Pi , then there are no edges from u j to S′,
hence moving u j (if necessary) into S′c cannot increase
the capacity of the cut.

A quick calculation shows that the modified cut (S′, S′c)
has capacity greater than or equal to k iff:

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

br+1− j
i ≥

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣
. (18)

Since every modification of the cut either preserved or
reduced the capacity of the cut, the original cut (S, Sc)
also has capacity greater than or equal to k if the above
inequality is satisfied. In Figure 5, we illustrate a cut (S, Sc)
and its modified minimal cut (S′, S′c) for the graph GNC

corresponding to the line network of Example 1.
By the equivalence of the universal recovery problem on a

network T to the network coding problem on GNC and the
max-flow min-cut theorem for network information flow, if
a transmission strategy solves the universal recovery problem
on T , then the associated b j

i ’s must satisfy the constraints

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1145

Fig. 5. The graph GNC corresponding to the line network of Example 1 with
original cut (S, Sc) and the corresponding modified minimal cut (S′, S′c). In
this case, S0 = S1 = S2 = {1}. Upon substitution into (18), this choice of
S0, S1, S2 yields the inequality b1

2 + b2
2 ≥ 1.

of the form given by (18). Conversely, for any set of b j
i ’s

which satisfy the constraints of the form given by (18), there
exists a transmission strategy using exactly those numbers
of transmissions which solves the universal recovery problem
for T . Thus the constraints of (18), and hence the inequalities
defining Rr (T), are satisfied if and only if any cut separating
s from some vr

i in GNC has capacity at least k.
Remark 2: Since

∣
∣⋂

i∈[n] Pc
i

∣
∣ = 0, constraints where

Sr = [n] are trivially satisfied. Therefore, we can restrict our
attention to sequences of sets where Sr � [n].

Remark 3: Our problem formulation does not require linear
encoding schemes, however the proof above reveals that linear
encoding schemes are sufficient to achieve universal recovery
with the minimum number of transmissions.

B. Fully Connected Networks

Having established necessary and sufficient conditions
for universal recovery in Theorem 1, we specialize these

conditions to the setting of a fully connected network to
establish Theorems 2 and 3.

Proof of Theorem 2: In the case where T is a fully connected
network, we have that Sc

j ∩ �(Sj−1) = Sc
j for any nonempty

S ⊂ V . Therefore, the constraints defining Rr (T) become:

r∑

j=1

∑

i∈Sc
j

br+1− j
i ≥

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣
. (19)

Now, suppose a transmission schedule {b j
i } ∈ Rr (T) and

consider the modified transmission schedule {b̃ j
i } defined by:

b̃r
i =

∑r
j=1 b j

i and b̃ j
i = 0 for j < r . By construction,

Sc
j+1 ⊆ Sc

j in the constraints defining Rr (T). Therefore, using

the definition of {b̃ j
i }, we have:

∑

i∈Sc
1

b̃r
i ≥

r∑

j=1

∑

i∈Sc
j

br+1− j
i ≥

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣
. (20)

Thus the modified transmission schedule is also in Rr (T).
Since

∣
∣⋂

i∈S1
Pc

i

∣
∣ ≥ ∣

∣⋂
i∈Sr

Pc
i

∣
∣, when T is a fully connected

network, it is sufficient to consider constraints of the form:

∑

i∈Sc

b1
i ≥

∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

for all nonempty S ⊂ V . (21)

This proves the following: that the cut-set constraints are
necessary and sufficient for universal recovery when T is a
fully connected network, and that a single round of communi-
cation is sufficient to achieve universal recovery with M∗(T)
transmissions (since (21) does not depend on r).

With these results established, an optimal transmission
schedule can be obtained by solving the following integer
linear program:

minimize
n∑

i=1

bi

subject to:
∑

i∈Sc

bi≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

for all nonempty S⊂V . (22)

In order to accomplish this, we identify Bi ← Pc
i and

set wi = 1 for i ∈ [n] and apply the submodular algorithm
presented in Appendix A. We remark briefly that the algorithm
presented in Appendix A is sufficiently general to solve the
ILP above with the objective (22) replaced by

∑n
i=1 wi bi ,

where {wi }ni=1 are nonnegative reals. In other words, we
can easily compute transmission schedules which (i) permit
universal recovery, and (ii) minimize a weighted sum of nodes’
transmissions.

Now we consider fully connected networks in which packets
are randomly distributed according to (1), which is parame-
trized by q . The proof of Theorem 3 requires the following
technical lemma:

Lemma 1: Let 0 < q < 1 be fixed. For each � ∈ {2, . . . ,
n − 1}, define

δ� =
(

n − �

n − 1

)

×
(

1− q − (1− q)n

(1− q)� − (1− q)n

)

− 1. (23)

1146 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Then, for each � ∈ {2, . . . , n − 1}:
n − �

n − 1
= (1− q)� − (1− q)n

1− q − (1− q)n (1+ δ�) (24)

with 0 < δ2 < δ3 · · · < δn−1.
Proof: Applying Jensen’s inequality to the strictly convex

function f (x) = (1 − q)x using the convex combination
� = θ · 1+ (1− θ) · n yields:

n − �

n − 1
>

(1− q)� − (1− q)n

1− q − (1− q)n (25)

for � ∈ {2, . . . , n − 1}. Thus it is readily verified that (24)
holds with δ� > 0 by simply substituting in the definition of
δ�. It is a simple calculus exercise to verify that δ� is strictly
increasing in � for � ∈ {2, . . . , n−1}. Indeed, let the parameter
� vary continuously in the interval (1, n), and look at the
derivatives

∂

∂�

{
n − �

(1− q)� − (1− q)n

}

= (1− q)�
[

log

(
(1− q)�

(1− q)n

)

− 1

]

+ (1− q)n (26)

∂2

∂�2

{
n − �

(1− q)� − (1− q)n

}

= (1− q)� log (1− q)

[

log

(
(1− q)�

(1− q)n

)

+ 1

]

< 0. (27)

Hence, we can conclude that (23) is concave in � over
the interval (1, n), with a maximum being attained when
�→ n.

The proof of Theorem 3 proceeds by showing that the
necessary and sufficient conditions of Theorem 1 admit a
simply-structured solution when packets are randomly distrib-
uted according to (1).

Proof of Theorem 3: We begin by showing that the LP

minimize
n∑

i=1

bi (28)

subject to:
∑

i∈Sc

bi ≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

for all ∅ � S ⊂ V . (29)

has an optimal value of 1
n−1

∑n
i=1 |Pc

i | with high probability
as k →∞, over random instantiations of the Pi ’s (recall that
packets are randomly distributed according to (1)). To this end,
note that the inequalities

n∑

i=1
i �= j

bi ≥ |Pc
j | for 1 ≤ j ≤ n. (30)

are a subset of the inequality constraints (29). Summing both
sides of (30) over 1 ≤ j ≤ n reveals that any feasible vector
b ∈ R

n for LP (28)-(29) must satisfy:

n∑

i=1

bi ≥ 1

n − 1

n∑

i=1

|Pc
i |. (31)

This establishes a lower bound on the optimal value of the LP.
We now identify a solution that is feasible with probability

approaching 1 as k →∞ while achieving the lower bound of
(31) with equality. To begin note that

b̃ j = 1

n − 1

n∑

i=1

|Pc
i | − |Pc

j | (32)

is a solution to the system of linear equations given by (30) and
achieves (31) with equality. Now, we prove that (b̃1, . . . , b̃n)
is a feasible solution to LP (28) with high probability. To be
specific, we must verify that

∑

i∈Sc

b̃i ≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

(33)

holds with high probability for all subsets S ⊂ V satisfying
2 ≤ |S| ≤ n− 1 (the case |S| = 1 is satisfied by the definition
of {b̃i }ni=1). Substitution of (32) into (33) along with simple
algebra yields that the following equivalent conditions must
hold:

(
n − |S|
n − 1

) n∑

i=1

1

k

∣
∣Pc

i

∣
∣−

∑

i∈Sc

1

k

∣
∣Pc

i

∣
∣ ≥ 1

k

∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣
. (34)

To this end, note that for any S,
∣
∣⋂

i∈S Pc
i

∣
∣ is a random

variable which can be expressed as
∣
∣
⋂

i∈S Pc
i

∣
∣ = ∑k

j=1 X S
j ,

where X S
j is an indicator random variable taking the value 1

if p j ∈⋂
i∈S Pc

i and 0 otherwise. From (1) we have:

ξ|S| � Pr
(

X S
j = 1

)
= (1− q)|S| − (1− q)n

1− (1− q)n
. (35)

For � = 2, 3, . . . , n − 1, define δ� as in Lemma 1. Now,
define

ν1 � δ2

2n + δ2(2n − 1)
, (36)

and define ν� to satisfy:

1+ ν� = (1+ δ�) (1− ν1(2n − 1)) for � = 2, . . . , n − 1.

By definition, ν1 > 0, but also observe that ν� > 0 for � ≥ 2
since Lemma 1 implies δ� ≥ δ2, and therefore

1+ ν� = (1+ δ�) (1− ν1(2n − 1)) (37)

≥ (1+ δ2) (1− ν1(2n − 1)) (38)

= 1+ ν1. (39)

Now, for notational convenience, define the function ζ(n, q)
of (n, q) as follows:

ζ(n, q) = 2×
(

min
1≤�≤[n−1]

{
(ν�ξ�)

2
})

. (40)

Note that Hoeffding’s inequality yields the following con-
centration result:

Pr

(∣
∣
∣
∣
∣

1

k

∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣− ξ|S|

∣
∣
∣
∣
∣
> ν|S|ξ|S|

)

≤ 2 exp
[
−2k(ν|S|ξ|S|)2

]

(41)

≤ 2 exp [−k · ζ(n, q)] . (42)

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1147

Therefore, by the union of events bound, we have

Pr

⎛

⎝
⋃

S:S⊂[n],S �=∅

{∣
∣
∣
∣
∣

1

k

∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣− ξ|S|

∣
∣
∣
∣
∣
> ν|S|ξ|S|

}⎞

⎠

≤ 2n+1 exp [−k · ζ(n, q)] . (43)

Thus, with probability greater than 1−2n+1 exp [−k · ζ(n, q)],
the following inequalities hold for S ⊂ V with 2 ≤ |S| ≤ n−1:
(

n − |S|
n − 1

) n∑

i=1

1

k

∣
∣Pc

i

∣
∣−

∑

i∈Sc

1

k

∣
∣Pc

i

∣
∣ (44)

≥
(

n − |S|
n − 1

)

nξ1(1− ν1)

−
(

n − |S|
n − 1

)

(n − 1)ξ1(1+ ν1) (45)

=
(

n − |S|
n − 1

)(
(1− q)− (1− q)n

1− (1− q)n

)
(
1− ν1(2n − 1)

)
(46)

=
(

(1− q)|S| − (1− q)n

1− (1− q)n

)

(1+ δ|S|)
(
1− ν1(2n − 1)

)
(47)

=
(

(1− q)|S| − (1− q)n

1− (1− q)n

)

(1+ ν|S|) (48)

= ξ|S|(1+ ν|S|) (49)

≥ 1

k

∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣
, (50)

where
• (45) follows from (43).
• (46) follows from elementary algebra and the definition

of ξ1.
• (47)-(49) follow from the definitions of δ|S|, ν|S| and ξ|S|,

respectively.
• (50) follows from (43).
This proves that (34) holds, and therefore (b̃1, . . . , b̃n) is

a feasible solution to LP (28) with probability greater than
1− 2n+1 exp [−k · ζ(n, q)].

Finally, Corollary 1 in Appendix A states that the optimal
values of the ILP:

min

{
n∑

i=1

bi :
∑

i∈Sc

bi ≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣
, S ⊂ V , S �= ∅, bi ∈ Z

}

and the corresponding LP relaxation:

min

{
n∑

i=1

bi :
∑

i∈Sc

bi ≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣
, S ⊂ V , S �= ∅, bi ∈ R

}

differ by less than 1. Combining this fact with Theorem 2
completes the proof.

Remark 4: Observe that we have actually proven a stronger
concentration result than was needed to prove Theorem 3.
Indeed, we have shown that if packets are randomly distributed
according to (1), then

M∗(T) =
⌈

1

n − 1

n∑

i=1

∣
∣Pc

i

∣
∣

⌉

(51)

with probability greater than 1−2n+1 exp [−k · ζ(n, q)], where
ζ(n, q) is an explicit function of n and q .

C. d-Regular Networks

Before we begin, let us define ‖ · ‖2, ‖ · ‖∞ to be the usual
�2- and �∞-norms, respectively. Also, let 1 denote the column
vector of all ones. In order to simplify the proof of Theorem 4,
we require two technical lemmas:

Lemma 2: Let A ∈ R
n×n be a symmetric matrix with

nonnegative entries and all column sums equal to d . Let x̄ y

be the vector of minimum Euclidean norm which minimizes
‖Axy − y‖2. There exists an optimal solution x∗ to the linear
program

minimize 1T x (52)

subject to: Ax � y (53)

which satisfies

‖x∗ − x̄ y‖∞ ≤ cA‖Ax̄y − y‖2, (54)

where cA is a constant depending only on A.
Proof: See Appendix B.

Lemma 3: Assume packets are randomly distributed in a
d-regular network T according to (1). For any ε > 0, there
exists an optimal solution x∗ to LP (5-6) which satisfies

∥
∥
∥
∥x∗ − 1

d
E[|Pc

1 |]1
∥
∥
∥
∥∞

< εk (55)

with probability approaching 1 as k →∞, where E indicates
expectation.

Before proceeding with the proof of Lemma 3, we recall that
the random packet model (1) implies that E[|Pc

j |] = E[|Pc
1 |]

for all j ∈ [n]. Hence, there is nothing noteworthy about the
appearance of Pc

1 in the statement of the lemma, any Pc
j would

suffice.
Proof: Let �P = (|Pc

1 |, . . . , |Pc
n |)T and let A be the

adjacency matrix of G (i.e., ai, j = 1 if (i, j) ∈ E and 0
otherwise). Observe that A is symmetric and A1 = d1, where
1 denotes a column vector of 1’s. With this notation, LP (5)
can be rewritten as:

minimize 1T x (56)

subject to: Ax � �P, (57)

where “a � b” for vectors a, b ∈ R
n means that ai ≥ bi for

i = 1, . . . , n.
Let A+ denote the Moore-Penrose pseudoinverse

of A. Observe that the linear least squares solution
x̄L S � arg minx ‖Ax − �P‖2 is given by:

x̄L S = A+ �P (58)
= A+E �P + A+

(�P − E �P
)

(59)

= 1

d
E �P + A+

(�P − E �P
)

. (60)

For the last step above, note that E �P is an eigenvector of A
with eigenvalue d so E �P will also be an eigenvector of A+
with eigenvalue 1

d . Hence,

‖x̄L S − 1

d
E �P‖2 = ‖A+

(�P − E �P
)
‖2 (61)

≤ ‖A+‖2‖ �P − E �P‖2, (62)

1148 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

where ‖A+‖2 is the operator norm of A+ induced by the
2-norm on vectors (also known as the spectral norm of A+).
Thus, for any vector y, we have

‖y − 1

d
E �P‖∞ ≤ ‖y − x̄L S‖∞ + ‖x̄L S − 1

d
E �P‖∞ (63)

≤ ‖y − x̄L S‖∞ + ‖x̄L S − 1

d
E �P‖2 (64)

≤ ‖y − x̄L S‖∞ + ‖A+‖2‖ �P − E �P‖2, (65)

where (63) follows from the triangle inequality, (64) follows
from the definitions of the �2- and �∞-norms, and (65) follows
from (62).

Now, Lemma 2 guarantees the existence of an optimal
solution x∗ to LP (56) (and consequently LP (5)) which
satisfies ‖x∗ − x̄L S‖∞ ≤ cA‖Ax̄L S − �P‖2, where cA is a
constant depending only on A. Hence, letting y = x∗ in (65),
we have:

‖x∗ − 1

d
E �P‖∞ ≤ ‖x∗ − x̄L S‖∞ + ‖A+‖2‖ �P − E �P‖2

≤ cA‖Ax̄L S − �P‖2 + ‖A+‖2‖ �P − E �P‖2
≤ cA‖ 1

d
AE �P − �P‖2 + ‖A+‖2‖ �P − E �P‖2

= cA‖E �P − �P‖2 + ‖A+‖2‖ �P − E �P‖2,
where the third inequality follows by definition of x̄L S . By
the weak law of large numbers, ‖ �P − E �P‖2 ≤ εk with
probability tending to 1 as k →∞ for any ε > 0. Noting that
E �P = E[|Pc

1 |]1 completes the proof.
Now, we are in a position to prove Theorem 4. Roughly

speaking, the proof of Theorem 4 is similar to that of 3. In
particular, we show that if packets are randomly distributed
according to (1), then a simply-structured transmission sched-
ule satisfies the conditions of Theorem 1. However, care must
be taken to handle the more general network topologies.

Proof of Theorem 4: We begin with some observations and
definitions:
• First, recall that our model for randomly distributed

packets (1) implies that

E

[∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

]

= k
(1− q)|S| − (1− q)n

1− (1− q)n
(66)

for all nonempty S ⊂ V .
• Applying the identity (66), we have

E
[∣
∣Pc

1

∣
∣
] ≥ (1+ cq)E

[∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

]

(67)

for all S ⊂ V , |S| ≥ 2, where cq > 0 is defined by

cq � q(1− q)

2
(
(1− q)2 − (1− q)n

) . (68)

• Next, Lemma 1 implies the existence of a constant δq > 0
such that for any S ⊂ V with 2 ≤ |S| ≤ n − 1:

n − |S|
n − 1

≥ (1− q)|S| − (1− q)n

(1− q)− (1− q)n
+ δq (69)

= E
[∣
∣
⋂

i∈S Pc
i

∣
∣
]

E
[∣
∣Pc

1

∣
∣
] + δq , (70)

where the equality follows from (66).

• Arguing in a manner similar to the discussion surrounding
(43), it is readily verified that Hoeffding’s inequality6

implies
(

1+ min{δq , cq}
4

)

E

[∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

]

≥
∣
∣
∣
∣
∣

⋂

i∈S

Pc
i

∣
∣
∣
∣
∣

(71)

with probability approaching 1 as k →∞.
• Finally, for the proof below, we will take the number of

communication rounds sufficiently large to satisfy

r ≥ max

{
2n

dδq
,

2n(1+ cq)

dcq

}

. (72)

Fix ε > 0. Lemma 3 guarantees that there exists an optimal
solution x∗ to LP (5) satisfying

∥
∥
∥
∥x∗ − 1

d
E[|Pc

1 |]1
∥
∥
∥
∥∞

< εk (73)

with probability tending to 1 in k. Now, it is always possible
to construct a transmission schedule {b j

i } which satisfies
∑

j b j
i = �x∗i � and � 1

r x∗i � ≤ b j
i ≤ � 1

r x∗i � for each i, j .

Observe that
∑

i, j b j
i < n + ∑

i x∗i . Thus, proving that

{b j
i } ∈ Rr (T) with high probability will prove the theorem.
Since the network is d-regular, |∂(S)| ≥ d when-

ever |S| ≤ n − d , and |∂(S1)| ≥ n − |S2| whenever
|S2| ≥ n − d and S1 ⊆ S2. To see that the latter point is
true, observe the following. If |S1| ≤ n − d , then |∂(S1)| ≥ d
and hence |S2| ≥ n−d implies that |∂(S1)| ≥ n−|S2|. On the
other hand, if |S1| ≥ n−d , then |∂(S1)| = n−|S1| ≥ n−|S2|,
where the inequality follows since S1 ⊆ S2.

We consider the cases where 2 ≤ |Sr | ≤ n− d and n− d <
|Sr | ≤ n − 1 separately. The case where |Sr | = 1 coincides
precisely with the constraints (6), and hence is satisfied by
definition of {b j

i }.
Considering the case where 2 ≤ |Sr | ≤ n − d , we have the

following string of inequalities:
r∑

j=1

∑

i∈Sc
j∩�(S j−1)

b(r+1− j)
i

≥
r∑

j=1

∑

i∈Sc
j∩�(S j−1)

⌊
1

r
x∗i

⌋

(74)

≥
⎛

⎜
⎝

1

r

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

x∗i

⎞

⎟
⎠− nr (75)

≥
⎛

⎜
⎝

1

r

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

1

d
E[|Pc

1 |]
⎞

⎟
⎠− nkε − nr (76)

=
⎛

⎝
1

r

r∑

j=1

∑

i∈∂(S j−1)

1

d
E[|Pc

1 |]
⎞

⎠

−
⎛

⎝1

r

∑

i∈Sr∩Sc
0

1

d
E[|Pc

1 |]
⎞

⎠− nkε − nr (77)

6In fact, the weak law of large numbers is sufficient here, but Hoeffding’s
inequality can be used to prove exponential concentration if desired.

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1149

≥ 1

rd
E[|Pc

1 |]
⎛

⎝
r∑

j=1

∣
∣∂(Sj−1)

∣
∣− n

⎞

⎠− nr(kε + 1) (78)

≥ 1+ cq

rd
E

⎡

⎣

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦

⎛

⎝
r∑

j=1

∣
∣∂(Sj−1)

∣
∣− n

⎞

⎠

−nr(kε + 1) (79)

≥ 1+ cq

rd
E

⎡

⎣

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦ (rd − n)− nr(kε + 1) (80)

≥
(

1+ cq

2

)
E

⎡

⎣

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦− nr(kε + 1) (81)

≥
(

1+ cq

4

)
E

⎡

⎣

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦ (82)

≥
∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣
. (83)

The above string of inequalities holds with probability tending
to 1 as k →∞. They can be justified as follows:

• (74) follows by definition of {b j
i }.

• (75) follows since
⌊ 1

r x∗i
⌋≥ 1

r x∗i −1 and |Sc
j∩�(Sj−1)|≤n.

• (76) follows from (73) and the fact that |Sc
j∩�(Sj−1)|≤n.

• (77) follows from writing ∪r
j=1Sc

j ∩ �(Sj−1) as
(∪r

j=1∂(Sj−1))\
(
Sr ∩ Sc

0

)
and expanding the sum.

• (78) is true since |Sc
0 ∩ Sr | ≤ n.

• (79) follows from (67).
• (80) follows from

∣
∣∂(Sj−1)

∣
∣ ≥ d by d regularity and the

assumption that 2 ≤ |Sr | ≤ n − d .
• (81) follows from our choice of r given in (72). To see

this, recall that we have chosen r ≥ 2n(1+cq)
dcq

, implying
the inequality

1+ cq

rd
(rd − n) ≥ 1+ cq

2
. (84)

• (82) follows since
cq
4 E

[∣
∣
⋂

i∈Sr
Pc

i

∣
∣
] ≥ nr(kε + 1) for ε

sufficiently small and k sufficiently large. Indeed, this is
equivalent to

cq

4
E

⎡

⎣
1

k

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦ = cq

4
× (1− q)|Sr | − (1− q)n

1− (1− q)n

≥ nr

(

ε + 1

k

)

. (85)

Since the left hand side of (85) is strictly positive and
independent of k, ε, the claim follows.

• (83) follows from (71).
Next, consider the case where n−d ≤ |Sr | ≤ n−1. Starting

from (78), we obtain:
r∑

j=1

∑

i∈Sc
j∩�(S j−1)

b(r+1− j)
i

≥ 1

rd
E[|Pc

1 |]
⎛

⎝
r∑

j=1

∣
∣∂(Sj−1)

∣
∣− n

⎞

⎠− nr(kε + 1) (86)

≥ 1

rd
E[|Pc

1 |]
(

r(n − |Sr |)− n

)

− nr(kε + 1) (87)

= E[|Pc
1 |]

(
n − |Sr |

d
− n

rd

)

− nr(kε + 1) (88)

≥ E[|Pc
1 |]

(
n − |Sr |

n − 1
− n

rd

)

− nr(kε + 1) (89)

≥ E[|Pc
1 |]

(
E
[∣
∣⋂

i∈Sr
Pc

i

∣
∣
]

E[|Pc
1 |]

+ δq − n

rd

)

−nr(kε + 1) (90)

≥ E[|Pc
1 |]

(
E
[∣
∣
⋂

i∈Sr
Pc

i

∣
∣
]

E[|Pc
1 |]

+ δq

2

)

− nr(kε + 1) (91)

≥
(

1+ δq

4

)

E

⎡

⎣

∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣

⎤

⎦ (92)

≥
∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
i

∣
∣
∣
∣
∣
∣
. (93)

The above string of inequalities holds with probability
tending to 1 as k →∞. They can be justified as follows:

• (86) is simply (78) repeated for convenience.
• (87) follows since n − d ≤ |Sr | ≤ n − 1 and hence

d-regularity implies that |∂(Sj−1)| ≥ (n − |Sr |).
• (89) follows since d ≤ n − 1.
• (90) follows from (70).
• (91) follows from from our definition of r given in (72).

To see this, recall that we have chosen r ≥ 2n
dδq

, implying

the inequality δq − n
rd ≥ δq

2 .

• (92) follows since δq
4 E[Pc

1] ≥ nr(kε+1) for ε sufficiently
small and k sufficiently large. The argument justifying
this is similar to (85).

• (93) follows from (71).

Thus, we conclude that, for ε sufficiently small, the trans-
mission schedule {b j

i } satisfies each of the inequalities defining
Rr (T) with probability tending to 1. Since the number of
such inequalities is finite, an application of the union bound
completes the proof that {b j

i } ∈ Rr (T) with probability
tending to 1 as k →∞.

Remark 5: As was done in the proof of Theorem 3, it
is possible to prove an exponential concentration result for
Theorem 4. However, in favor of a simpler presentation,
we omit the details and content ourselves with the given
asymptotic result.

D. Divisible Packets

The proof of Theorem 5 is relatively straightforward. In
particular, given a transmission schedule that satisfies the
cutset constraints, we create a corresponding transmission
schedule that satisfies the necessary and sufficient conditions
of Theorem 1 adapted to t-divisible packets.

Proof of Theorem 5: Fix any ε > 0 and let x∗ be an optimal
solution to LP (9). Put bi = x∗i +ε. Note that bi is nonnegative.
This follows by considering the set S\{i} in the inequality
constraint (10), which implies x∗i ≥ 0.

1150 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Now, take an integer r ≥ ε−1n max1≤i≤n bi . If packets are
t-divisible, we can find a transmission schedule {b j

i } such that
1
r bi ≤ b j

i ≤ 1
r bi + 1

t for all i ∈ [n], j ∈ [r].
Thus, for any (S0, · · · , Sr) ∈ S(r)(G) we have the following

string of inequalities:

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

b(r+1− j)
i

≥ 1

r

r∑

j=1

∑

i∈Sc
j∩�(S j−1)

bi (94)

= 1

r

r∑

j=1

∑

i∈∂(S j−1)

bi − 1

r

∑

i∈Sc
0∩Sr

bi (95)

= 1

r

r∑

j=1

∑

i∈∂(S j−1)

x∗i +
ε

r

r∑

j=1

|∂(Sj−1)|

−1

r

∑

i∈Sc
0∩Sr

bi (96)

≥ 1

r

r∑

j=1

∑

i∈∂(S j−1)

x∗i + ε − n

r
max

1≤i≤n
bi (97)

≥ 1

r

r∑

j=1

∣
∣
∣
∣
∣
∣

⋂

i∈S j−1

Pc
j

∣
∣
∣
∣
∣
∣
+ ε − n

r
max

1≤i≤n
bi (98)

≥
∣
∣
∣
∣
∣
∣

⋂

i∈Sr

Pc
j

∣
∣
∣
∣
∣
∣
, (99)

where

• (94) follows since b j
i ≥ 1

r bi .
• (95) follows from writing ∪r

j=1Sc
j ∩ �(Sj−1) as

(∪r
j=1∂(Sj−1))\

(
Sr ∩ Sc

0

)
and expanding the sum.

• (96) follows from our definition bi = x∗i + ε.
• (97) follows since |∂(Sj−1)| ≥ 1 and |Sc

0 ∩ Sr | ≤ n.
• (98) follows since x∗ is an optimal solution to LP (9),

and therefore must satisfy the claimed inequality.
• (99) follows from our choice or r ≥ ε−1n max1≤i≤n bi .

Hence, Theorem 1 implies that the transmission schedule {b j
i }

is sufficient to achieve universal recovery. Noting that

∑

i, j

b j
i ≤

n∑

i=1

bi + nr

t
≤

n∑

i=1

x∗i + n
(r

t
+ ε

)
(100)

completes the proof of the theorem.

E. Secrecy Generation

In this subsection, we prove Theorems 6 and 7. We again
remark that our proofs essentially follow those in [14], but
have been adapted for the problem at hand. For notational
convenience, define P = {p1, . . . , pk}. We will require the
following lemma.

Lemma 4: Given a packet distribution P1, . . . , Pn , let K
be a secret-key achievable with communication F. Then the

following holds:

H (K |F) = H (P)−
n∑

i=1

xi . (101)

for some vector x = (x1, . . . , xn) which is feasible for the
following ILP:

minimize
n∑

i=1

xi (102)

subject to:
∑

i∈S

xi ≥
∣
∣
∣
∣
∣

⋂

i∈Sc

Pc
i

∣
∣
∣
∣
∣

for all ∅ � S ⊂ V . (103)

Moreover, if K is a PK (with respect to a set D) and each
node i ∈ D transmits its respective set of packets Pi , then

H (K |F) = H (P|PD)−
∑

i∈V \D
xi . (104)

for some vector x = (x1, . . . , xn) which is feasible for the
ILP:

minimize
∑

i∈V \D
xi (105)

subject to:
∑

i∈S

xi ≥
∣
∣
∣
∣
∣

⋂

i∈Sc

Pc
i

∣
∣
∣
∣
∣
∀ ∅ � S ⊂ V \D. (106)

Remark 6: We remark that (103) and (106) are necessary
and sufficient conditions for achieving universal recovery in
the networks T and TD considered in Theorems 6 and 7,
respectively. Thus, the optimal values of ILPs (102) and (105)
are equal to M∗(T) and M∗(TD), respectively.

Proof of Lemma 4: We assume throughout that all entropies
are with respect to the base-|F| logarithm (i.e., information is
measured in packets). For this and the following proofs, let
F = (F1, . . . , Fn) and F[1,i] = (F1, . . . , Fi), where Fi denotes
the transmissions made by node i . For simplicity, our proof
does not take into account interactive communication, but can
be modified to do so. Allowing interactive communication
does not change the results. See [14] for details.

Since K and F are functions of P:

H (P) = H (F, K , P1, . . . , Pn) (107)

=
n∑

i=1

H (Fi |F[1,i−1])+ H (K |F)

+
n∑

i=1

H (Pi |F, K , P[1,i−1]). (108)

Set xi = H (Fi |F[1,i−1]) + H (Pi |F, K , P[1,i−1]). Then, the
substituting xi into the above equation yields:

H (K |F) = H (P)−
n∑

i=1

xi . (109)

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1151

Note that x = (x1, . . . , xn) is a feasible vector for the linear
relaxation of ILP (102), since:
∣
∣
∣
∣
∣

⋂

i∈Sc

Pc
i

∣
∣
∣
∣
∣
= H (PS|PSc) (110)

= H (F, K , PS |PSc) (111)

= H (K |F, PSc)+
n∑

i=1

H (Fi |F[1,i−1], PSc)

+
∑

i∈S

H (Pi |F, K , P[1,i−1], PSc∩[i+1,n]) (112)

≤
∑

i∈S

H (Fi |F[1,i−1])+
∑

i∈S

H (Pi |F, K , P[1,i−1])

(113)

=
∑

i∈S

xi . (114)

In the above inequality, we used the fact that conditioning
reduces entropy, the fact that K is a function of (F, PSc) for
any S �= V , and the fact that Fi is a function of Pi (by the
assumption that communication is not interactive). Now, since
CS K is an integer, (109) implies that

∑n
i=1 xi is an integer.

Thus, Corollary 1 in Appendix A (which states that the optimal
values of ILP (102) and its linear relaxation differ by strictly
less than 1), implies the existence of an integral vector x̃ =
(x̃1, . . . , x̃n) which is feasible for ILP (102) and satisfies

n∑

i=1

x̃i =
n∑

i=1

xi . (115)

This proves the first part of the lemma.
To prove the second part of the lemma, we can assume

D = {1, . . . , �}. The assumption that each node i in D
transmits all of the packets in Pi implies Fi = Pi . Thus,
for i ∈ D we have xi = H (Pi |P[1,i−1]). Repeating the above
argument, we obtain

H (K |F) = H (P)− H (PD)−
∑

i∈V \D
xi (116)

= H (P|PD)−
∑

i∈V \D
xi . (117)

Exchanging x = (x1, . . . , xn) for an integral vector
x̃ = (x̃1, . . . , x̃n) as above completes the proof of the
lemma.

Proof of Theorem 6: Converse Part. Suppose K is a secret-
key achievable with communication F. Then, by definition of
a SK and Lemma 4 we have

CS K = H (K) = H (K |F) (118)

= H (P)−
n∑

i=1

xi (119)

≤ H (P)− M∗(T) (120)

= k − M∗(T). (121)

Achievability Part. By definition, universal recovery can
be achieved with M∗(T) transmissions. Moreover, the com-
munication F can be generated as a linear function of P
(see the proof of Theorem 1 and [21]). Denote this linear
transformation by F = LP . Note that L only depends on the

indices of the packets available to each node, not the values of
the packets themselves (see [21]). Let PF = {P ′ : LP ′ = F}
be the set of all packet distributions which generate F.

By our assumption that the packets are i.i.d. uniform from
F, each P ′ ∈ PF is equally likely given F was observed.
Since F has dimension M∗(T), |PF| = F

k−M∗(T). Thus, we
can set K = F

k−M∗(T) and label each P ′ ∈ PF with a unique
element in K. The label for the actual P (which is recon-
structed by all nodes after observing F) is the secret-key. Thus,
CS K ≥ k − M∗(T).

We remark that this labeling can be accomplished in poly-
nomial time by an appropriate linear transformation mapping
P to K .

Proof of Theorem 7: Converse Part. Suppose K is a private-
key. Then, by definition of a PK and Lemma 4,

CP K = H (K) = H (K |F) (122)

= H (P|PD)−
∑

i∈V \D
xi (123)

≤ H (P|PD)− M∗(TD) (124)

= (k − |PD|)− M∗(TD). (125)

Achievability Part. Let each node i ∈ D transmit Pi so that
we can update Pj ← Pj ∪ PD for each j ∈ V \D. Now,
consider the universal recovery problem for only the nodes
in V \D. M∗(TD) is the minimum number of transmissions
required among the nodes in V \D so that each node in V \D
recovers P . At this point, the achievability proof proceeds
identically to the SK case.

VI. CONCLUDING REMARKS

In this paper, we derive necessary and sufficient conditions
for achieving universal recovery in an arbitrarily connected
network. For the case when the network is fully connected,
we provide a polynomial-time algorithm based on submodu-
lar optimization which solves the cooperative problem. This
algorithm and its derivation yield tight concentration results
for the case when packets are randomly distributed. More-
over, concentration results are provided when the network is
d-regular and packets are distributed randomly. If packets
are divisible, we prove that the traditional cut-set bounds are
achievable. As a consequence of this and the concentration
results, we show that splitting packets does not typically
provide a significant benefit when the network is d-regular.
Finally, we discuss an application to secrecy generation in
the presence of an eavesdropper. We demonstrate that our
submodular algorithm can be used to generate the maximum
amount of secrecy in a practical manner.

It is conceivable that the coded cooperative data exchange
problem can be solved (or approximated) in polynomial time
if the network is d-regular, but packets aren’t necessarily
randomly distributed. This is one possible direction for future
work.

APPENDIX A
AN EFFICIENTLY SOLVABLE INTEGER LINEAR PROGRAM

In this appendix, we introduce a special ILP and provide
an polynomial-time algorithm for solving it. This algorithm

1152 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

can be used to solve the cooperative data exchange problem
when the underlying graph is fully-connected. We begin by
introducing some notation7.

Let E = {1, . . . , n} be a finite set with n elements. We
denote the family of all subsets of E by 2E . We frequently use
the compact notation E\U and U+i to denote the sets E∩Uc

and U ∪ {i} respectively. For a vector x = (x1, . . . , xn) ∈ R
n ,

define the corresponding functional x : 2E → R as:

x(U) :=
∑

i∈U

xi , for U ⊆ E . (126)

Throughout this section, we let F = 2E − {∅, E}
denote the family of nonempty proper subsets of E . Let
B = {B1, . . . , Bn}. No special structure is assumed for the
Bi ’s except that they are finite.

With the above notation established, we consider the fol-
lowing Integer Linear Program (ILP) in this section:

min

⎧
⎨

⎩

∑

i∈E

wi xi : x(U) ≥
∣
∣
∣
∣
∣
∣

⋂

i∈E\U
Bi

∣
∣
∣
∣
∣
∣
, ∀ U ∈ F , xi ∈ Z

⎫
⎬

⎭
.

(127)

It is clear that any algorithm that solves this ILP also solves
ILP (22) by putting Bi ← Pc

i and w = 1.

A. Submodular Optimization

Our algorithm for solving ILP (127) relies heavily on
submodular function optimization. To this end, we give a very
brief introduction to submodular functions here.

A function g : 2E → R is said to be submodular if, for all
X, Y ∈ 2E ,

g(X)+ g(Y) ≥ g(X ∩ Y)+ g(X ∪ Y). (128)

Over the past three decades, submodular function optimization
has received a significant amount of attention. Notably, several
polynomial time algorithms have been developed for solving
the Submodular Function Minimization (SFM) problem

min {g(U) : U ⊆ E} . (129)

We refer the reader to [28]–[30] for a comprehensive overview
of SFM and known algorithms. As we will demonstrate, we
can solve ILP (127) via an algorithm that iteratively calls a
SFM routine. The most notable feature of SFM algorithms
is their ability to solve problems with exponentially many
constraints in polynomial time. One of the key drawbacks of
SFM is that the problem formulation is very specific. Namely,
SFM routines typically require the function g to be submodular
on all subsets of the set E.

B. The Algorithm

We begin by developing an algorithm to solve an equality
constrained version of ILP (127). We will remark on the

7We attempt to keep the notation generic in order to emphasize that the
results in this appendix are not restricted to the context of the cooperative
data exchange problem.

general case at the conclusion of this section. To this end,
let M be a positive integer and consider the following ILP:

minimize wT x (130)

subject to: x(U)≥
∣
∣
∣
∣
∣
∣

⋂

i∈E\U
Bi

∣
∣
∣
∣
∣
∣

for all U ∈ F , and (131)

x(E) = M. (132)

Remark 7: We assume wi ≥ 0, else in the case without the
equality constraint we could allow the corresponding xi →
+∞ and the problem is unbounded from below.

Algorithm A.1: SOLVEILP(B, E, M, w)

comment: Define f : 2E → R as in eq. (134).

x ← COMPUTEPOTENTIALX(f, M, w)
if CHECKFEASIBLE(f, x)

then return (x)
else return (Problem Infeasible)

Theorem 8: Algorithm A.1 solves the equality constrained
ILP (130) in polynomial time. If feasible, Algorithm A.1
returns an optimal x . If infeasible, Algorithm A.1 returns
“Problem Infeasible”.

Proof: The proof is accomplished in three steps:
1) First, we show that if our algorithm returns an x , it is

feasible.
2) Second, we prove that if a returned x is feasible, it is

also optimal.
3) Finally, we show that if our algorithm does not return

an x , then the problem is infeasible.
Each step is given its own subsection, and our proof roughly
follows the development in [30] on crossing families.

Algorithm A.1 relies on three basic subroutines given below:

Algorithm A.2: COMPUTEPOTENTIALX(f, M, w)

comment: If feasible, returns x satisfying (131)
and (132) that minimizes wT x .

comment: Order elements of E
so that w1 ≥ w2 ≥ · · · ≥ wn .

for i ← n to 2

do

⎧
⎨

⎩

comment: Define fi (U) := f (U + i)
for U ⊆ {i, . . . , n}.

xi ← SFM(fi , {i, . . . , n})
x1 ← M −∑n

i=2 xi

return (x)

Algorithm A.3: CHECKFEASIBLE(f, x)

comment: Check if x(U) ≤ f (U) for all U ∈ F
with 1 ∈ U .

comment: Define f1(U) := f (U + 1) for U ⊆ E .

if SFM(f1, E) < 0
then return (false)
else return (true)

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1153

Algorithm A.4: SFM(f, V)

comment: Minimize submodular function f over
groundset V . See [28] for details.

v ← min { f (U) : U ⊆ V }
return (v)

C. Feasibility of a Returned x

In this section, we prove that if Algorithm A.1 returns a
vector x , it must be feasible. We begin with some definitions.

Definition 7: A pair of sets X, Y ⊂ E is called crossing if
X ∩ Y �= ∅ and X ∪ Y �= E .

Definition 8: A function g : 2E → R is crossing submod-
ular if

g(X)+ g(Y) ≥ g(X ∩ Y)+ g(X ∪ Y) (133)

for X, Y crossing.
We remark that minimization of crossing submodular func-

tions is well established, however it involves a lengthy reduc-
tion to a standard submodular optimization problem. However,
the crossing family F admits a straightforward algorithm,
which is what we provide in Algorithm A.1. We refer the
reader to [30] for complete details on the general case.

For M a positive integer, define

f (U) := M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U), for U ∈ F . (134)

Lemma 5: The function f is crossing submodular on F .
Proof: For X, Y ∈ F crossing:

f (X)+ f (Y)

= M −
∣
∣
∣
∣
∣

⋂

i∈X

Bi

∣
∣
∣
∣
∣
− x(X)+ M −

∣
∣
∣
∣
∣

⋂

i∈Y

Bi

∣
∣
∣
∣
∣
− x(Y) (135)

= M −
∣
∣
∣
∣
∣

⋂

i∈X

Bi

∣
∣
∣
∣
∣
− x(X ∩ Y)

+M −
∣
∣
∣
∣
∣

⋂

i∈Y

Bi

∣
∣
∣
∣
∣
− x(X ∪ Y) (136)

≥ M −
∣
∣
∣
∣
∣

⋂

i∈X∩Y

Bi

∣
∣
∣
∣
∣
− x(X ∩ Y)

+M −
∣
∣
∣
∣
∣

⋂

i∈X∪Y

Bi

∣
∣
∣
∣
∣
− x(X ∪ Y) (137)

= f (X ∩ Y)+ f (X ∪ Y). (138)

Observe that, with f defined as above, the constraints of
ILP (130) can be equivalently written as:

f (U) = M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U) ≥ 0 for all U ∈ F , (139)

x(E) = M. (140)

Without loss of generality, assume the elements of E are
ordered lexicographically so that w1 ≥ w2 ≥ · · · ≥ wn .

At iteration i in Algorithm A.2, x j = 0 for all j ≤ i . Thus,
setting

xi ← min
U⊆{i,...,n} { fi (U)} (141)

= min
U⊆{i,...,n}:i∈U

{ f (U)} (142)

= min
U⊆{i,...,n}:i∈U

{

M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U)

}

(143)

and noting that the returned x satisfies x(E) = M , rearranging
(143) guarantees that

x(E\U) ≥
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
, for all U ⊆ {i, . . . , n}, i ∈ U (144)

as desired. Iterating through i ∈ {2, . . . , n} guarantees (144)
holds for 2 ≤ i ≤ n.

Remark 8: In the feasibility check routine (Algorithm A.3),
we must be able to evaluate f1(E). The reader can verify that
putting f (E) = 0 preserves submodularity.

Now, in order for the feasibility check to return true, we
must have

min
U⊆E
{ f1(U)} = min

U⊆E :1∈U
{ f (U)} (145)

= min
U⊆E :1∈U

{

M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U)

}

(146)

≥ 0, (147)

implying that

x(E\U) ≥
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
, for all U ⊆ E, 1 ∈ U. (148)

Combining (144) and (148) and noting that x(E) = M proves
that x is indeed feasible. Moreover, x is integral as desired.

D. Optimality of a Returned x

In this section, we prove that if Algorithm A.1 returns a
feasible x , then it is also optimal. First, we require two more
definitions and a lemma.

Definition 9: A constraint of the form (139) corresponding
to U is said to be tight for U if

f (U) = M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U) = 0. (149)

Lemma 6: If x is feasible, X, Y are crossing, and their
corresponding constraints are tight, then the constraints corre-
sponding to X ∩ Y and X ∪ Y are also tight.

Proof: Since the constraints corresponding to X and Y
are tight, we have

0 = f (X)+ f (Y) ≥ f (X ∩ Y)+ f (X ∪ Y) ≥ 0. (150)

The first inequality is due to submodularity and the last
inequality holds since x is feasible. This implies the
result.

Definition 10: A family of sets L is laminar if X, Y ∈ L
implies either X ∩ Y = ∅, X ⊂ Y , or Y ⊂ X .

At iteration k (1 < k ≤ n) of Algorithm A.2, let Uk be the
set where (143) achieves its minimum. Note that k ∈ Uk ⊆

1154 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

{k, . . . , n}. By construction, the constraint corresponding to
Uk is tight. Also, the constraint x(E) = M is tight. From the
Uk’s and E we can construct a laminar family as follows: if
U j ∩Uk �= ∅ for j < k, then replace U j with Ũ j ← Uk ∪U j .
By Lemma 6, the constraints corresponding to the sets in the
newly constructed laminar family are tight. Call this family L.
For each i ∈ E , there is a unique smallest set in L containing
i . Denote this set Li . Since k ∈ Uk ⊆ {k, . . . , n}, Li �= L j for
i �= j . Note that L1 = E and Li ⊂ L j only if j < i .

For each Li ∈ L there is a unique smallest set L j such that
Li ⊂ L j . We call L j the least upper bound on Li .

Now, consider the dual linear program to (130):

maximize −
∑

U∈F
πU

(

M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣

)

− πE M (151)

subject to:
∑

U∈F :i∈U

πU + πE +wi = 0, for 1 ≤ i ≤ n

πU ≥ 0 for U ∈ F , and πE free. (152)

For each Li ∈ L, let the corresponding dual variable
πLi = w j − wi , where L j is the least upper bound on
Li . By construction, πLi ≥ 0 since it was assumed that
w1 ≥ · · · ≥ wn . Finally, let πE = −w1 and πU = 0 for
U /∈ L.

Now, observe that:
∑

U∈F :i∈U

πU + πE +wi = 0 (153)

as desired for each i . Thus, π is dual feasible. Finally, note
that πU > 0 only if U ∈ L. However, the primal constraints
corresponding to the sets in L are tight. Thus, (x, π) form a
primal-dual feasible pair satisfying complementary slackness
conditions, and are therefore optimal.

E. No Returned x = Infeasibility

Finally, we prove that if the feasibility check returns false,
then ILP (130) is infeasible. Note by construction that the
vector x passed to the feasibility check satisfies

M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣
− x(U) ≥ 0 for all nonempty U⊆{2, . . . , n},

and x(E) = M . Again, let Uk be the set where (143) achieves
its minimum and let L be the laminar family generated by
these Uk’s and E exactly as before. Again, the constraints
corresponding to the sets in L are tight (this can be verified
in a manner identical to the proof of Lemma 6). Now, since
x failed the feasibilty check, there exists some exceptional set
T with 1 ∈ T for which

M −
∣
∣
∣
∣
∣

⋂

i∈T

Bi

∣
∣
∣
∣
∣
− x(T) < 0. (154)

Generate a set LT as follows: Initialize LT ← T . For each
Li ∈ L, Li �= E , if LT ∩ Li �= ∅, update LT ← LT ∪ Li .
Now, we can add LT to family L while preserving the laminar
property. We pause to make two observations:

1) By an argument similar to the proof of Lemma 6, we
have that

M −
∣
∣
∣
∣
∣
∣

⋂

i∈LT

Bi

∣
∣
∣
∣
∣
∣
− x(LT) < 0. (155)

2) The sets in L whose least upper bound is E form a
partition of E . We note that LT is a nonempty class of
this partition. Call this partition PL.

Again consider the dual constraints, however, let wi = 0
(this does not affect feasibility). For each L ∈ PL define the
associated dual variable πL = α, and let πE = −α. All other
dual variables are set to zero. It is easy to check that this π
is dual feasible. Now, the dual objective function becomes:

−
∑

U∈F
πU

(

(M −
∣
∣
∣
∣
∣

⋂

i∈U

Bi

∣
∣
∣
∣
∣

)

− πE M

= −α
∑

L∈PL

(

M −
∣
∣
∣
∣
∣

⋂

i∈L

Bi

∣
∣
∣
∣
∣
− x(L)+ x(L)

)

+ αM

= −α

⎛

⎝M −
∣
∣
∣
∣
∣
∣

⋂

i∈LT

Bi

∣
∣
∣
∣
∣
∣
− x(LT)

⎞

⎠− αx(E)+ αM

= −α

⎛

⎝M −
∣
∣
∣
∣
∣
∣

⋂

i∈LT

Bi

∣
∣
∣
∣
∣
∣
− x(LT)

⎞

⎠

→+∞ as α→∞.

Thus, the dual is unbounded and therefore the primal problem
must be infeasible.

As an immediate corollary we obtain the following:
Corollary 1: The optimal values of the ILP:

min
{
x(E) : x(U) ≥ ∣

∣∩i∈E\U Bi
∣
∣ , U ∈ F , xi ∈ Z

}

and the corresponding LP relaxation:

min
{
x(E) : x(U) ≥ ∣

∣∩i∈E\U Bi
∣
∣ , U ∈ F , xi ∈ R

}

differ by less than 1.
Proof: Algorithm A.1 is guaranteed to return an optimal

x if the intersection of the polytope and the hyperplane
x(E) = M is nonempty. Thus, if M∗ is the minimum
such M , then the optimal value of the LP must be greater
than M∗ − 1.

F. Solving the General ILP

Finally, we remark on how to solve the general case of the
ILP without the equality constraint given in (127). First, we
state a simple convexity result.

Lemma 7: Let p∗w(M) denote the optimal value of ILP
(130) when the equality constraint is x(E) = M . We claim
that p∗w(M) is a convex function of M .

Proof: Let M1 and M2 be integers and let θ ∈ [0, 1]
be such that Mθ = θ M1 + (1 − θ)M2 is an integer. Let x (1)

and be x (2) optimal vectors that attain p∗w(M1) and p∗w(M2)
respectively. Let x (θ) = θx (1) + (1 − θ)x (2). By convexity,
x (θ) is feasible, though not necessarily integer. However, by

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1155

Fig. 6. Empirical computation times for Algorithm A.1, where each data point
is averaged over 10 trials. For the broken line, the multiplicative constant α and
exponent β were chosen to minimize the MSE

∑n
i=1 | log(αnβ)− log(m̂n)|2,

where m̂n is the sample mean of the computation times for |E| = n.

the results from above, optimality is always attained by an
integral vector. Thus, it follows that:

θp∗w(M1)+ (1− θ)p∗w(M2) = θwT x (1) + (1− θ)wT x (2)

= wT x (θ) (156)

≥ p∗w(Mθ). (157)

Noting that p∗w(M) is convex in M , we can perform
bisection on M to solve the ILP in the general case. For our
purposes, it suffices to have relatively loose upper and lower
bounds on M since the complexity only grows logarithmically
in the difference. A simple lower bound on M is given by
M ≥ maxi |Bi |.

G. Complexity

Our aim in this paper is not to give a detailed complexity
analysis of our algorithm. This is due to the fact that the com-
plexity is dominated by the the SFM over the set E in Algo-
rithm A.3. Therefore, the complexity of Algorithm A.1 is dic-
tated by the complexity of the SFM solver employed. Indeed,
Algorithm A.1 sequentially performs SFM over groundsets of
size 1, 2, . . . , n − 1, respectively. Hence the total complexity
of Algorithm A.1 is O(n · SFM(n)), where SFM(m) is the
complexity of performing SFM over a groundset of size m. It is
well-known that SFM(m) is polynomial in m, for instance the
survey [28] describes an Ellipsoid Algorithm-based approach
which runs in O(m5 ·γ +m7) time, where γ is the complexity
of evaluating the submodular function under consideration.
We remark that the algorithm presented in [18] solves the LP
relaxation of (127) in O(n3 · SFM(n)) time.

Despite the fact that SFM has somewhat large worst-
case polynomial, we have performed a series of numerical
experiments to demonstrate that Algorithm A.1 performs quite
well in practice. In our implementation, we ran the Fujishige-
Wolfe (FW) algorithm for SFM [31] based largely on a Matlab
routine by A. Krause [32]. While the FW algorithm has not

been proven to run in polynomial time, it has been shown
to work quite well in practice [31] (similar to the Simplex
algorithm for solving Linear Programs). Whether or not FW
has worst-case polynomial complexity is an open problem
to date. As mentioned above, there are SFM algorithms that
run in strongly polynomial time which could be used if a
particular application requires polynomially bounded worst-
case complexity [28].

In our series of experiments, we chose Bi ⊂ F randomly,
where |F | = 50. We let n = |E | range from 10 to 190 in
increments of 10. For each value of n, we ran 10 experiments.
The average computation time is shown in Figure 6, with
error bars indicating one standard deviation. We consistently
observed that the computations run in approximately O(n1.85)
time. Due to the iterative nature of the SFM algorithm, we
anticipate that the computation time could be significantly
reduced by implementing the algorithm in C/C++ instead
of Matlab. However, the O(n1.85) trend should remain the
same. Regardless, we are able to solve the ILP problems
under consideration with an astonishing 2190 constraints in
approximately one minute.

APPENDIX B
PROOF OF LEMMA 2

For convenience, we repeat the statement of Lemma 2.
Lemma 2: Let A ∈ R

n×n be a symmetric matrix with
nonnegative entries and all column sums equal to d . Let x̄ y

be the vector of minimum Euclidean norm which minimizes
‖Axy − y‖2. There exists an optimal solution x∗ to the linear
program

minimize 1T x (158)

subject to: Ax � y (159)

which satisfies

‖x∗ − x̄ y‖∞ ≤ cA‖Ax̄y − y‖2, (160)

where cA is a constant depending only on A.
Before moving to the proof of the lemma, we comment

briefly on the interpretation. If the matrix A in the statement
of Lemma 2 is nonsingular, then the solution x∗ to the linear
program (158) is unique and equal to x̄ y . Indeed, this can be
seen by premultiplying both sides of (159) by 1T , implying
1T x ≥ 1

d 1
T y for all feasible x . This lower bound is achieved

only if Ax = y. On the other hand, if A is singular, there
are many optimal solutions to the linear program (158). More
precisely, if x∗ is one optimal solution for the linear program
(158), then so is x∗ + z for any z such that Az = 0. Thus,
Lemma 2 guarantees that we can find an optimal solution x∗
which is “close” to the least squares solution x̄ y .

Proof of Lemma 2: To begin the proof, we make a few
definitions. Let λ be the absolute value of the nonzero eigen-
value of A with smallest modulus (at least one exists since d
is an eigenvalue). Define N (A) to be the nullspace of A, and
let N⊥(A) denote its orthogonal complement. Finally, let A+
denote the Moore-Penrose pseudoinverse of A.

Fix x̄ y ∈ R
n , and note that x∗ is an optimal solution to

LP (158) if and only if x∗ − x̄ y is an optimal solution to the

1156 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

linear program

minimize 1T (x + x̄ y) (161)

subject to: A(x + x̄ y) � y (162)

with variable x ∈ R
n . With this in mind, put x̄ y = A+y and

define b = y − Ax̄y . By definition of the pseudoinverse, x̄ y

is the vector of minimum Euclidean norm which minimizes
‖Axy − y‖2. Moreover, b ∈ N (A).

Thus, in order to prove the lemma, it suffices to show the
existence of an optimal solution x∗ to the linear program

minimize 1T x (163)

subject to: Ax � b (164)

which also satisfies the additional constraints

|xi | ≤ cA‖b‖2 for i = 1, . . . , n, (165)

where cA is a constant depending only on A.
Claim 1: There exists an optimal solution x∗ to Linear

Program (163) which satisfies

x∗i ≤ (dλ)−1n‖b‖∞ for i = 1, . . . , n. (166)

The proof relies heavily on duality. The reader is directed to
[33] or any other standard text for details.

To prove the claim, consider LP (163). By premultiplying
the inequality constraint by d−11T on both sides, we see that
1T x ≥ d−11T b > −∞. Hence, the objective is bounded from
below, which implies that strong duality holds. Thus, let z̃ be
an optimal solution to the dual LP of (163):

maximize bT z (167)

subject to: Az = 1 (168)

z � 0 (169)

with dual variable z ∈ R
n .

Next, consider the dual LP of (163) with the additional
inequality constraints corresponding to (166):

maximize bT z − (dλ)−1n‖b‖∞1T y (170)

subject to: Az = 1+ y (171)

z � 0 (172)

y � 0 (173)

with dual variables z ∈ R
n and y ∈ R

n . Equivalently, by
setting z = z̃+�z and observing that y = A�z, we can write
the dual LP (170) as

maximize bT z̃ + bT �z − (dλ)−1n‖b‖∞1T A�z (174)

subject to: A�z � 0 (175)

z̃ +�z � 0 (176)

with dual variables �z ∈ R
n . We prove the claim by showing

that the dual LPs (167) and (174) have the same optimal value.
Since strong duality holds, the corresponding primal problems
must also have the same optimal value.

Without loss of generality, we can uniquely decompose
�z = �z1 + �z2 where �z1 ∈ N (A) and �z2 ∈ N⊥(A).

Since b ∈ N (A), we have bT �z2 = 0 and we can rewrite
(174) yet again as

maximize bT z̃ + bT �z1 − (dλ)−1n‖b‖∞1T A�z2 (177)

subject to: A�z2 � 0 (178)

z̃ +�z1 +�z2 � 0 (179)

�z1 ∈ N (A),�z2 ∈ N⊥(A). (180)

By definition of λ, for any unit vector u ∈ N⊥(A) with
‖u‖2 = 1 we have ‖Au‖2 ≥ λ. Using this and the fact
that A�z2 � 0 for all feasible �z2, we have the following
inequality:

1T A�z2 = ‖A�z2‖1 ≥ ‖A�z2‖2 ≥ λ‖�z2‖2. (181)

Thus, the objective (177) can be upper bounded as follows:

bT z̃ + bT �z1 − (dλ)−1n‖b‖∞1T A�z2

≤ bT z̃ + bT �z1 − d−1n‖b‖∞‖�z2‖2. (182)

Next, we obtain an upper bound on bT �z1. To this
end, observe that constraint (179) implies that z̃ + �z1 �
−1‖�z2‖∞. Motivated by this, consider the following
ε-perturbed LP:

minimize −bT v (183)

subject to: z̃ + v � −ε1

v ∈ N (A).

with variable v. Let p∗(ε) denote the optimal value of the
ε-perturbed problem. First observe that p∗(0) = 0. To see
this, note that if z̃ + v � 0, then bT v ≤ 0, else we would
contradict the optimality of z̃ since z = z̃ + v is a feasible
solution to the dual LP (167) in this case. Now, weak duality
implies

−bT v ≥ p∗(ε) ≥ p∗(0)− ε1T w∗, (184)

where w∗ corresponds to an optimal solution to the dual LP
of the unperturbed primal LP (183), given by:

maximize −z̃T (Aw − b) (185)

subject to: Aw � b. (186)

Hence, (184) implies that

bT �z1 ≤ ‖�z2‖∞1T w∗ (187)

if �z1,�z2 are feasible for LP (177).
By definition of z̃, z̃T A = 1T , and hence a vector w∗ is

optimal for (185) if and only if it also optimizes:

minimize 1T w (188)

subject to: Aw � b. (189)

Combining this with (187), we have

bT �z1 ≤ ‖�z2‖∞1T w∗ ≤ ‖�z2‖∞1T w (190)

for any vector w satisfying Aw � b. Trivially, w = d−1‖b‖∞1
satisfies this, and hence we obtain:

bT �z1 ≤ d−1n‖b‖∞‖�z2‖∞. (191)

COURTADE AND WESEL: CODED COOPERATIVE DATA EXCHANGE 1157

Finally, we substitute this into (182) and see that

bT z ≤ bT z̃ + d−1n‖b‖∞‖�z2‖∞ − d−1n‖b‖∞‖�z2‖2
≤ bT z̃ + d−1n‖b‖∞‖�z2‖2 − d−1n‖b‖∞‖�z2‖2
≤ bT z̃

for all vectors z which are feasible for the dual LP (170). This
completes the proof of Claim 1.

Claim 2: There exists an optimal solution x∗ to Linear
Program (163) which satisfies

|xi | ≤ cA‖b‖2 for i = 1, . . . , n (192)

for some constant cA depending only on A.
First note that ‖b‖∞ ≤ ‖b‖2 for any b ∈ R

n , hence it
suffices to prove the claim for the infinity norm. Claim 1 shows
that each of the xi ’s can be upper bounded by (dλ)−1n‖b‖∞
without affecting the optimal value of LP (163). To see the
lower bound, let aT

j be a row of A with entry a j i ≥ d/n
in the i th coordinate (at least one exists for each i since
the columns of A sum to d). Now, the inequality constraint
Ax � b combined with the upper bound on each xi implies:

a j i xi + (d − a j i)λ
−1n‖b‖∞ ≥ aT

j x ≥ b j ≥ −‖b‖∞. (193)

Since a j i ≥ d/n, (193) implies:

xi ≥ −λ−1n(n − 1)‖b‖∞. (194)

Hence, we can take cA = λ−1n×max{n−1, d−1}. This proves
Claim 2, and, by our earlier remarks, proves the lemma.

ACKNOWLEDGMENT

The authors would like to thank Kent Benson, Alex
Sprintson, Pavan Datta, and Chi-Wen Su for the helpful
conversations and suggestions which led to this paper. The
authors also wish to thank one of the anonymous reviewers
who provided many constructive comments.

REFERENCES

[1] T. Courtade, B. Xie, and R. Wesel, “Optimal exchange of packets for
universal recovery in broadcast networks,” in Proc. Military Commun.
Conf., Nov. 2010, pp. 2250–2255.

[2] T. Courtade and R. Wesel, “Efficient universal recovery in broadcast
networks,” in Proc. 48th Annu. Allerton Conf. Commun., Control,
Comput., Oct. 2010, pp. 1542–1549.

[3] T. Courtade and R. Wesel, “Weighted universal recovery, practical
secrecy, and an efficient algorithm for solving both,” in Proc. 49th Annu.
Allerton Conf. Commun., Control, Comput., Oct. 2011, pp. 1349–1357.

[4] R. Ahlswede, N. Cai, S. yen Robert Li, and R. W. Yeung, “Net-
work information flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4,
pp. 1204–1216, Jul. 2000.

[5] S.-Y. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[6] S. El Rouayheb, M. Chaudhry, and A. Sprintson, “On the minimum
number of transmissions in single-hop wireless coding networks,” in
Proc. IEEE ITW, Sep. 2007, pp. 120–125.

[7] S. El Rouayheb, A. Sprintson, and P. Sadeghi, “On coding for cooper-
ative data exchange,” in Proc. IEEE ITW, Jan. 2010, pp. 1–5.

[8] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “A ran-
domized algorithm and performance bounds for coded cooperative data
exchange,” in Proc. IEEE ISIT, Jun. 2010, pp. 1888–1892.

[9] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “Deterministic
algorithm for coded cooperative data exchange,” in ICST QShine. New
York, NY, USA: Springer-Verlag, Nov. 2010.

[10] D. Ozgul and A. Sprintson, “An algorithm for cooperative data exchange
with cost criterion,” in Proc. ITA Workshop, Feb. 2011, pp. 1–4.

[11] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2825–2830, Jun. 2006.

[12] D. Shah, “Gossip algorithms,” Found. Trends Netw., vol. 3, no. 1,
pp. 1–125, 2008.

[13] S. Deb, M. Medard, and C. Choute, “Algebraic gossip: A network
coding approach to optimal multiple rumor mongering,” IEEE Trans.
Inf. Theory, vol. 52, no. 6, pp. 2486–2507, Jun. 2006.

[14] I. Csiszar and P. Narayan, “Secrecy capacities for multiple termi-
nals,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3047–3061,
Dec. 2004.

[15] C. Ye and P. Narayan, “Secret key and private key constructions for
simple multiterminal source models,” in Proc. IEEE ISIT, Sep. 2005,
pp. 2133–2137.

[16] C. Ye and A. Reznik, “A simple secret key construction system for
broadcasting model,” in Proc. 44th Annu. CISS, Mar. 2010, pp. 1–6.

[17] A. Beimel, Secret-Sharing Schemes: A Survey, Y. Chee, Z. Guo, S. Ling,
F. Shao, Y. Tang, H. Wang, and C. Xing, Eds. New York, NY, USA:
Springer-Verlag, 2011.

[18] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and
K. Ramchandran, “Deterministic algorithm for the cooperative data
exchange problem,” in Proc. IEEE Symp. Inf. Theory, Aug. 2011,
pp. 410–414.

[19] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY, USA: Plenum Press, 1972, pp. 85–103.

[20] M. Gonen and M. Langberg, “Coded cooperative data exchange problem
for general topologies,” in Proc. IEEE ISIT, Jul. 2012, pp. 2606–2610.

[21] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, et al.,
“Polynomial time algorithms for multicast network code construction,”
IEEE Trans. Inf. Theory, vol. 51, no. 6, pp. 1973–1982, Jun. 2005.

[22] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, et al.,
“A random linear network coding approach to multicast,” IEEE Trans.
Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[23] T. Halford, K. Chugg, and A. Polydoros, “Barrage relay networks:
System and protocol design,” in Proc. 21st IEEE Int. Symp. PIMRC,
Sep. 2010, pp. 1133–1138.

[24] T. Halford and K. Chugg, “Barrage relay networks,” in Proc. ITA
Workshop, Feb. 2010, pp. 1–8.

[25] T. Halford and G. Hwang, “Barrage relay networks for unmanned ground
systems,” in Proc. Military Commun. Conf., Nov. 2010, pp. 1274–1280.

[26] A. Blair, T. Brown, K. Chugg, T. Halford, and M. Johnson, “Barrage
relay networks for cooperative transport in tactical MANETs,” in Proc.
Military Commun. Conf. , Nov. 2008, pp. 1–7.

[27] A. Ramamoorthy, J. Shi, and R. D. Wesel, “On the capacity of network
coding for random networks,” IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2878–2885, Aug. 2005.

[28] S. T. McCormick, Submodular Function Minimization. In Handbooks
in Operations Research and Management Science, vol. 12, New York,
NY, USA: Elsevier, 2005.

[29] S. Fujishige, Submodular Functions and Optimization, 2nd ed. New
York, NY, USA: Elsevier, 2010.

[30] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
New York, NY, USA: Springer-Verlag, 2003.

[31] S. Fujishige, T. Hayashi, and S. Isotani, “The minimum-norm-point
algorithm applied to submodular function minimization and linear
programming,” Ph.D. dissertation, Res. Inst. Math. Sci., Kyoto Univ.,
Kyoto, Japan, 2006.

[32] A. Krause and S. Sonnenburg, “SFO: A toolbox for submodular function
optimization, the,” J. Mach. Learn. Res., vol. 11, pp. 1141–1144,
Jan. 2010.

[33] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K:
Cambridge University Press, 2004.

Thomas A. Courtade (S’06-M’13) received the B.S. degree in Electrical
Engineering from Michigan Technological University in 2007, and the M.S.
and Ph.D. degrees in Electrical Engineering from UCLA in 2008 and 2012,
respectively. In 2012, he was awarded the inaugural Postdoctoral Research
Fellowship through the NSF Center for Science of Information. He currently
holds this position, and resides at Stanford University. His honors include a
Distinguished Ph.D. Dissertation award and an Excellence in Teaching award
from the UCLA Department of Electrical Engineering and a Best Student
Paper Award at the 2012 International Symposium on Information Theory.

1158 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Richard D. Wesel (S’91–M’96–SM’01) is a Professor with the UCLA
Electrical Engineering Department and is the Associate Dean for Academic
and Student Affairs for the UCLA Henry Samueli School of Engineering
and Applied Science. He joined UCLA in 1996 after receiving his Ph.D. in
electrical engineering from Stanford. His B.S. and M.S. degrees in electrical
engineering are from MIT. His research is in the area of communication
theory with particular interest in channel coding. He has received the National
Science Foundation (NSF) CAREER Award, an Okawa Foundation award for
research in information theory and telecommunications, and the Excellence in
Teaching Award from the Henry Samueli School of Engineering and Applied
Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

