
Multiterminal Source Coding with an
Entropy-Based Distortion Measure

Thomas A. Courtade and Richard D. Wesel
Department of Electrical Engineering
University of California, Los Angeles

Los Angeles, California 90095
Email: tacourta@ee.ucla.edu; wesel@ee.ucla.edu

Abstract—In this paper, we consider a class of multiterminal
source coding problems, each subject to distortion constraints
computed using a specific, entropy-based, distortion measure.
We provide the achievable rate distortion region for two cases
and, in so doing, we demonstrate a relationship between the
lossy multiterminal source coding problems with our specific
distortion measure and (1) the canonical Slepian-Wolf lossless
distributed source coding network, and (2) the Ahlswede-Körner-
Wyner source coding with side information problem in which
only one of the sources is recovered losslessly.

I. INTRODUCTION

A. Background

A complete characterization of the achievable rate distortion
region for the classical lossy multiterminal source coding
problem depicted in Fig. 1 has remained an open problem for
over three decades. Several special cases have been solved:

• The lossless case where Dx = 0, Dy = 0. Slepian and
Wolf solved this case in their seminal work [1].

• The case where one source is recovered losslessly:
i.e., Dx = 0, Dy = Dmax. This case corresponds
to the source coding with side information problem of
Ahlswede-Körner-Wyner [2], [3].

• The Wyner-Ziv case [3] where Y n is available to the
decoder as side information and Xn should be recovered
with distortion at most Dx.

• The Berger-Yeung case (which subsumes the previous
three cases) [5] where Dx is arbitrary and Dy = 0.

Despite the apparent progress, other seemingly fundamental
cases, such as when Dx is arbitrary and Dy = Dmax, remain
unsolved except perhaps in very special cases.

B. Our Contribution

In this paper, we give the achievable rate region for two
cases subject to a particular choice of distortion measure d(·),
defined in Section II. Specifically, for our particular choice
of d(·), we give the achievable rate distortion region for the
following two cases:

• The situation when X and Y are subject to a joint
distortion constraint given a reproduction Ẑ:

E
[
d(X,Y, Ẑ)

]
≤ D.
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Fig. 1. Classical multiterminal source coding network.

• The case where X is subject to a distortion constraint
given a reproduction V̂ :

E
[
d(X, V̂ )

]
≤ Dx,

and there is no distortion constraint on the the reproduc-
tion of Y (i.e., Dy=Dmax).

The regions depend critically on our choice of d(·), which
can be interpreted as a natural measure of the soft information
the reproduction Ẑ symbol provides about the source symbols
X and Y (resp. the information V̂ provides about X).

The remainder of this paper is organized as follows. In
Section II we formally define the problem and provide our
main results. In Section III, we discuss the properties of
d(·) and provide the proofs of our main results. Section
IV delivers the conclusions and a brief discussion regarding
further directions.

II. PROBLEM STATEMENT AND RESULTS

In this paper, we consider two cases of the lossy multiter-
minal source coding network presented in Fig. 2.

In the first case, we study the achievable rates (Rx, Ry)
subject to the joint distortion constraint

E
[
d(X,Y, Ẑ)

]
≤ D,

where Ẑ is the joint reproduction symbol computed at the
decoder from the messages fx and fy received from the X-
and Y -encoders respectively.

In the second case, we study the achievable rates (Rx, Ry)
subject to a distortion constraint on X:

E
[
d(X, V̂ )

]
≤ Dx,
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where V̂ is the reproduction symbol computed at the decoder
from the messages fx and fy received from the X- and Y -
encoders respectively. In this second case, there is no distortion
constraint on Y .

Definition 1: To simplify terminology, we refer to the first
and second cases described above as the Joint Distortion (JD)
network and X-Distortion (XD) network respectively.
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Fig. 2. The Joint Distortion (JD) and X-Distortion (XD) networks.

Formally, define the source alphabets as X = {1, 2, . . . ,m}
and Y = {1, 2, . . . , `}. We consider the discrete memoryless
source sequences Xn and Y n drawn i.i.d. according to the
joint distribution p(x, y). Let Xn be available at the X-
encoder and Y n be available at the Y -encoder as depicted in
Fig. 2. (We will informally refer to probability mass functions
as distributions throughout this paper.)

For the case of joint distortion, we consider the reproduction
alphabet Ẑ = ∆m×`, where ∆k denotes the set of probability
distributions on k points. In other words, for ẑ ∈ Ẑ , ẑ =
(q1,1, . . . , qm,`) where qi,j ≥ 0 and

∑
i,j qi,j = 1. With ẑ

defined in this way, it will be convenient to use the notation
ẑ(x, y) = qx,y for x ∈ X , y ∈ Y . Note that the restriction
of the reproduction alphabet to the probability simplex places
constraints on the function ẑ(x, y). For example, one cannot
choose ẑ(x, y) = x+ y.

Define the joint distortion measure d : X × Y × Ẑ → R+

by

d(x, y, ẑ) = log

(
1

ẑ(x, y)

)
, (1)

and the corresponding distortion between the sequences
(xn, yn) and ẑn as

d(xn, yn, ẑn) =
1

n

n∑
i=1

log

(
1

ẑi(xi, yi)

)
. (2)

As we will see in Section III, the distortion measure d(·)
measures the amount of soft information that the reproduction
symbols provide about the source symbols in such a way that
the expected distortion can be described as an entropy. For
example, given the output from a discrete memoryless channel,
the minimum distortion between the channel input and output
is the conditional entropy. For this reason, we refer to d(·) as
an entropy-based distortion measure.

The function d(·) is a natural distortion measure for practical
scenarios. A similar distortion measure has appeared previ-
ously in the image processing literature [6] and in the study
of the information bottleneck problem [7]. However, it does

not appear to have been studied in the context of multiterminal
source coding.

A (2nRx , 2nRy , n)-rate distortion code for the JD network
consists of encoding functions,

fx : Xn → {1, 2, . . . , 2nRx}
fy : Yn → {1, 2, . . . , 2nRy},

and a decoding function

g : {1, 2, . . . , 2nRx} × {1, 2, . . . , 2nRy} → Ẑn.

A vector (Rx, Ry, D) with nonnegative components is
achievable for the JD network if there exists a sequence of
(2nRx , 2nRy , n)-rate distortion codes satisfying

lim
n→∞

E [d(Xn, Y n, g(fx(Xn), fy(Y n))] ≤ D.

Definition 2: The achievable rate distortion region, R, for
the JD network is the closure of the set of all achievable
vectors (Rx, Ry, D).

In a similar manner, we can also consider the case when
there is only a distortion constraint on X rather than a
joint distortion constraint on X,Y . For this, we consider the
reproduction alphabet V̂ = ∆m. With v̂ defined in this way, it
will be convenient to use the notation v̂(x) = qx for x ∈ X .

We define the distortion measure dx : X × V̂ → R+ by

dx(x, v̂) = log

(
1

v̂(x)

)
, (3)

and the corresponding distortion between the sequences xn

and v̂n as

dx(xn, v̂n) =
1

n

n∑
i=1

log

(
1

v̂i(xi)

)
. (4)

Identical to the case for the JD network, we can define a
(2nRx , 2nRy , n)-rate distortion code for the XD network, with
the exception that the range of the decoding function g(·) is
the reproduction alphabet V̂ .

A vector (Rx, Ry, Dx) with nonnegative components is
achievable for the XD network if there exists a sequence of
(2nRx , 2nRy , n)-rate distortion codes satisfying

lim
n→∞

E [dx(Xn, g(fx(Xn), fy(Y n))] ≤ Dx.

Definition 3: The achievable rate distortion region, Rx, for
the XD network is the closure of the set of all achievable
vectors (Rx, Ry, Dx).

Our main results are stated in the following theorems:
Theorem 1:

R =

(Rx, Ry, D) :

∃δx, δy ≥ 0 such that
D ≥ δx + δy
Rx + δx ≥ H(X|Y )
Ry + δy ≥ H(Y |X)
Rx +Ry +D ≥ H(X,Y )
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Theorem 2:

Rx =

(Rx, Ry, Dx) :

Rx +Dx ≥ H(X|U)
Ry ≥ I(Y ;U)
for some distribution
p(x, y, u) = p0(x, y)p(u|y),
where |U| ≤ |Y|+ 2.


Since the distortion measure is reminiscent of discrete

entropy, we can think of the units of distortion as “bits” of
distortion. Thus, Theorem 1 states that for every bit of dis-
tortion we allow for X,Y jointly, we can remove exactly one
bit of required rate from the constraints defining the Slepian-
Wolf achievable rate region. Indeed, we prove the theorem by
demonstrating a correspondence between a modified Slepian-
Wolf network and the multiterminal source coding problem in
question.

Similarly, when we only consider a distortion constraint on
X , Theorem 2 states that for every bit of distortion we tolerate,
we can remove one bit of rate required by the X-encoder in
the Ahlswede-Körner-Wyner region.

The proofs of Theorems 1 and 2 are given in the next
section.

III. PROOFS

We choose to prove Theorems 1 and 2 by showing a
correspondence between schemes that achieve a prescribed
distortion constraint and the well-known lossless distributed
source coding scheme of Slepian and Wolf, and the source
coding with side-information scheme of Ahlswede, Körner,
and Wyner. This provides a great deal of insight into how the
various distortions are achieved.

In each case, the proof relies on a peculiar property of
the distortion measure d(·). Namely, the ability to convert
expected distortions to entropies that are easily manipulated.
In the following subsection, we discuss the properties of the
distortion measure d(·).

A. Properties of d(·)

As stated above, one particularly useful property of d(·)
is the ability to convert expected distortions to conditional
entropies. This is stated formally in the following lemma.

Lemma 1: Given any U arbitrarily correlated with
(Xn, Y n), the estimator Ẑn[U ] produces the expected
distortion

E
[
d(Xn, Y n, Ẑn)

]
≥ 1

n

n∑
i=1

H(Xi, Yi|U).

Moreover, this lower bound can be achieved by setting
ẑi[u](x, y) := Pr (Xi = x, Yi = y|U = u).

Proof: Given any U arbitrarily correlated with (Xn, Y n),
denote the reproduction of (Xn, Y n) from U as Ẑn[U ] ∈ Ẑn.
By definition of the reproduction alphabet, we can consider the
estimator Ẑn[U ] to be some probability distribution on X ×Y
conditioned on U . Then, we obtain the following lower bound

on the expected distortion conditioned on U = u:

E
[
d(Xn, Y n, Ẑn)|U = u

]
=

1

n

n∑
i=1

∑
x,y∈X×Y

pi(x, y|u) log

(
1

ẑi[u](x, y)

)

=
1

n

n∑
i=1

D (pi(x, y|u)||ẑi[u](x, y)) +H(Xi, Yi|U = u)

≥ 1

n

n∑
i=1

H(Xi, Yi|U = u),

where pi(x, y|u) = Pr (Xi = x, Yi = y|U = u) is the true
conditional distribution. Averaging both sides over all values
of U , we obtain the desired result. Note that the lower bound
can always be achieved by setting ẑi[u](x, y) := pi(x, y|u).

We now give two examples which illustrate the utility of
the property stated in Lemma 1.

Example 1: Consider the following theorem of Wyner and
Ziv [4]:

Theorem 3: Let (X,Y ) be drawn i.i.d. and let d(x, ẑ) be
given. The rate distortion function with side information is

RY (D) = min
p(w|x)

min
f
I(X;W |Y )

where the minimization is over all functions f : Y ×
W → Ẑ and conditional distributions p(w|x) such that
E [d(x, f(y, w))] ≤ D.
For an arbitrary distortion measure, RY (D) can be difficult to
compute. In light of Lemma 1 and its proof, we immediately
see that:

RY (D) = H(X|Y )−D.

Example 2: As a corollary to the previous example, taking
Y = ∅ we obtain the standard rate distortion function for a
source Xn:

R(D) = H(X)−D.

In both examples, we make the surprising observation that
the distortion function d(·) yields a rate distortion function
that is a multiple of the rate distortion function obtained using
the “erasure” distortion measure d∞(·) defined as follows:

d∞(x, ẑ) =

 0 if ẑ = x
∞ if ẑ 6= x and x̂ 6= e
1 if ẑ = e.

(5)

This is somewhat counter-intuitive given the fact that an
estimator is able to pass much more “soft” information to the
distortion measure d(·) compared to d∞(·).

Definition 4: We have defined d(·) to be a joint distortion
measure on X ×Y , however it is possible to decompose it in
a natural way. We can define the marginal and conditional
distortions for X and Y |X respectively by decomposing
ẑi[u](x, y) = ẑi(x|u)ẑi(y|x, u) (note the slight abuse of
notation). Thus, if the total expected distortion is less than D,
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we define the marginal and conditional distortions Dx, and
Dy|x as follows:

D ≥ E
[
d(Xn, Y n, Ẑn)

]
= E

[
dx(Xn, Ẑn)

]
+ E

[
dy|x(Y n, Ẑn)

]
:= Dx +Dy|x.

In a complimentary manner, we can decompose the expected
distortion into Dy, Dx|y satisfying D ≥ Dy +Dx|y .

The definitions of expected total, marginal, and conditional
distortion allow us to bound the number of sequences that
are “distortion-typical”. First, we require a result on peak
distortion.

Lemma 2: Suppose we have a sequence of (2nRx , 2nRy , n)-
rate distortion codes satisfying

lim
n→∞

E [d(Xn, Y n, g(fx(Xn), fy(Y n))] ≤ D.

For any ε > 0, Pr
{
d(Xn, Y n, Ẑn) > D + ε

}
< ε for a

sufficiently large blocklength n.
Proof: Suppose a length n code satisfies the expected

distortion constraint E
[
d(Xn, Y n, Ẑn)

]
< D + ε/2. By

repeating the code N times, we obtain N i.i.d. realizations
of (Xn, Y n, Ẑn) ∼ p(Xn, Y n, Ẑn). By the weak law of
large numbers, Pr

{
d(XNn, Y Nn, ẐNn) > D + ε

}
< ε for

N sufficiently large.
Now, we take a closer look at the sets of source sequences

that produce a given distortion.
Lemma 3: LetA(ẑn) = {(xn, yn) : d(xn, yn, ẑn) ≤ D+ε}

for some ε > 0. The size of A(ẑn) is bounded from above by
|A(ẑn)| ≤ 2n(D+2ε).

Proof: For each (xn, yn) ∈ A(ẑn), we can rearrange (4)
to obtain

1 ≤ 2n(D+ε)
n∏
i=1

ẑi(xi, yi). (6)

By the definition of ẑn, observe that
∏n
i=1 ẑi(xi, yi) is a valid

probability measure on Xn × Yn. Thus, for any subset S ⊆
Xn × Yn, we have∑

(xn,yn)∈S

n∏
i=1

ẑi(xi, yi) ≤ 1. (7)

Combining (6) and (7) gives the desired result:

|A(ẑn)| =
∑

(xn,yn)∈A(ẑn)

1

≤
∑

(xn,yn)∈A(ẑn)

2n(D+ε)
n∏
i=1

ẑi(xi, yi)

≤ 2n(D+ε).

We can also modify the previous result to include sequences
which satisfy marginal and conditional distortion constraints.

Lemma 4: Let Ax(ẑn) = {xn : dx(xn, ẑn) ≤ Dx + ε} and
Ay|x(ẑn) = {yn : dy|x(yn, ẑn) ≤ Dy|x + ε} for some ε > 0.
The sizes of these sets are bounded as follows:

|Ax(ẑn)| ≤ 2n(Dx+2ε), and

|Ay|x(ẑn)| ≤ 2n(Dy|x+2ε)

for sufficiently large n. Symmetric statements hold for Ay(ẑn)
and Ax|y(ẑn).

Proof: The proof is nearly identical to that of Lemma 3
and is therefore omitted.

B. Proof of Theorem 1
As mentioned previously, we prove Theorem 1 by demon-

strating a correspondence between the JD network with a joint
distortion constraint and a Slepian-Wolf network. To this end,
we now define a modified Slepian-Wolf code. Essentially the
code splits the rates of each user into two parts. We refer
to this network as the Split-Message Slepian-Wolf (SMSW)
network.

A (2nRx , 2nRy , 2nR0x , 2nR0y , n)-SW (Slepian-Wolf) code
for the SMSW network consists of encoding functions,

φx : Xn → {1, 2, . . . , 2nRx}, φy : Yn → {1, 2, . . . , 2nRy}
ψx : Xn → {1, 2, . . . , 2nδ1}, ψy : Yn → {1, 2, . . . , 2nδ2},

and a decoding function

χ : [2nRx ]× [2nRy ]× [2nδ1 ]× [2nδ2 ]→ Xn × Yn.

A vector (Rx, Ry, δ1, δ2) with nonnegative components is
achievable for the SMSW network if there exists a sequence
of (2nRx , 2nRy , 2nδ1 , 2nδ2 , n)-SW codes satisfying

lim
n→∞

Pr {(Xn, Y n) 6= χ(φx, φy, ψ)} = 0.

Definition 5: The achievable region, RSW , for the SMSW
network is the closure of the set of all achievable vectors
(Rx, Ry, δ1, δ2).

Theorem 4 ( [1]): The achievable rate region RSW con-
sists of all rate tuples (Rx, Ry, δ1, δ2) satisfying

Rx + δ1 ≥ H(X|Y )

Ry + δ2 ≥ H(Y |X)

Rx +Ry + δ1 + δ2 ≥ H(X,Y ).

Claim 1: If (Rx, Ry, D) is an achievable rate-distortion
vector for the JD network, then (Rx, Ry, δ1, δ2) is an achiev-
able rate vector for the SMSW network for some δ1, δ2 ≥ 0
such that δ1 + δ2 ≤ D.

Proof: Suppose we have a sequence of (2nRx , 2nRy , n)-
rate distortion codes satisfying

lim
n→∞

E [d(Xn, Y n, g(fx(Xn), fy(Y n))] ≤ D.

From these codes, we will construct a sequence of
(2nRx , 2nRy , 2nδ

(n)
1 , 2nδ

(n)
2 , n)-SW codes satisfying

limn→∞ δ
(n)
1 + δ

(n)
2 ≤ D and

lim
n→∞

Pr {(Xn, Y n) 6= χ(φx, φy, ψx, ψy)} = 0.
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The encoding procedure is almost identical to the rate
distortion encoding procedure. In particular, set φx(Xn) =
fx(Xn) and φy(Y n) = fy(Y n). Decompose the expected
joint distortion into the marginal and conditional distortions
Dx,Dy|x which must satisfy Dx+Dy|x ≤ D+ε by definition.

Define the remaining encoding functions ψx, ψy as follows:
Bin the Xn sequences randomly into 2n(Dx+3ε) bins and, upon
observing the source sequence Xn, set ψx(Xn) = bx(Xn)
(where bx(Xn) is the bin index of Xn). Similarly, bin the Y n

sequences randomly into 2n(Dy|x+3ε) bins and, upon observing
the source sequence Y n, set ψy(Y n) = by(Y n) (where
by(Y n) is the bin index of Y n).

The decoder finds the unique X̂n in bin bx(Xn) satisfying
dx(X̂n, Ẑn) < Dx + ε. If X̂n 6= Xn, an error occurs. Upon
successfully recovering Xn = X̂n, the decoder finds the
unique Ŷ n such that dy|x(Ŷ n, Ẑn) < Dy|x + ε. If Ŷ n 6= Y n,
an error occurs.

The various sources of error are the following:
1) An error occurs if dx(Xn, g(φx, φy)) > Dx + ε or

dy|x(Y n, g(φx, φy)) > Dy|x+ε. By Lemma 2, this type
of error occurs with probability at most ε.

2) An error occurs if there is some other X̃n 6=
Xn in bin bx(Xn) satisfying dx(X̃n, g(φx, φy)) <
Dx + ε. By Lemma 3 and the observation that that
Pr
{
X̃n ∈ bin bx(Xn)

}
= 2−n(Dx+3ε), this type of

error occurs with arbitrarily small probability.
3) An error occurs if there is some other Ỹ n 6=

Y n in bin by(Y n) satisfying dy|x(Ỹ n, g(φx, φy)) <
Dy|x + ε. By Lemma 3 and the observation that that
Pr
{
Ỹ n ∈ bin by(Y n)

}
= 2−n(Dy|x+3ε), this type of

error is also small.
At this point the proof is essentially complete, but there
is a minor technical difficulty dealing with the sequences{
δ
(n)
1 , δ

(n)
2

}∞
n=1

corresponding to the sequences of marginal

and conditional distortions computed from Ẑn for each n.
We require that there exists some δ1 such that δ(n)1 → δ1
and similarly for the sequence of δ

(n)
2 ’s. However, since

[0, D + ε] × [0, D + ε] is compact, we can find a convergent
subsequence

{
δ
(nj)
1 , δ

(nj)
2

}∞
j=1

so that the desired limits exist.

Claim 2: If (Rx, Ry, δ1, δ2) is an achievable rate vector for
the SMSW network, then (Rx, Ry, δ1 + δ2) is an achievable
rate distortion vector for the JD network.

Proof: By Theorem 4, we must have: Rx ≥ H(X|Y )−δ1,
Ry ≥ H(Y |X)− δ2, and Rx +Ry ≥ H(X,Y )− δ1− δ2. Let
D = δ1 + δ2. For fixed δ1, δ2, any nontrivial (Rx, Ry) pair
in this region can be achieved by an appropriate time-sharing
scheme between the two points

P1 = (max {H(X|Y )−D, 0} ,
min {H(Y ), H(Y )− (D −H(X|Y ))}) , and

P2 = (min {H(X), H(X)− (D −H(Y |X))} ,
max {H(Y |X)−D, 0}) .

By the results given in Examples 1 and 2, point P1 allows
X,Y to be recovered with distortion D. Symmetrically, point
P2 allows X,Y to be recovered with distortion D. Thus, using
the appropriate time-sharing scheme to generate average rates
(Rx, Ry), we can create a sequence of rate distortion codes
that achieve the point (Rx, Ry, D) for the JD network.

C. Proof of Theorem 2

The proof of Theorem 2 is similar in spirit to the proof
of Theorem 1 and has therefore been omitted due to space
constraints. A complete preprint with the included proof can
be found online [12]. The key difference between the proofs
is that, instead of showing a correspondence between R and
the SMSW achievable rate region, we show a correspondence
between RX and the Ahlswede-Körner-Wyner achievable rate
region.

IV. CONCLUSION

In this paper, we gave the rate distortion regions for two
different multiterminal networks subject to distortion con-
straints using the entropy distortion measure. In the case of
the Joint Distortion and X-Distortion networks, we observed
that any point in the rate distortion region can be achieved
by timesharing between points in the SMSW region and
the Ahlswede-Körner-Wyner regions respectively. Perhaps this
is an indication that the rate distortion region for more
general multiterminal source networks (subject to distortion
constraints using the entropy distortion measure) can be char-
acterized by simpler source networks for which achievable rate
regions are known. This is one potential direction for future
investigation.

REFERENCES

[1] D. Slepian and J. K. Wolf, Noiseless coding of correlated information
sources, IEEE Trans. Inform. Theory, IT-19, pp. 471-480, 1973.

[2] R. Ahlswede and J. Körner. Source coding with side information and a
converse for the degraded broadcast channel. IEEE Trans. Inf. Theory,
IT-21:629-637, 1975.

[3] A. Wyner. On source coding with side information at the decoder. IEEE
Trans. Inf. Theory, IT-21:294 - 300, 1975.

[4] A. D. Wyner and J. Ziv, The rate distortion function for source coding
with side information at the decoder, IEEE Trans. Inform. Theory, vol.
IT-22, pp. 1-10, Jan. 1976.

[5] T. Berger and R. W. Yeung, Multiterminal source encoding with one
distortion criterion, IEEE Trans. Inf. Theory, vol. 35, no. 2, pp. 228-236,
Mar. 1989.
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