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Multiterminal Source Coding Under
Logarithmic Loss

Thomas A. Courtade, Member, IEEE, and Tsachy Weissman, Fellow, IEEE

Abstract— We consider the classical two-encoder multiterminal
source coding problem where distortion is measured under
logarithmic loss. We provide a single-letter description of the
achievable rate distortion region for all discrete memoryless
sources with finite alphabets. By doing so, we also give the rate
distortion region for the m-encoder CEO problem (also under
logarithmic loss). Several applications and examples are given.

Index Terms— Logarithmic loss, lossy compression, multiter-
minal source coding, rate-distortion, rate region.

I. INTRODUCTION

ACOMPLETE characterization of the achievable rate dis-
tortion region for the two-encoder source coding problem

depicted in Figure 1 has remained an open problem for
over three decades. Following tradition, we refer to this two-
encoder source coding network as the multiterminal source
coding problem throughout this paper. Several special cases
have been solved for general source alphabets and distortion
measures:
• The lossless case where D1 = 0, D2 = 0. Slepian and

Wolf solved this case in their seminal work [3].
• The case where one source is recovered losslessly: i.e.,

D1 = 0, D2 = Dmax. This case corresponds to the source
coding with side information problem of Ahlswede-
Körner-Wyner [4], [5].

• The Wyner-Ziv case [6] where Y2 is available to the
decoder as side information and Y1 should be recovered
with distortion at most D1.

• The Berger-Yeung case (which subsumes the previous
three cases) [7] where D1 is arbitrary and D2 = 0.

Despite the apparent progress, other seemingly fundamental
cases, such as when D1 is arbitrary and D2 = Dmax, remain
unsolved except perhaps in very special cases.

Recently, the achievable rate distortion region for the
quadratic Gaussian multiterminal source coding problem
was completely characterized by Wagner, Tavildar, and
Viswanath [8], who built upon significant prior work
(cf. [9]–[13]). Until now, this was the only case for which
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Fig. 1. The multiterminal source coding network.

the entire achievable rate distortion region was known. While
this is a very important result, it is again a special case
from a theoretical point of view: a specific choice of source
distribution, and a specific choice of distortion measure.

In the present paper, we determine the achievable rate
distortion region of the multiterminal source coding problem
for all discrete memoryless sources with finite alphabets.
However, as in [8], we restrict our attention to a specific
distortion measure.

At a high level, the roadmap for our argument is similar
to that of [8]. In particular, both arguments couple the mul-
titerminal source coding problem to a parametrized family of
CEO problems. Then, the parameter in the CEO problem is
“tuned” to yield the converse result. Despite this apparent sim-
ilarity, the proofs in [8] rely heavily on the previously known
Gaussian CEO results [12], the Gaussian one-helper results
[10], and the calculus performed on the closed-form entropy
expressions which arise from the Gaussian source assumption.
In our case we do not have this luxury, and our CEO tuning
argument essentially relies on an existence lemma to yield the
converse result. The success of our approach is largely due
to the fact that the distortion measure we consider admits a
lower bound in the form of a conditional entropy, much like
the quadratic distortion measure for Gaussian sources.

A. Our Contributions

In this paper, we give a single-letter characterization of the
achievable rate distortion region for the multiterminal source
coding problem under logarithmic loss. In the process of
accomplishing this, we derive the achievable rate distortion
region for the m-encoder CEO problem, also under logarithmic
loss. In both settings, we obtain a stronger converse than
is standard for rate distortion problems in the sense that
augmenting the reproduction alphabet does not enlarge the
rate distortion region. Notably, we make no assumptions on
the source distributions, other than that the sources have
finite alphabets. In both cases, the Berger-Tung inner bound
on the rate distortion region is tight. To our knowledge,
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this constitutes the first time that the entire achievable rate
distortion region has been described for general finite-alphabet
sources under nontrivial distortion constraints.

B. Organization

This paper is organized as follows. In Section II we formally
define the logarithmic loss function and the multiterminal
source coding problem we consider. In Section III we define
the CEO problem and give the rate distortion region under
logarithmic loss. In Section IV we return to the multiterminal
source coding problem and derive the rate distortion region for
the two-encoder setting. Also in Sections III and IV, applica-
tions to estimation, horse racing, and list decoding are given. In
Section V, we discuss connections between our results and the
multiterminal source coding problem with arbitrary distortion
measures. Section VI delivers our concluding remarks and
discusses directions for future work.

II. PROBLEM DEFINITION

Throughout this paper, we adopt notational conventions that
are standard in the literature. Specifically, random variables are
denoted by capital letters (e.g., X) and their corresponding
alphabets are denoted by corresponding calligraphic letters
(e.g., X ). We abbreviate a sequence (X1, X2, . . . , Xn) of
n random variables by Xn , and we denote the interval
(Xk, Xk+1, . . . , X j ) by X j

k . If the lower index is equal to 1, it
will be omitted when there is no ambiguity (e.g., X j � X j

1 ).
Frequently, random variables will appear with two subscripts
(e.g., Yi, j ). In this case, we are referring to the j th instance
of random variable Yi . We overload our notation here slightly
in that Y j

i,1 is often abbreviated as Y j
i . However, our meaning

will always be clear from context. Throughout, we let [x]+ =
max{x, 0} for real-valued x .

Let
{
(Y1, j ,Y2, j )

}n
j=1 = (Y n

1 ,Y n
2 ) be a sequence of n

independent, identically distributed pairs of random variables
with finite alphabets Y1 and Y2, respectively, and joint pmf
p(y1, y2). That is, (Y n

1 ,Y n
2 ) ∼

∏n
i=1 p(y1, j , y2, j ).

In this paper, we take the reproduction alphabet Ŷi to be
equal to the set of probability distributions over the source
alphabet Yi for i = 1, 2. Thus, for a vector Ŷ n

i ∈ Ŷn
i , we

will use the notation Ŷi, j (yi ) to mean the j th coordinate
(1 ≤ j ≤ n) of Ŷ n

i (which is a probability distribution on
Yi ) evaluated for the outcome yi ∈ Yi . In other words, the
decoder generates ‘soft’ estimates of the source sequences.

We consider the logarithmic loss distortion measure defined
as follows:

d(yi , ŷi ) = log

(
1

ŷi (yi )

)
for i = 1, 2.

Equivalently, d(yi , ŷi ) is the relative entropy (i.e., Kullback-
Leibler divergence) between the empirical distribution of the
event {Yi = yi} and the estimate ŷi . Using this definition for
symbol-wise distortion, it is standard to define the distortion
between sequences as

d(yn
i , ŷn

i ) =
1

n

n∑

j=1

d(yi, j , ŷi, j ) for i = 1, 2.

We point out that the logarithmic loss function is a widely
used penalty function in the theory of learning and prediction
(cf. [14, Chapter 9]). Further, it is a particularly natural loss
criterion in settings where the reconstructions are allowed
to be ‘soft’, rather than deterministic values. Surprisingly,
since distributed learning and estimation problems are some of
the most oft-cited applications of lossy multiterminal source
coding, it does not appear to have been studied in this
context until the recent work [15]. However, we note that
this connection has been established previously for the single-
encoder case in the study of the information bottleneck method
[16], [17]; we comment further on this connection in Section
III. Beyond learning and prediction, a similar distortion mea-
sure has appeared before in the image processing litera-
ture [18]. As we demonstrate through several examples, the
logarithmic loss distortion measure has a variety of useful
applications in the context of multiterminal source coding.

A rate distortion code (of blocklength n) consists of encod-
ing functions:

g(n)i : Yn
i →

{
1, . . . ,M(n)

i

}
for i = 1, 2

and decoding functions

ψ
(n)
i :

{
1, . . . ,M(n)

1

}
×
{

1, . . . ,M(n)
2

}
→ Ŷn

i for i = 1, 2.

A rate distortion vector (R1, R2, D1, D2) is strict-sense
achievable if there exists a blocklength n, encoding functions
g(n)1 , g(n)2 and a decoder (ψ(n)1 , ψ

(n)
2 ) such that

Ri ≥ 1

n
log M(n)

i for i = 1, 2

Di ≥ Ed(Y n
i , Ŷ n

i ) for i = 1, 2.

Where

Ŷ n
i = ψ(n)i (g(n)1 (Y n

1 ), g(n)2 (Y n
2 )) for i = 1, 2.

Definition 1: Let RD� denote the set of strict-sense achiev-
able rate distortion vectors and define the set of achievable
rate distortion vectors to be its closure, RD�

.
Our ultimate goal in the present paper is to give a single-

letter characterization of the region RD�
. However, in order to

do this, we first consider an associated CEO problem. In this
sense, the roadmap for our argument is similar to that of [8].
Specifically, both arguments couple the multiterminal source
coding problem to a parametrized family of CEO problems.
Then, the parameter in the CEO problem is “tuned” to yield
the converse result. Despite this apparent similarity, the proofs
are quite different since the results in [8] depend heavily on
the peculiarities of the Gaussian distribution.

III. THE CEO PROBLEM

In order to attack the general multiterminal problem, we
begin by studying the CEO problem (See [9] for an introduc-
tion.). To this end, let

{
(X j ,Y1, j ,Y2, j )

}n
j=1 = (Xn ,Y n

1 ,Y n
2 )

be a sequence of n independent, identically distributed random
variables distributed according to the joint pmf p(x, y1, y2) =
p(x)p(y1|x)p(y2|x). That is, Y1 ↔ X ↔ Y2 form a Markov
chain, in that order.
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In this section, we consider the reproduction alphabet X̂ to
be equal to the set of probability distributions over the source
alphabet X . As before, for a vector X̂n ∈ X̂ n , we will use
the notation X̂ j (x) to mean the j th coordinate of X̂n (which
is a probability distribution on X ) evaluated for the outcome
x ∈ X . As in the rest of this paper, d(·, ·) is the logarithmic
loss distortion measure.

A rate distortion CEO code (of blocklength n) consists of
encoding functions:

g(n)i : Yn
i →

{
1, . . . ,M(n)

i

}
for i = 1, 2

and a decoding function

ψ(n) :
{

1, . . . ,M(n)
1

}
×
{

1, . . . ,M(n)
2

}
→ X̂ n .

A rate distortion vector (R1, R2, D) is strict-sense achiev-
able for the CEO problem if there exists a blocklength n,
encoding functions g(n)1 , g(n)2 and a decoder ψ(n) such that

Ri ≥ 1

n
log M(n)

i for i = 1, 2

D ≥ Ed(Xn , X̂n).

Where

X̂n = ψ(n)(g(n)1 (Y n
1 ), g(n)2 (Y n

2 )).

Definition 2: Let RD�
C E O denote the set of strict-sense

achievable rate distortion vectors and define the set of achiev-
able rate distortion vectors to be its closure, RD�

C E O .

A. Inner Bound

Definition 3: Let (R1, R2, D) ∈ RDi
C E O if and only if

there exists a joint distribution of the form

p(x, y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 4, which satisfies

R1 ≥ I (Y1;U1|U2, Q)

R2 ≥ I (Y2;U2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
D ≥ H (X |U1,U2, Q).

Theorem 1: RDi
C E O ⊆ RD�

C E O. That is, all rate distor-
tion vectors (R1, R2, D) ∈ RDi

C E O are achievable.
Before proceeding with the proof, we cite the following

variant of a well-known inner bound:
Proposition 1 (Berger-Tung Inner Bound [19], [20]): The

rate distortion vector (R1, R2, D) is achievable if

R1 ≥ I (U1; Y1|U2, Q)

R2 ≥ I (U2; Y2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
D ≥ E [d(X, f (U1,U2, Q))]

for a joint distribution

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction function

f : U1 × U2 ×Q→ X̂ .

The proof of this proposition is a standard exercise in infor-
mation theory, and is therefore omitted. The interested reader
is directed to the text [21] for a modern, detailed treatment.
The proposition follows from what is commonly called the
Berger-Tung achievability scheme. In this encoding scheme,
each encoder quantizes its observation Y n

i to a codeword Un
i ,

such that the empirical distribution of the entries in (Y n
i ,U

n
i )

is very close to the true distribution p(yi , ui ). In order to
communicate their respective quantizations to the decoder, the
encoders essentially perform Slepian-Wolf coding. For this
reason, the Berger-Tung achievability scheme is also referred
to as a “quantize-and-bin” coding scheme.

Proof of Theorem 1: Given Proposition 1, the proof
of Theorem 1 is immediate. Indeed, if we apply Propo-
sition 1 with the reproduction function f (U1,U2, Q) �
{Pr [X = x |U1,U2, Q]}x∈X , we note that

E [d(X, f (U1,U2, Q))] = H (X |U1,U2, Q),

which yields the desired result.
Thus, from the proof of Theorem 1, we see that our inner

bound RDi
C E O simply corresponds to a specialization of the

general Berger-Tung inner bound to the case of logarithmic
loss.

B. A Matching Outer Bound

A particularly useful property of the logarithmic loss distor-
tion measure is that the expected distortion is lower-bounded
by a conditional entropy. A similar property is enjoyed by
Gaussian random variables under quadratic distortion. In par-
ticular, if G is Gaussian, and Ĝ is such that E(Ĝ−G)2 ≤ D,
then 1

2 log(2πe)D ≥ h(G|Ĝ). The case for logarithmic loss is
similar, and we state it formally in the following lemma which
is crucial in the proof of the converse.

Lemma 1: Let Z = (g(n)1 (Y n
1 ), g(n)2 (Y n

2 )) be the argument
of the reproduction function ψ(n). Then nEd(Xn, X̂n) ≥
H (Xn|Z).

Proof: By definition of the reproduction alphabet, we can
consider the reproduction X̂n to be a probability distribution
on X n conditioned on the argument Z . In particular, if x̂ n =
ψ(n)(z), define s(xn|z) �

∏n
j=1 x̂ j (x j ). It is readily verified

that s is a probability measure on X n . Then, we obtain the
following lower bound on the expected distortion conditioned
on Z = z:
E

[
d(Xn, X̂n)|Z = z

]

= 1

n

n∑

j=1

∑

xn∈X n

p(xn|z) log

(
1

x̂ j (x j )

)

= 1

n

∑

xn∈X n

p(xn|z)
n∑

j=1

log

(
1

x̂ j (x j )

)

= 1

n

∑

xn∈X n

p(xn|z) log

(
1

s(xn|z)
)

= 1

n

∑

xn∈X n

p(xn|z) log

(
p(xn|z)
s(xn|z)

)
+ 1

n
H (Xn|Z = z)

= 1

n
D
(

p(xn|z)‖s(xn |z))+ 1

n
H (Xn|Z = z)

≥ 1

n
H (Xn|Z = z),
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where p(xn|z) = Pr (Xn = xn|Z = z) is the true conditional
distribution. Averaging both sides over all values of Z , we
obtain the desired result.

Definition 4: Let (R1, R2, D) ∈ RDo
C E O if and only if

there exists a joint distribution of the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q),

which satisfies

R1 ≥ [I (Y1;U1|X, Q)+ H (X |U2, Q)− D]+
R2 ≥ [I (Y2;U2|X, Q)+ H (X |U1, Q) − D]+

R1 + R2 ≥ [I (U1; Y1|X, Q)
+ I (U2; Y2|X, Q)+ H (X)− D]+

D ≥ H (X |U1,U2, Q).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1)

Theorem 2: If (R1, R2, D) is strict-sense achievable for the
CEO problem, then (R1, R2, D) ∈ RDo

C E O .
Proof: Suppose the point (R1, R2, D) is strict-sense

achievable. Let A be a nonempty subset of {1, 2}, and let Fi =
g(n)i (Y n

i ) be the message sent by encoder i ∈ {1, 2}. Define
Ui, j � (Fi ,Y j−1

i ) and Q j � (X j−1, Xn
j+1) = Xn\X j . To

simplify notation, let YA = ∪i∈AYi (similarly for UA and FA).
With this notation established, we have the following string

of inequalities:
n
∑

i∈A

Ri ≥
∑

i∈A

H (Fi) ≥ H (FA)

≥ I (Y n
A; FA|FAc )

= I (Xn ,Y n
A; FA|FAc ) (2)

= I (Xn; FA|FAc )+
∑

i∈A

I (Fi ; Y n
i |Xn) (3)

= H (Xn|FAc )− H (Xn|F1, F2) (4)

+
∑

i∈A

n∑

j=1

I (Yi, j ; Fi |Xn,Y j−1
i )

≥ H (Xn|FAc )− nD (5)

+
∑

i∈A

n∑

j=1

I (Yi, j ; Fi |Xn,Y j−1
i ) (6)

=
n∑

j=1

H (X j |FAc , X j−1)− nD (7)

+
∑

i∈A

n∑

j=1

I (Yi, j ; Fi |Xn,Y j−1
i )

=
n∑

j=1

H (X j |FAc , X j−1)− nD (8)

+
∑

i∈A

n∑

j=1

I (Yi, j ;Ui, j |X j , Q j ) (9)

≥
n∑

j=1

H (X j |UAc, j , Q j )− nD (10)

+
∑

i∈A

n∑

j=1

I (Yi, j ;Ui, j |X j , Q j ). (11)

The nontrivial steps above can be justified as follows:

• (2) follows since FA is a function of Y n
A.

• (3) follows since Fi is a function of Y n
i and F1 ↔ Xn ↔

F2 form a Markov chain (since Y n
1 ↔ Xn ↔ Y n

2 form a
Markov chain).

• (6) follows since nD ≥ H (Xn|F1, F2) by Lemma 1.

• (9) follows from the Markov chain Yi, j ↔ Xn ↔
Y j−1

i , which follows from the i.i.d. nature of the source
sequences.

• (11) simply follows from the fact that conditioning
reduces entropy.

Therefore, dividing both sides by n, we have:

∑

i∈A

Ri ≥ 1

n

n∑

j=1

H (X j |UAc, j , Q j )

+
∑

i∈A

1

n

n∑

j=1

I (Yi, j ;Ui, j |X j , Q j )− D.

Also, using Lemma 1 and the fact that conditioning reduces
entropy:

D ≥ 1

n
H (Xn|F1, F2) ≥ 1

n

n∑

j=1

H (X j |U1, j ,U2, j , Q j ).

Observe that Q j is independent of (X j ,Y1, j ,Y2, j ) and, condi-
tioned on Q j , we have the long Markov chain U1, j ↔ Y1, j ↔
X j ↔ Y2, j ↔ U2, j . Finally, by a standard time-sharing
argument, we conclude by observing that if (R1, R2, D) is
strict-sense achievable for the CEO problem, then

R1 ≥ I (Y1;U1|X, Q)+ H (X |U2, Q)− D

R2 ≥ I (Y2;U2|X, Q)+ H (X |U1, Q)− D

R1 + R2 ≥ I (U1; Y1|X, Q)+ I (U2; Y2|X, Q)+ H (X)− D

D ≥ H (X |U1,U2, Q).

for some joint distribution of the form

p(q)p(x, y1, y2)p(u1|y1, q)p(u2|y2, q). (12)

Since R1, R2 ≥ 0, the theorem follows.
Theorem 3: RDo

C E O = RDi
C E O = RD�

C E O .

Proof: We first remark that the cardinality bounds on the
alphabets in the definition of RDi

C E O can be imposed without
any loss of generality. This is a consequence of [22, Lemma
2.2] and is discussed in detail in Appendix A.

Therefore, it will suffice to show RDo
C E O ⊆ RDi

C E O
without considering the cardinality bounds. To this end, fix
p(q), p(u1|y1, q), and p(u2|y2, q) and consider the extreme
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points1 of polytope defined by the inequalities (1):

P1 =
(

0, 0, I (Y1;U1|X, Q)+ I (Y2;U2|X, Q)+ H (X)

)

P2 =
(

I (Y1;U1|Q), 0, I (U2; Y2|X, Q)+ H (X |U1, Q)

)

P3 =
(

0, I (Y2;U2|Q), I (U1; Y1|X, Q)+ H (X |U2, Q)

)

P4 =
(

I (Y1;U1|Q), I (Y2;U2|U1, Q), H (X |U1,U2, Q)

)

P5 =
(

I (Y1;U1|U2, Q), I (Y2;U2|Q), H (X |U1,U2, Q)

)
,

where the point Pj is a triple (R( j )
1 , R( j )

2 , D( j )). We say a point
(R( j )

1 , R( j )
2 , D( j )) is dominated by a point in RDi

C E O if there
exists some (R1, R2, D) ∈ RDi

C E O for which R1 ≤ R( j )
1 ,

R2 ≤ R( j )
2 , and D ≤ D( j ). Observe that each of the extreme

points P1, . . . , P5 is dominated by a point in RDi
C E O :

• First, observe that P4 and P5 are both in RDi
C E O , so

these points are not problematic.
• Next, observe that the point (0, 0, H (X)) is in RDi

C E O ,
which can be seen by setting all auxiliary random vari-
ables to be constant. This point dominates P1.

• By using auxiliary random variables (Û1, Û2, Q) =
(U1,∅, Q), the point (I (Y1;U1|Q), 0, H (X |U1, Q)) is in
RDi

C E O , and dominates the point P2. By a symmetric
argument, the point P3 is also dominated by a point in
RDi

C E O .

Since RDo
C E O is the convex hull of all such extreme points

(i.e., the convex hull of the union of extreme points over all
appropriate joint distributions), the theorem is proved.

Remark 1: Theorem 3 can be extended to the general case
of m-encoders. Details are provided in Appendix B.

C. A Stronger Converse Result for the CEO Problem

As defined, our reproduction sequence X̂n is an n-tuple of
distributions on X , which we identify with a product distrib-
ution on X n in the natural way. However, for a blocklength n
code, we can allow X̂n to be any probability distribution on
X n and the converse result still holds. In this case, we define
the sequence distortion as follows:

d(xn, x̂ n) = 1

n
log

(
1

x̂ n(xn)

)
,

which is compatible with the original definition when X̂n is
a product distribution. The reader can verify that the result of
Lemma 1 is still true for this more general distortion alphabet
by setting s(xn|z) = x̂ n(xn) in the corresponding proof. Since
Lemma 1 is the key tool in the CEO converse result, this
implies that the converse holds even if X̂n is allowed to be
any probability distribution on X n (rather than being restricted
to the set of product distributions).

1For two encoders, it is easy enough to enumerate the extreme points by
inspection. However, this can be formalized by a submodularity argument,
which is given in Appendix B.

When this stronger converse result is taken together with
the achievability result, we observe that restricting X̂n to be
a product distribution is in fact optimal and can achieve all
points in RD�

C E O .

D. An Example: Distributed Compression of a Posterior
Distribution

Suppose two sensors observe sequences Y n
1 and Y n

2 respec-
tively, which are conditionally independent given a hidden
sequence Xn . The sensors communicate with a fusion center
through rate-limited links of capacity R1 and R2 respec-
tively. Given sequences (Y n

1 ,Y n
2 ) are observed, the sequence

Xn cannot be determined in general, so the fusion center
would like to estimate the posterior distribution p(xn|Y n

1 ,Y n
2 ).

Since the communication links are rate-limited, the fusion
center cannot necessarily compute p(xn|Y n

1 ,Y n
2 ) exactly. In

this case, the fusion center would like to generate an
estimate p̂(xn|g(n)1 (Y n

1 ), g(n)2 (Y n
2 )) that should approximate

p(xn|Y n
1 ,Y n

2 ) in the sense that, on average:

D
(

p(xn|yn
1 , yn

2 )
∥∥
∥ p̂(xn|g(n)1 (yn

1 ), g(n)2 (yn
2 ))
)
≤ nε,

where, consistent with standard notation (e.g. [23]), we write
D(p(xn|yn

1 , yn
2 )‖ p̂(xn|g(n)1 (yn

1 ), g(n)2 (yn
2 ))) as shorthand for

∑

xn,yn
1 ,y

n
2

p(xn, yn
1 , yn

2 ) log
p(xn|yn

1 , yn
2 )

p̂(xn|g(n)1 (yn
1 ), g(n)2 (yn

2 ))
.

The relevant question here is the following. What is the
minimum distortion ε that is attainable given R1 and R2?

Considering the CEO problem for this setup, we have:
Ed(X̂n , Xn)

= 1

n

∑

(xn,yn
1 ,y

n
2 )

p(xn, yn
1 , yn

2 ) log

(
1

x̂ n(xn)

)

= 1

n
D
(

p(xn|yn
1 , yn

2 )
∥
∥
∥x̂ n(xn)

)
+ 1

n
H (Xn|Y n

1 ,Y n
2 ).

Identifying p̂(xn|g(n)1 (Y n
1 ), g(n)2 (Y n

2 ))← X̂n(xn), we have:

D
(

p(xn|yn
1 , yn

2 )
∥
∥
∥ p̂(xn|g(n)1 (yn

1 ), g(n)2 (yn
2 ))
)

= nEd(X̂n, Xn)− nH (X |Y1,Y2).

Thus, finding the minimum possible distortion reduces to
an optimization problem over RD�

C E O . In particular, the
minimum attainable distortion ε∗ is given by

ε∗ = inf
{

D : (R1, R2, D) ∈ RD�
C E O

}
− H (X |Y1,Y2). (13)

Moreover, the minimum distortion is obtained by estimating
each x j separately. In other words, there exists an optimal
(essentially, for large n) estimate p̂∗(xn|·, ·) (which is itself a
function of optimal encoding functions g∗(n)1 (·) and g∗(n)2 (·))
that can be expressed as a product distribution

p̂∗(xn|·, ·) =
n∏

j=1

p̂∗j
(

x j |g∗(n)1 (·), g∗(n)2 (·)
)
.
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Fig. 2. An example CEO problem where X ∼ Bernoulli( 1
2 ), Pr(Yi = X) =

(1− α), and both encoders are subject to the same rate constraint.

For this choice of p̂∗(xn|·, ·), we have the following
relationship:
1

n

n∑

j=1

D
(

p(x j |y1, j , y2, j )
∥
∥
∥ p̂∗j

(
x j |g∗(n)1 (yn

1 ), g∗(n)2 (yn
2 )
))
= ε∗.

In light of this fact, we can apply Markov’s inequality to obtain
an estimate on peak component-wise distortion. Namely the
number of coordinates j for which

D
(

p(x j |y1, j , y2, j )
∥
∥∥ p̂∗j

(
x j |g∗(n)1 (yn

1 ), g∗(n)2 (yn
2 )
))
≥ ζ

is at most nε∗/ζ .
To make this example more concrete, consider the scenario

depicted in Figure 2, where X ∼ Bernoulli( 1
2 ) and Yi is the

result of passing X through a binary symmetric channel with
crossover probability α for i = 1, 2. To simplify things, we
constrain the rates of each encoder to be at most R bits per
channel use.

By performing a brute-force search over a fine mesh of con-
ditional distributions {p(ui |yi )}2i=1, we numerically approxi-
mate the set of (R, D) pairs such that (R, R, D) is in the
achievable region RD�

C E O corresponding to the network in
Figure 2. The lower convex envelope of these (R, D) pairs
is plotted in Figure 3 for α ∈ {0.01, 0.1, 0.25}. Continuing
our example above for this concrete choice of source parame-
ters, we compute the minimum achievable Kullback-Leibler
distance ε∗ according to (13). The result is given in Figure 4.

These numerical results are intuitively satisfying in the
sense that, if Y1,Y2 are high-quality estimates of X (e.g.,
α = 0.01), then a small increase in the allowable rate R results
in a large relative improvement of p̂(x |·, ·), the decoder’s
estimate of p(x |Y1,Y2). On the other hand, if Y1,Y2 are poor-
quality estimates of X (e.g., α = 0.25), then we require a
large increase in the allowable rate R in order to obtain an
appreciable improvement of p̂(x |·, ·).

One field where this example is directly applicable is
machine learning. In this case, X j could represent the class of
object j , and Y1, j ,Y2, j are observable attributes. In machine
learning, one typically estimates the probability that an object
belongs to a particular class given a set of observable
attributes. For this type of estimation problem, relative entropy
is a natural penalty criterion.

Another application is to horse-racing with conditionally
independent, rate-limited side information sequences. In this
case, the doubling rate of the gambler’s wealth can be
expressed in terms of the logarithmic loss distortion measure.
This example is consistent with the original interpretation of

Fig. 3. The distortion-rate function of the network in Figure 2 computed for
α ∈ {0.01, 0.1, 0.25}.

Fig. 4. The minimum achievable Kullback-Leibler distance computed
according to (13), i.e., the curves here are those of Figure 3, lowered by
the constant H (X |Y1,Y2).

the CEO problem, where the CEO makes consecutive business
decisions (investments) pertaining to outcomes Xn , with the
objective of maximizing the wealth of the company. We omit
the details.

E. An Example: Joint Estimation of the Encoder Observations

Suppose one wishes to estimate the encoder observations
(Y1,Y2). In this case, the rate region simplifies considerably.
In particular, if we tolerate a distortion D in our estimate of
the pair (Y1,Y2), then the achievable rate region is the same as
the Slepian-Wolf rate region with each rate constraint relaxed
by D bits. Formally:

Theorem 4: If X = (Y1,Y2), then RD�
C E O consists of all

vectors (R1, R2, D) satisfying

R1 ≥ [H (Y1|Y2)− D]+

R2 ≥ [H (Y2|Y1)− D]+

R1 + R2 ≥ [H (Y1,Y2)− D]+

D ≥ 0.
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Proof: First, note that Theorem 3 implies that
RD�

C E O is equivalent to the the union of (R1, R2, D)
triples satisfying (1) taken over all joint distributions
p(q)p(x, y1, y2)p(u1|y1, q)p(u2|y2, q). Now, since X =
(Y1,Y2), each of the inequalities (1) can be lower bounded
as follows:

R1 ≥ I (Y1;U1|Y1,Y2, Q)+ H (Y1,Y2|U2, Q) − D

= H (Y2|U2, Q)+ H (Y1|Y2)− D

≥ H (Y1|Y2)− D

R2 ≥ I (Y2;U2|Y1,Y2, Q)+ H (Y1,Y2|U1, Q)− D

= H (Y1|U1, Q)+ H (Y2|Y1)− D

≥ H (Y2|Y1)− D

R1 + R2 ≥ I (U1; Y1|Y1,Y2, Q)+ I (U2; Y2|Y1,Y2, Q)

+H (Y1,Y2)− D

= H (Y1,Y2)− D

D ≥ H (Y1,Y2|U1,U2, Q) ≥ 0.

Finally, observe that by setting Ui = Yi for i = 1, 2, we can
achieve any point in this relaxed region (again, a consequence
of Theorem 3).

We remark that this result was first proved in [15] by
Courtade and Wesel using a different method.

F. An Example: The Information Bottleneck Method

If we consider the CEO problem with a single observed
source (i.e., Y2 = ∅), then the achievable rate distortion region
given by Theorem 3 is characterized by all (R1, D) pairs
satisfying

R1 ≥ I (Y1;U1)

D ≥ H (X |U1)

for some U1 satisfying the Markov chain X ↔ Y1 ↔ U1.
Alternatively, by making the substitution τ = H (X)− D, this
tradeoff can be characterized as follows:

R1(τ ) = min
p(u1|y1):I (U1;X)≥τ

I (Y1;U1). (14)

Expression (14) is known as the Information Bottleneck Func-
tion (cf. [24]). Intuitively, U1 is a description of X which is
generated (stochastically) from the observation Y1. The func-
tion R1(τ ) describes the tradeoff between the complexity and
the accuracy of the description U1. Ideally, U1 should capture
the relevant information about X present in the observation Y1.

The concept of the Information Bottleneck was first intro-
duced by Tishby et al. in [16], and the first formal rate
distortion theorem on the topic was later proved by Gilad-
Bachrach et al. in [24]. We remark that algorithms motivated
by the Information Bottleneck Method have been successfully
applied to a wide variety of problems. Examples include word
clustering for text classification [25], galaxy spectra classifi-
cation [26], neural code analysis [27], and speech recogni-
tion [28]. Since Theorem 3 (and the m-encoder extension given
in Appendix B) generalize the tradeoff (14) to a distributed
setting, our results could be applied to similar problems.
Particularly those for which processing and computation
occurs in a distributed or parallel manner.

IV. MULTITERMINAL SOURCE CODING

With Theorem 3 in hand, we are now in a position to
characterize the achievable rate distortion region RD�

for the
multiterminal source coding problem under logarithmic loss.
As before, we prove an inner bound first.

A. Inner Bound

Definition 5: Let (R1, R2, D1, D2) ∈ RDi if and only if
there exists a joint distribution of the form

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 5, which satisfies

R1 ≥ I (Y1;U1|U2, Q)

R2 ≥ I (Y2;U2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
D1 ≥ H (Y1|U1,U2, Q)

D2 ≥ H (Y2|U1,U2, Q).

Theorem 5: RDi ⊆ RD�
. That is, all rate distortion

vectors in RDi are achievable.
Again, we require an appropriate version of the Berger-Tung

inner bound:
Proposition 2 (Berger-Tung Inner Bound [19], [20]): The

rate distortion vector (R1, R2, D1, D2) is achievable if

R1 ≥ I (U1; Y1|U2, Q)

R2 ≥ I (U2; Y2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
D1 ≥ E [d(Y1, f1(U1,U2, Q))]

D2 ≥ E [d(Y2, f2(U1,U2, Q))] .

for a joint distribution

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

and reproduction functions

fi : U1 × U2 ×Q→ Ŷi , for i = 1, 2.

Proof of Theorem 5: To prove the theorem, we sim-
ply apply Proposition 2 with the reproduction functions
fi (U1,U2, Q) := Pr [Yi = yi |U1,U2, Q].

Hence, we again see that our inner bound RDi ⊆ RD�
is

nothing more than the Berger-Tung inner bound specialized
to the setting when distortion is measured under logarithmic
loss.

B. A Matching Outer Bound

The main result of this paper is the following theorem.
Theorem 6: RDi = RD�

.
Proof: As before, we note that the cardinality bounds

on the alphabets in the definition of RDi can be imposed
without any loss of generality. This is discussed in detail in
Appendix A.

Assume (R1, R2, D1, D2) is strict-sense achievable.
Observe that proving that (R1, R2, D1, D2) ∈ RDi will prove
the theorem, since RDi ⊆ RD�

and RD�
is closed by

definition.
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Define P(R1, R2) to be the set of joint distributions of the
form

p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q)

with |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 4 satisfying

R1 ≥ I (U1; Y1|U2, Q)

R2 ≥ I (U2; Y2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q).
We remark that P(R1, R2) is compact. We also note that
it will suffice to show the existence of a joint distribution
in P(R1, R2) satisfying H (Y1|U1,U2, Q) ≤ D1 and
H (Y2|U1,U2, Q) ≤ D2 to prove that (R1, R2, D1, D2) ∈
RDi .

With foresight, consider random variable X defined as
follows

X =
{
(Y1, 1) with probability t
(Y2, 2) with probability 1− t .

(15)

In other words, X = (YB, B), where B is a Bernoulli random
variable independent of Y1,Y2. Observe that Y1 ↔ X ↔ Y2
form a Markov chain, and thus, we are able to apply
Theorem 3.

Since (R1, R2, D1, D2) is strict-sense achievable, the
decoder can construct reproductions Ŷ n

1 , Ŷ n
2 satisfying

1

n

n∑

j=1

Ed(Yi, j , Ŷi, j ) ≤ Di for i = 1, 2.

Fix the encoding operations and set X̂ j ((y1, 1)) = tŶ1, j (y1)

and X̂ j ((y2, 2)) = (1− t)Ŷ2, j (y2). Then for the CEO problem
defined by (X,Y1,Y2):

1

n

n∑

j=1

Ed(X j , X̂ j )

= t

n

n∑

j=1

E log

(
1

tŶ1, j (Y1, j )

)

(16)

+ 1− t

n

n∑

j=1

E log

(
1

(1− t)Ŷ2, j (Y2, j )

)

= h2(t)+ t

n

n∑

j=1

Ed(Y1, j , Ŷ1, j ) (17)

+ 1− t

n

n∑

j=1

Ed(Y2, j , Ŷ2, j )

≤ h2(t)+ t D1 + (1− t)D2

where h2(t) is the binary entropy function. Hence, for this
CEO problem, distortion h2(t)+ t D1+(1− t)D2 is achievable
and Theorem 3 implies existence of a joint distribution2 Pt ∈

2Henceforth, we use the superscript (t) to explicitly denote the dependence
of the auxiliary random variables on the distribution parametrized by t .

P(R1, R2) satisfying

h2(t)+ t D1 + (1− t)D2 ≥ H (X |U (t)
1 ,U (t)

2 , Q(t))

= h2(t)+ t H (Y1|U (t)
1 ,U (t)

2 , Q(t))

+(1− t)H (Y2|U (t)
1 ,U (t)

2 , Q(t)),

where the second equality follows by definition of X in (15).
Now, we “tune” the parameter t to yield the desired result.

Defining H1(Pt ) � H (Y1|U (t)
1 ,U (t)

2 , Q(t)) and H2(Pt ) �
H (Y2|U (t)

1 ,U (t)
2 , Q(t)), we note the following two facts:

1) By continuity of entropy, the functions H1(·) and H2(·)
are continuous on the compact domain P(R1, R2).

2) The above argument proves the existence of a function
ϕ : [0, 1] → P(R1, R2) which satisfies

t H1(ϕ(t))+ (1− t)H2(ϕ(t)) ≤ t D1 + (1− t)D2

for all t ∈ [0, 1].
These two facts satisfy the requirements of Lemma 7 (see

Appendix D), and hence there exists Pt1 ∈ P(R1, R2), Pt2 ∈
P(R1, R2), and θ ∈ [0, 1] for which

θH1(Pt1)+ (1− θ)H1(Pt2) ≤ D1

θH2(Pt1)+ (1− θ)H2(Pt2) ≤ D2.

Timesharing3 between distributions Pt1 and Pt2 with proba-
bilities θ and (1− θ), respectively, yields a distribution P∗ ∈
P(R1, R2) which satisfies H1(P∗) ≤ D1 and H2(P∗) ≤ D2.
This proves the theorem.

C. A Stronger Converse

For the CEO problem, we are able to obtain a stronger
converse result as discussed in Section III-C. We can obtain
a similar result for the multiterminal source coding problem.
Indeed, the converse result we just proved continues to hold
even when ŷn

i is allowed to be any probability measure on
Yn

i , rather than a product distribution. The proof of this fact
is somewhat involved and can be found in Appendix E.

We note that the proof of this strengthened converse result
(i.e., Theorem 12 in Appendix E) offers a direct proof of
the converse of Theorem 6, and as such we do not require
a CEO result (Theorem 3) or the “tuning argument” given
by Lemma 7. At the heart of this alternative proof lies the
Csiszár sum identity (and a careful choice of auxiliary random
variables) which provides a coupling between the attainable
distortions for each source. In the original proof of Theorem 6,
this coupling is accomplished by the tuning argument through
Lemma 7.

Interestingly, the two proofs are similar in spirit, with the
key differences being the use of the Csiszár sum identity versus
the tuning argument. Intuitively, the original tuning argument
given in the above proof of Theorem 6 allows a simpler choice
of auxiliary random variables which leads to a more elegant
and transparent proof, but appears incapable of establishing the
strengthened converse. On the other hand, applying the Csiszár
sum identity requires a very careful choice of auxiliary random

3The timesharing scheme can be embedded in the timesharing variable Q,
increasing the cardinality of Q by a factor of two.
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variables which, in turn, affords a finer degree of control over
various quantities.

D. An Example: The Daily Double

The Daily Double is a single bet that links together wagers
on the winners of two consecutive horse races. Winning the
Daily Double is dependent on both wagers winning together.
In general, the outcomes of two consecutive races can be
correlated (e.g. due to track conditions), so a gambler can
potentially use this information to maximize his expected
winnings. Let Y1 and Y2 be the set of horses running in the
first and second races respectively. If horses y1 and y2 win their
respective races, then the payoff is o(y1, y2) dollars for each
dollar invested in outcome (Y1,Y2) = (y1, y2). The quantity
o(y1, y2) is called the odds function.

There are two betting strategies one can follow:
1) The gambler can wager a fraction b1(y1) of his wealth

on horse y1 winning the first race and parlay his win-
nings by betting a fraction b2(y2) of his wealth on horse
y2 winning the second race. In this case, the gambler’s
wealth relative is b1(Y1)b2(Y2)o(Y1,Y2) upon learning
the outcome of the Daily Double. We refer to this betting
strategy as the product-wager.

2) The gambler can wager a fraction b(y1, y2) of his wealth
on horses (y1, y2) winning the first and second races,
respectively. In this case, the gambler’s wealth relative
is b(Y1,Y2)o(Y1,Y2) upon learning the outcome of the
Daily Double. We refer to this betting strategy as the
joint-wager.

Clearly the joint-wager includes the product-wager as a special
case. However, the product-wager requires less effort to place,
so the question is: how do the two betting strategies compare?

To make things interesting, suppose the gamblers have
access to rate-limited information about the first and second
race outcomes at rates R1, R2 respectively.4 Further, assume
that R1 ≤ H (Y1), R2 ≤ H (Y2), and R1 + R2 ≤ H (Y1,Y2).
For (R1, R2) and p(y1, y2) given, let P(R1, R2) denote the
set of joint pmf’s of the form

p(q, y1, y2, u1, u2) = p(q)p(y1, y2)p(u1|y1, q)p(u2|y2, q)

which satisfy

R1 ≥ I (Y1;U1|U2, Q)

R2 ≥ I (Y2;U2|U1, Q)

R1 + R2 ≥ I (Y1,Y2;U1,U2|Q)
for alphabets U1,U2,Q satisfying |Ui | ≤ |Yi | and |Q| ≤ 5.

Typically, the quality of a bet is measured by the associated
doubling rate (cf. [23]). Theorem 6 implies that the optimal
doubling rate for the product-wager is given by:

W∗p-w(p(y1, y2)) =
∑

y1,y2

p(y1, y2) log b∗1(y1)b
∗
2(y2)o(y1, y2)

= E log o(Y1,Y2)

− inf
p∈P(R1,R2)

{
H (Y1|U1,U2, Q)+ H (Y2|U1,U2, Q)

}
.

4For example, the separately encoded side information could come from
two different experts, each of which are knowledgeable about only one race.

Likewise, Theorem 4 implies that the optimal doubling rate
for the joint-wager is given by:

W∗j-w(p(y1, y2))

=
∑

y1,y2

p(y1, y2) log b∗(y1, y2)o(y1, y2)

= E log o(Y1,Y2)+min
{

R1 − H (Y1|Y2), R2 − H (Y2|Y1),

R1 + R2 − H (Y1,Y2)
}
.

It is important to note that we do not require the side
informations to be the same for each type of wager, rather, the
side informations are only provided at the same rates. Thus,
the gambler placing the joint-wager receives side information
at rates (R1, R2) that maximizes his doubling rate, while
the gambler placing the product-wager receives (potentially
different) side information at rates (R1, R2) that maximizes his
doubling rate. However, as we will see shortly, for any rates
(R1, R2), there always exists rate-limited side information
which simultaneously allows each type of gambler to attain
their maximum doubling rate.

By combining the expressions for W∗p-w(p(y1, y2)) and
W∗j-w(p(y1, y2)), we find that the difference in doubling rates
is given by:
�(R1, R2) = W∗j-w(p(y1, y2))−W∗p-w(p(y1, y2))

= min
{

R1 − H (Y1|Y2), R2 − H (Y2|Y1),

R1 + R2 − H (Y1,Y2)
}

+ inf
p∈P(R1,R2)

{H (Y1|U1,U2, Q)+ H (Y2|U1,U2, Q)}
(18)

= inf
p∈P(R1,R2)

min
{

R1 − I (Y1;U1|U2, Q)+ I (Y1; Y2)

− I (Y1;U2, Q)+ H (Y2|U1,U2, Q),

R2 − I (Y2;U2|U1, Q)+ I (Y2; Y1)

− I (Y2;U1, Q)+ H (Y1|U1,U2, Q),

R1 + R2 − I (Y1,Y2;U1,U2|Q)
+ I (Y1; Y2|U1,U2, Q)

}

= inf
p∈P(R1,R2)

I (Y1; Y2|U1,U2, Q). (19)

The final equality (19) follows since

• R1 ≥ I (Y1;U1|U2, Q) and R2 ≥ I (Y2;U2|U1, Q) for
any p ∈ P(R1, R2).

• I (Y2; Y1) ≥ I (Y2;U1, Q) and I (Y1; Y2) ≥ I (Y1;U2, Q)
for any p ∈ P(R1, R2) by the data processing
inequality.

• The infimum in (18) is attained by a p ∈ P(R1, R2)
satisfying R1 + R2 = I (Y1,Y2;U1,U2|Q). See Lemma
10 in Appendix F for details.

• By definition of conditional mutual information,

H (Yi |U1,U2, Q) ≥ I (Y1; Y2|U1,U2, Q)

for i = 1, 2.
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Let p∗ ∈ P(R1, R2) be the distribution that attains the
infimum in (18) (such a p∗ always exists), then (19) yields

W∗j-w(p(y1, y2))−W∗p-w(p(y1, y2))

= Ep∗ log
[
o(Y1,Y2)p∗(Y1,Y2|U1,U2, Q)

]

− Ep∗ log
[
o(Y1,Y2)p∗(Y1|U1,U2, Q)p∗(Y2|U1,U2, Q)

]
.

Hence, we can interpret the auxiliary random variables cor-
responding to p∗ as optimal rate-limited side informations
for both betting strategies. Moreover, optimal bets for each
strategy are given by

1) b∗(y1, y2) = p∗(y1, y2|u1, u2, q) for the joint-wager,
and

2) b∗1(y1) = p∗(y1|u1, u2, q), b∗2(y2) = p∗(y2|u1, u2, q)
for the product-wager.

Since P(R1, R2) ⊆ P(R′1, R′2) for R1 ≤ R′1 and R2 ≤
R′2, the function �(R1, R2) is nonincreasing in R1 and R2.
Thus, the benefits of using the joint-wager over the product-
wager diminish in the amount of side-information available. It
is also not difficult to show that �(R1, R2) is jointly convex
in (R1, R2).

Furthermore, for rate-pairs (R1, R2) and (R′1, R′2) satisfying
R1 < R′1 and R2 < R′2, there exist corresponding optimal
joint- and product-wagers b∗(y1, y2) and b∗1(y1)b∗2(y2), and
b∗′(y1, y2) and b∗′1 (y1)b∗

′
2 (y2), respectively, satisfying

D
(

b∗′(y1, y2)
∣
∣
∣
∣
∣
∣b∗
′

1 (y1)b
∗′
2 (y2)

)

< D
(

b∗(y1, y2)
∣
∣
∣
∣
∣
∣b∗1(y1)b

∗
2(y2)

)
. (20)

So, roughly speaking, the joint-wager and product-wager look
“more alike” as the amount of side information is increased.
The proof of the strict inequality in (20) can be inferred from
the proof of Lemma 10 in Appendix F.

E. An Application: List Decoding

In the previous example, we did not take advantage of the
stronger converse result which we proved in Appendix E (see
the discussion in Section IV-C). In this section, we give an
application that requires this strengthened result.

Formally, a 2-list code (of blocklength n consists) of encod-
ing functions:

g(n)i : Yn
i →

{
1, . . . ,M(n)

i

}
for i = 1, 2

and list decoding functions

L(n)1 :
{

1, . . . ,M(n)
1

}
×
{

1, . . . ,M(n)
2

}
→ 2Y

n
1

L(n)2 :
{

1, . . . ,M(n)
1

}
×
{

1, . . . ,M(n)
2

}
→ 2Y

n
2 .

A list decoding tuple (R1, R2,�1,�2) is achievable if, for any
ε > 0, there exists a 2-list code of blocklength n satisfying
the rate constraints

1

n
log M(n)

1 ≤ R1 + ε
1

n
log M(n)

2 ≤ R2 + ε,

and the probability of list-decoding error constraints

Pr
[
Y n

1 /∈ L(n)1

(
g(n)1 (Y n

1 ), g(n)2 (Y n
2 )
)]
≤ ε,

Pr
[
Y n

2 /∈ L(n)2

(
g(n)1 (Y n

1 ), g(n)2 (Y n
2 )
)]
≤ ε.

with list sizes

1

n
log |L(n)1 | ≤ �1 + ε

1

n
log |L(n)2 | ≤ �2 + ε.

With a 2-list code so defined, the following theorem shows that
the 2-list decoding problem and multiterminal source coding
problem under logarithmic loss are equivalent (inasmuch as
the achievable regions are identical):

Theorem 7: The list decoding tuple (R1, R2,�1,�2) is
achievable if and only if

R1 ≥ I (U1; Y1|U2, Q)

R2 ≥ I (U2; Y2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
�1 ≥ H (Y1|U1,U2, Q)

�2 ≥ H (Y2|U1,U2, Q)

for some joint distribution

p(y1, y2, u1, u2, q) = p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q),

where |U1| ≤ |Y1|, |U2| ≤ |Y2|, and |Q| ≤ 5.
Remark 2: We note that a similar connection to list decod-

ing can be made for other multiterminal scenarios, in partic-
ular the CEO problem.

To prove the theorem, we require a slightly modified version
of [29, Lemma 1]:

Lemma 2: If the list decoding tuple (R1, R2,�1,�2) is
achieved by a sequence of 2-list codes {g(n)1 , g(n)2 , L(n)1 ,

L(n)2 }n→∞, then

H (Y n
1 |g(n)1 (Y n

1 ), g(n)2 (Y n
2 )) ≤ |L(n)1 | + nεn

H (Y n
2 |g(n)1 (Y n

1 ), g(n)2 (Y n
2 )) ≤ |L(n)2 | + nεn,

where εn → 0 as n→∞.
Proof: The proof is virtually identical to that of

[29, Lemma 1], and is therefore omitted.
Proof of Theorem 7: The direct part is straightfor-

ward. Indeed, for a joint distribution p(y1, y2, u1, u2, q) =
p(y1, y2)p(u1|y1, q)p(u2|y2, q)p(q), apply the Berger-Tung
achievability scheme and take L(n)i to be the set of yn

i
sequences which are jointly typical with the decoded quan-
tizations (Un

1 ,U
n
2 ). This set has cardinality no larger than

2n(H(Yi |U1,U2,Q)+ε), which proves achievability.
To see the converse, note that setting

Ŷ n
i = Pr

[
Y n

i |g(n)1 (Y n
1 ), g(n)2 (Y n

2 )
]

achieves a logarithmic loss of 1
n H (Y n

i |g(n)1 (Y n
1 ), g(n)2 (Y n

2 )) for
source i in the setting where reproductions are not restricted to
product distributions. Applying the strengthened converse of
Theorem 6 together with Lemma 2 yields the desired result.
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V. RELATIONSHIP TO THE GENERAL MULTITERMINAL

SOURCE CODING PROBLEM

In this section, we relate our results for logarithmic loss to
multiterminal source coding problems with arbitrary distortion
measures and reproduction alphabets.

As before, we let
{
Y1, j ,Y2, j

}n
j=1 be a sequence of n inde-

pendent, identically distributed random variables with finite
alphabets Y1 and Y2, respectively, and joint pmf p(y1, y2).

In this section, the reproduction alphabets Y̆i , i = 1, 2, are
arbitrary. We also consider generic distortion measures:

d̆i : Yi × Y̆i → R
+ for i = 1, 2,

where R
+ denotes the set of nonnegative real numbers. The

sequence distortion is then defined as follows:

d̆i (y
n
i , y̆n

i ) =
1

n

n∑

j=1

d̆i(yi, j , y̆i, j ).

We will continue to let d(·, ·) and Ŷ1, Ŷ2 denote the loga-
rithmic loss distortion measure and the associated reproduction
alphabets, respectively.

A rate distortion code (of blocklength n) consists of encod-
ing functions:

ğ(n)i : Yn
i →

{
1, . . . ,M(n)

i

}
for i = 1, 2

and decoding functions

ψ̆
(n)
i :

{
1, . . . ,M(n)

1

}
×
{

1, . . . ,M(n)
2

}
→ Y̆n

i for i = 1, 2.

A rate distortion vector (R1, R2, D1, D2) is strict-sense
achievable if there exists a blocklength n, encoding functions
ğ(n)1 , ğ(n)2 and a decoder (ψ̆(n)1 , ψ̆

(n)
2 ) such that

Ri ≥ 1

n
log M(n)

i for i = 1, 2 (21)

Di ≥ Ed̆i (Y
n
i , Y̆ n

i ) for i = 1, 2. (22)

Where

Y̆ n
i = ψ̆(n)i (ğ(n)1 (Y n

1 ), ğ(n)2 (Y n
2 )) for i = 1, 2.

For these functions, we define the quantity

βi

(
ğ(n)1 , ğ(n)2 , ψ̆

(n)
1 , ψ̆

(n)
2

)

:= 1

n

n∑

j=1

E log

⎛

⎝
∑

yi∈Yi

2−d̆i (yi ,Y̆i, j )

⎞

⎠ for i = 1, 2. (23)

Now, let βi (R1, R2, D1, D2) be the infimum of the βi
(
ğ(n)1 ,

ğ(n)2 , ψ̆
(n)
1 , ψ̆

(n)
2

)
’s, where the infimum is taken over all codes

that achieve the rate distortion vector (R1, R2, D1, D2).
At this point it is instructive to pause and consider some

examples.
Example 1 (Binary Sources and Hamming Distortion): For

i = 1, 2, let Y̆i = Yi = {0, 1} and let d̆i be the α-scaled
Hamming distortion measure:

d̆i (yi , y̆i ) =
{

0 if y̆i = yi ,
α if y̆i �= yi .

In this case,
∑

yi∈Yi

2−d̆i (yi ,Y̆i, j ) = 20 + 2−α, (24)

so βi (R1, R2, D1, D2) = log(1 + 2−α) for any (R1, R2,
D1, D2). This notion that βi (R1, R2, D1, D2) is a constant
extends to all distortion measures for which the columns of the
|Yi | × |Y̆i | distortion matrix are permutations of one another.

Example 2 (Binary Sources and Erasure Distortion): For
i = 1, 2, let Yi = {0, 1}, Y̆i = {0, 1, e} and let d̆i be the
standard erasure distortion measure:

d̆i (yi , y̆i ) =
⎧
⎨

⎩

0 if y̆i = yi

1 if y̆i = e
∞ if y̆i ∈ {0, 1} and y̆i �= yi .

In this case,

∑

yi∈Yi

2−d̆i (yi ,Y̆i, j ) =
{

2−∞ + 20 = 1 if Y̆i, j ∈ {0, 1}
2−1 + 2−1 = 1 if Y̆i, j = e.

(25)

so βi (R1, R2, D1, D2) = 0 for any (R1, R2, D1, D2). This
result can easily be extended to erasure distortion on larger
alphabets by setting the penalty to log |Yi | when Y̆i = e.

Theorem 8: Suppose (R1, R2, D1, D2) is strict-sense
achievable for the general multiterminal source coding
problem. Then

R1 ≥ I (U1; Y1|U2, Q)
R2 ≥ I (U2; Y2|U1, Q)

R1 + R2 ≥ I (U1,U2; Y1,Y2|Q)
D1 ≥ H (Y1|U1,U2, Q)

− β1(R1, R2, D1, D2)
D2 ≥ H (Y2|U1,U2, Q)

− β2(R1, R2, D1, D2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(26)

for some joint distribution p(y1, y2)p(q)p(u1|y1, q)
p(u2|y2, q) with |Ui | ≤ |Yi | and |Q| ≤ 5.

Proof: Since (R1, R2, D1, D2) is strict-sense achievable,
there exists a blocklength n, encoding functions ğ(n)1 , ğ(n)2
and a decoder (ψ̆(n)1 , ψ̆

(n)
2 ) satisfying (21)-(22). Given these

functions, the decoder can generate reproductions Y̆ n
1 , Y̆ n

2
satisfying the average distortion constraints (22). From the
reproduction Y̆ n

i , we construct the reproduction Ŷ n
i as follows:

Ŷ j (yi ) = 2−d̆i (yi ,Y̆i, j )

∑
y′i∈Yi

2−d̆i (y′i ,Y̆i, j )
.

Now, using the logarithmic loss distortion measure, observe
that Ŷ n

i satisfies

Ed(Y n
i , Ŷ n

i ) =
1

n

n∑

j=1

E log
(

2d̆i (Yi, j ,Y̆i, j )
)

+ 1

n

n∑

j=1

E log

⎛

⎝
∑

y′i∈Yi

2−d̆i (y′i ,Y̆i, j )

⎞

⎠

= 1

n

n∑

j=1

Ed̆i (Yi, j , Y̆i, j )

+ βi

(
ğ(n)1 , ğ(n)2 , ψ̆

(n)
1 , ψ̆

(n)
2

)

≤ Di + βi

(
ğ(n)1 , ğ(n)2 , ψ̆

(n)
1 , ψ̆

(n)
2

)

:= D̃i .
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Thus, (R1, R2, D̃1, D̃2) is achievable for the multiterminal
source coding problem with the logarithmic loss distortion
measure. Applying Theorem 6 and taking the infimum over
all coding schemes that achieve (R1, R2, D1, D2) proves the
theorem.

This outer bound is interesting because the region is defined
over the same set of probability distributions that define the
Berger-Tung inner bound. While the βi ’s can be difficult
to compute in general, we have shown that they can be
readily determined for many popular distortion measures. As
an application, we now give a quantitative approximation
of the rate distortion region for binary sources subject to
Hamming distortion constraints. Before proceeding, we prove
the following lemma.

Lemma 3: Suppose (R1, R2, D̃1, D̃2) is strict-sense achiev-
able for the multiterminal source coding problem with binary
sources and d̆i equal to the αi -scaled Hamming distortion
measure, for i = 1, 2. Then the Berger-Tung achievability
scheme can achieve a point (R1, R2, D1, D2) satisfying

Di − D̃i ≤
(αi

2
− 1
)

Hi + log(1+ 2−αi )

for some Hi ∈ [0, 1], i = 1, 2.
Proof: By Theorem 8, (R1, R2, D̃1, D̃2) satisfy (26) for

some joint distribution p(y1, y2)p(q)p(u1|y1, q)p(u2|y2, q).
For this distribution, define the reproduction functions

Y̆i (U1,U2, Q) = arg max
yi

p(yi |U1,U2, Q) for i = 1, 2.(27)

Then, observe that for i = 1, 2:
Ed̆i (Yi , Y̆i ) (28)

=
∑

u1,u2,q

p(u1, u2, q)
[
αi ·min

yi
p(yi |u1, u2, q)

+ 0 ·max
yi

p(yi |u1, u2, q)
]

= αi

∑

u1,u2,q

p(u1, u2, q) ·min
yi

p(yi |u1, u2, q)

≤ αi

2

∑

u1,u2,q

p(u1, u2, q)H (Yi |U1,U2, Q = u1, u2, q) (29)

= αi

2
H (Yi |U1,U2, Q).

Where (29) follows from the fact that 2 p ≤ h2(p) for 0 ≤
p ≤ 0.5. Thus, Di = αi

2 H (Yi |U1,U2, Q) is achievable for
rates (R1, R2) using the Berger-Tung achievability scheme.
Combining this with the fact that D̃i ≥ H (Yi |U1,U2, Q) −
log(1+ 2−αi ), we see that

Di − D̃i ≤ αi

2
H (Yi |U1,U2, Q)

−H (Yi |U1,U2, Q)+ log(1+ 2−αi ).

Lemma 3 allows us to give a quantitative outer bound on the
achievable rate distortion region in terms of the Berger-Tung
inner bound.

Corollary 1: Suppose (R1, R2, D̃(1)
1 , D̃(1)

2 ) is strict-sense
achievable for the multiterminal source coding problem with
binary sources and d̆i equal to the standard 1-scaled Hamming
distortion measure, for i = 1, 2. Then the Berger-Tung

achievability scheme can achieve a point (R1, R2, D(1)
1 , D(1)

2 ),
where

D(1)
i − D̃(1)

i ≤
1

2
log

(
5

4

)
< 0.161 for i = 1, 2.

Proof: For rates (R1, R2), note that distortions
(D̃1, D̃2) are strict-sense achievable for the αi -scaled
Hamming distortion measures if and only if distortions
(D̃(1)

1 , D̃(1)
2 ) = ( 1

α1
D̃1,

1
α2

D̃2) are strict-sense achievable for
the 1-scaled Hamming distortion measure. Likewise, the point
(R1, R2, D1, D2) is achieved by the Berger-Tung coding
scheme for the αi -scaled Hamming distortion measures if and
only if (R1, R2,

1
α1

D1,
1
α2

D2) is achieved by the Berger-Tung
coding scheme for the 1-scaled Hamming distortion measure.

Thus, applying Lemma 3, we can use the Berger-Tung
achievability scheme to achieve a point (R1, R2, D(1)

1 , D(1)
2 )

satisfying

D(1)
i − D̃(1)

i =
1

αi

(
Di − D̃i

)

≤ 1

αi

(αi

2
− 1
)

Hi + 1

αi
log(1+ 2−αi )

=
(

1

2
− 1

αi

)
Hi + 1

αi
log(1+ 2−αi ) (30)

for some Hi ∈ [0, 1]. We can optimize (30) over αi to find the
minimum gap for a given Hi . Maximizing over Hi ∈ [0, 1]
then gives the worst-case gap. Straightforward calculus yields
the saddle-point:

max
Hi∈[0,1]

inf
αi>0

{(
1

2
− 1

αi

)
Hi + 1

αi
log(1+ 2−αi )

}

= inf
αi>0

max
Hi∈[0,1]

{(
1

2
− 1

αi

)
Hi + 1

αi
log(1+ 2−αi )

}

= 1

2
log

(
5

4

)
< 0.161,

which is achieved for αi = 2 and any H ∈ [0, 1].
Remark 3: We note briefly that this estimate can potentially

be improved if one knows more about the source distribution.

VI. CONCLUDING REMARKS

For the CEO problem, our results can be extended to
an arbitrary number of encoders. This extension is proved
in Appendix B. Hence, one immediate direction for further
work would be to extend our other results to more than two
encoders.

We remark that generalizing the results for the two-encoder
source coding problem with distortion constraints on Y1 and Y2
poses a significant challenge. The obvious point of difficulty
in the proof is extending the tuning argument to higher
dimensions so that it yields a distribution with the desired
properties. In fact, a “quick-fix” to the tuning argument alone
would not be sufficient since this would imply that the Berger-
Tung inner bound is tight for more than two encoders. This is
known to be false (even for logarithmic loss) since the Berger-
Tung achievability scheme is not optimal for the lossless
modulo-sum problem studied by Körner and Marton in [30].
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APPENDIX A

CARDINALITY BOUNDS ON AUXILIARY

RANDOM VARIABLES

In order to obtain tight cardinality bounds on the auxiliary
random variables used throughout this paper, we refer to
a recent result by Jana. In [22], [31], the author carefully
applies the Caratheodory-Fenchel-Eggleston theorem in order
to obtain tight cardinality bounds on the auxiliary random
variables in the Berger-Tung inner bound. This result extends
the results and techniques employed by Gu and Effros for the
Wyner-Ahlswede-Körner problem [32], and by Gu, Jana, and
Effros for the Wyner-Ziv problem [33]. We now state Jana’s
result, appropriately modified for our purposes:

Consider an arbitrary joint distribution p(v, y1, . . . , ym)
with random variables V ,Y1, . . . ,Ym coming from alphabets
V,Y1, . . . ,Ym respectively.

Let dl : V × V̂l → R, 1 ≤ l ≤ L be arbitrary distortion
measures defined for possibly different reproduction alphabets
V̂l .

Definition 6: Define A� to be the set of (m + L)-vectors
(R1, . . . , Rm , D1, . . . , DL) satisfying the following condi-
tions:

1) auxiliary random variables U1, . . . ,Um exist such that
∑

i∈I
Ri ≥ I (YI ;UI |UIc), f or all I ⊆ {1, . . . ,m}, and

2) mappings ψl : U1 × · · · × Um → V̂l , 1 ≤ l ≤ L exist
such that

Edl(V , ψl (U1, . . . ,Um)) ≤ Dl

for some joint distribution

p(v, y1, . . . , ym)

m∏

j=1

p(u j |y j ).

Lemma 4 (Lemma 2.2 from [22]): Every extreme point of
A� corresponds to some choice of auxiliary variables
U1, . . . ,Um with alphabet sizes |U j | ≤ |Y j |, 1 ≤ j ≤ m.

In order to obtain the cardinality bounds for the CEO
problem, we simply let L = 1, V = X , and V̂1 = X̂ . Defining

d1(x, x̂) = log

(
1

x̂(x)

)
,

we see that RD�
C E O = conv (A�), where conv (A�) denotes

the convex hull of A�. Therefore, Lemma 4 implies that all
extreme points of RD�

C E O are achieved with a choice of
auxiliary random variables U1, . . . ,Um with alphabet sizes
|U j | ≤ |Y j |, 1 ≤ j ≤ m. By timesharing between extreme
points, any point in RD�

C E O can be achieved for these
alphabet sizes.

Obtaining the cardinality bounds for the multitermi-
nal source coding problem proceeds in a similar fashion.

In particular, let L = m = 2, V = (Y1,Y2), and V̂ j = Ŷ j ,
j = 1, 2. Defining

d j ((y1, y2), ŷ j ) = log

(
1

ŷ j (y j )

)
for j = 1, 2,

we see that RD� = conv (A�). In this case, Lemma 4 implies
that all extreme points of RD�

are achieved with a choice of
auxiliary random variables U1,U2 with alphabet sizes |U j | ≤
|Y j |, 1 ≤ j ≤ 2. By timesharing between extreme points, any
point in RD�

can be achieved for these alphabet sizes.
In order to obtain cardinality bounds on the timesharing

variable Q, we can apply Caratheodory’s theorem (cf. [34]).
In particular, if C ⊂ R

n is compact, then any point in conv(C)
is a convex combination of at most n+1 points of C . Taking C
to be the closure of the set of extreme points of A� is sufficient
for our purposes (boundedness of C can be dealt with by a
standard truncation argument).

Remark 4: The well-known support lemma (cf. [21], [35])
provides an alternative, albeit suboptimal, method for bound-
ing the cardinalities of the auxiliary random variables. Indeed,
a standard application of the support lemma implies all points
in RD�

are achieved by auxiliaries satisfying |U j | ≤ |Y j |+ 3
for 1 ≤ j ≤ 2. Furthermore, all points in RD�

C E O are
achieved by auxiliaries satisfying |U j | ≤ |Y j | + 2 for 1 ≤
j ≤ 2. In both cases, the respective bounds on Q remain
unchanged.

APPENDIX B

EXTENSION OF CEO RESULTS TO m ENCODERS

In this appendix, we prove the generalization of Theorem
3 to m encoders, which essentially amounts to extending the
argument in the proof of Theorem 3 to the general case. We
begin by stating the m-encoder generalizations of Theorems 1
and 2, the proofs of which are trivial extensions of the proofs
given for the two-encoder case and are therefore omitted.

Definition 7: Let Ri
C E O,m be the set of all (R1, . . . , Rm , D)

satisfying
∑

i∈I
Ri ≥ I (YI ;UI |UIc, Q) f or all I ⊆ {1, . . . ,m}

D ≥ H (X |U1, . . . ,Um , Q).

for some joint distribution p(q)p(x)
∏m

i=1 p(yi |x)p(ui |yi , q).
Theorem 9: All rate distortion vectors (R1, . . . , Rm , D) ∈

Ri
C E O,m are achievable.
Definition 8: Let Ro

C E O,m be the set of (R1, . . . , Rm , D)
satisfying
∑

i∈I
Ri ≥

[∑
i∈I I (Ui ; Yi |X, Q)+ H (X |UIc, Q)− D

]+ (31)

for all I ⊆ {1, . . . ,m}, and

D ≥ H (X |U1, . . . ,Um, Q). (32)

for some joint distribution p(q)p(x)
∏m

i=1 p(yi |x)p(ui |yi , q).
Theorem 10: If (R1, . . . , Rm , D) is strict-sense achievable,

then (R1, . . . , Rm , D) ∈ Ro
C E O,m.
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Given the definitions of Ri
C E O,m and Ro

C E O,m , the gen-
eralization of Theorem 3 to m encoders is an immediate
consequence of the following lemma:

Lemma 5: Ro
C E O,m ⊆ Ri

C E O,m .
Proof: Suppose (R1, . . . , Rm , D) ∈ Ro

C E O,m , then
by definition there exists p(q) and conditional distributions
{p(ui |yi , q)}mi=1 so that (31) and (32) are satisfied. For
the joint distribution corresponding to p(q) and conditional
distributions p{(ui |yi , q)}mi=1, define PD ⊂ R

m to be the
polytope defined by the inequalities (31). Now, to show
(R1, . . . , Rm , D) ∈ Ri

C E O,m , it suffices to show that each
extreme point of PD is dominated by a point in Ri

C E O,m that
achieves distortion at most D.

To this end, define the set function f : 2[m] → R as follows:
f (I) := I (YI ;UI |UIc , Q)− (D − H (X |U1, . . . ,Um , Q))

=
∑

i∈I
I (Ui ; Yi |X, Q)+ H (X |UIc, Q) − D,

where the equality follows since UI ↔ YI ↔ X ↔ YIc ↔
UIc form a Markov chain for each I ⊆ {1, . . . ,m} conditioned
on Q.

It can be verified that the function f and the function
f +(I) = max{ f (I), 0} are supermodular functions (see
Appendix C). By construction, PD is equal to the set of
(R1, . . . , Rm) which satisfy:

∑

i∈I
Ri ≥ f +(I).

It follows by basic results in submodular optimization (see
Appendix C) that, for a linear ordering i1 ≺ i2 ≺ · · · ≺ im of
{1, . . . ,m}, an extreme point of PD can be greedily computed
as follows for j = 1, . . . ,m:

R̃i j = f +({i1, . . . , i j })− f +({i1, . . . , i j−1}).
Furthermore, all extreme points of PD can be enumerated
by looking over all linear orderings i1 ≺ i2 ≺ · · · ≺ im of
{1, . . . ,m}. Each ordering of {1, . . . ,m} is analyzed in the
same manner, hence we assume (for notational simplicity) that
the ordering we consider is the natural ordering i j = j .

Let j be the first index for which R̃ j > 0. Then, by
construction,

R̃k = I (Uk ; Yk |Uk+1, . . . ,Um , Q) for all k > j.

Furthermore, we must have f ({1, . . . , j ′}) ≤ 0 for all j ′ < j .
Thus, R̃ j can be expressed as

R̃ j =
j∑

i=1

I (Yi ;Ui |X, Q)+ H (X |U j+1, . . . ,Um , Q)− D

= I (Y j ;U j |U j+1, . . . ,Um , Q)+ f ({1, . . . , j − 1})
= (1− θ)I (Y j ;U j |U j+1, . . . ,Um , Q),

where θ ∈ [0, 1) is defined as:

θ = − f ({1, . . . , j − 1})
I (Y j ;U j |U j+1, . . . ,Um, Q)

= 1

I (Y j ;U j |U j+1, . . . ,Um, Q)

[
D − H (X |U1, . . . ,Um , Q)

−I (U1, . . . ,U j−1; Y1, . . . ,Y j−1|U j , . . . ,Um , Q)
]
.

By the results of Theorem 9, the rates (R̃1, . . . , R̃m) permit
the following coding scheme: For a fraction (1−θ) of the time,
a codebook can be used that allows the decoder to recover
Un

j , . . . ,U
n
m with high probability. The other fraction θ of

the time, a codebook can be used that allows the decoder to
recover Un

j+1, . . . ,U
n
m with high probability. As n→∞, this

coding scheme can achieve distortion

D̃ = (1− θ)H (X |U j , . . . ,Um , Q)

+θH (X |U j+1, . . . ,Um, Q)

= H (X |U j , . . . ,Um , Q)+ θ I (X;U j |U j+1, . . . ,Um , Q)

= H (X |U j , . . . ,Um , Q)+ I (X;U j |U j+1, . . . ,Um, Q)

I (Y j ;U j |U j+1, . . . ,Um , Q)

×
[

D − H (X |U1, . . . ,Um , Q)

−I (U1, . . . ,U j−1; Y1, . . . ,Y j−1|U j , . . . ,Um, Q)
]

≤ H (X |U j , . . . ,Um , Q)+ D − H (X |U1, . . . ,Um , Q)

−I (U1, . . . ,U j−1; Y1, . . . ,Y j−1|U j , . . . ,Um, Q) (33)

= D + I (X;U1, . . .U j−1|U j , . . . ,Um, Q)

−I (U1, . . . ,U j−1; Y1, . . . ,Y j−1|U j , . . . ,Um, Q)

= D − I (U1, . . . ,U j−1; Y1, . . . ,Y j−1|X,U j , . . . ,Um , Q)

≤ D. (34)

In the preceding string of inequalities (33) follows since
U j is conditionally independent of everything else given
(Y j , Q), and (34) follows from the non-negativity of mutual
information.

Therefore, for every extreme point (R̃1, . . . , R̃m) of PD ,
the point (R̃1, . . . , R̃m , D) lies in Ri

C E O,m . This proves the
lemma.

Finally, we remark that the results of Appendix A imply that
it suffices to consider auxiliary random variables U1, . . . ,Um

with alphabet sizes |U j | ≤ |Y j |, 1 ≤ j ≤ m (or, |U j | ≤
|Y j |+2m−1 if one applies the support lemma). The timesharing
variable Q requires an alphabet size bounded by |Q| ≤ m+2.

APPENDIX C

SUPERMODULAR FUNCTIONS

In this appendix, we review some basic results in submodu-
lar optimization that were used in Appendix B to prove Lemma
5. We tailor our statements toward supermodularity, since this
is the property we require in Appendix B.

We begin by defining a supermodular function.
Definition 9: Let E = {1, . . . , n} be a finite set. A function

s : 2E → R is supermodular if for all S, T ⊆ E

s(S)+ s(T ) ≤ s(S ∩ T )+ s(S ∪ T ). (35)

One of the fundamental results in submodular optimization
is that a greedy algorithm minimizes a linear function over a
supermodular polyhedron. By varying the linear function to be
minimized, all extreme points of the supermodular polyhedron
can be enumerated. In particular, define the supermodular
polyhedron P(s) ⊂ R

n to be the set of x ∈ R
n satisfying

∑

i∈T

xi ≥ s(T ) for all T ⊆ E .
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The following theorem provides an algorithm that enumerates
the extreme points of P(s).

Theorem 11 (See [36]–[38]): For a linear ordering e1 ≺
e2 ≺ · · · ≺ en of the elements in E, Algorithm C.1 returns an
extreme point v of P(s). Moreover, all extreme points of P(s)
can be enumerated by considering all linear orderings of the
elements of E.

Algorithm C.1: Greedy(s, E,≺)
comment: Returns extreme point v of P(s)

corresponding to the ordering ≺.
for i = 1, . . . n

Set vi = s({e1, e2, . . . , ei })− s({e1, e2, . . . , ei−1})
return (v)

Proof: See [36]–[38].
Theorem 11 is the key tool we employ to establish

Lemma 5. In order to apply it, we require the following lemma.
Lemma 6: For any joint distribution of the form

p(q)p(x)
∏m

i=1 p(yi |x)p(ui |yi , q) and fixed D ∈ R,
define the set function f : 2[m] → R as:

f (I) := I (YI ;UI |UIc, Q)

−(D − H (X |U1, . . . ,Um, Q)) (36)

=
∑

i∈I
I (Ui ; Yi |X, Q)+ H (X |UIc, Q)− D,

and the corresponding non-negative set function f + : 2[m] →
R as f + = max{ f, 0}. The functions f and f + are super-
modular.

Proof: In order to verify that f is supermodular, it suffices
to check that the function f ′(I) = I (YI ;UI |UIc , Q) is
supermodular since the latter two terms in (36) are constant.
To this end, consider sets T, S ⊆ {1, . . . ,m} and observe that:
f ′(S)+ f ′(T ) = I (YS;US|USc, Q)+ I (YT ;UT |UT c , Q)

= H (US|USc, Q)− H (US|YS, Q)+ H (UT |UT c , Q)

− H (UT |YT , Q)

= H (US|USc, Q)+ H (UT |UT c , Q)

− H (US∪T |YS∪T , Q)− H (US∩T |YS∩T , Q) (37)

= H (US\T |USc, Q)+ H (US∩T |U(S∩T )c, Q)

+ H (UT |UT c , Q)− H (US∪T |YS∪T , Q)

− H (US∩T |YS∩T , Q) (38)

= H (US\T |USc, Q)+ H (UT |UT c , Q)− H (US∪T |YS∪T , Q)

+ I (US∩T ; YS∩T |U(S∩T )c , Q)

≤ H (US\T |U(S∪T )c , Q)+ H (UT |UT c , Q)

− H (US∪T |YS∪T , Q)+ I (US∩T ; YS∩T |U(S∩T )c , Q) (39)

= I (US∪T ; YS∪T |U(S∪T )c , Q)

+ I (US∩T ; YS∩T |U(S∩T )c , Q)

= f ′(S ∩ T )+ f ′(S ∪ T ).

The labeled steps above can be justified as follows:

• (37) follows since Ui is conditionally independent of
everything else given (Yi , Q).

• (38) is simply the chain rule.

• (39) follows since conditioning reduces entropy.

Next, we show that f + = max{ f, 0} is supermodular.
Observe first that f is monotone increasing, i.e., if S ⊂ T ,
then f (S) ≤ f (T ). Thus, fixing S, T ⊆ {1, . . . ,m}, we can
assume without loss of generality that

f (S ∩ T ) ≤ f (S) ≤ f (T ) ≤ f (S ∪ T ).

If f (S ∩ T ) ≥ 0, then (35) is satisfied for s = f + by the
supermodularity of f . On the other hand, if f (S ∪ T ) ≤ 0,
then (35) is a tautology for s = f +. Therefore, it suffices to
check the following three cases:

• Case 1: f (S ∩ T ) ≤ 0 ≤ f (S) ≤ f (T ) ≤ f (S ∪ T ).
In this case, the supermodularity of f and the fact that
f + ≥ f imply:

f +(S ∪ T )+ f +(S ∩ T ) ≥ f (S ∪ T )+ f (S ∩ T )

≥ f (S)+ f (T )

= f +(S)+ f +(T ).

• Case 2: f (S ∩ T ) ≤ f (S) ≤ 0 ≤ f (T ) ≤ f (S ∪ T ).
Since f is monotone increasing, we have:

f +(S ∪ T )+ f +(S ∩ T ) = f (S ∪ T )+ 0

≥ f (T )+0= f +(S)+ f +(T ).

• Case 3: f (S ∩ T ) ≤ f (S) ≤ f (T ) ≤ 0 ≤ f (S ∪ T ). By
definition of f +:

f +(S ∪ T )+ f +(S ∩ T ) = f (S ∪ T )+ 0

≥ 0 + 0 = f +(S)+ f +(T ).

Hence, f + = max{ f, 0} is supermodular.

APPENDIX D

AMPLIFYING A POINTWISE CONVEXITY CONSTRAINT

Lemma 7: Let r1, r2 ∈ R be given, and suppose f1 :
K → R and f2 : K → R are continuous functions defined
on a compact domain K ⊂ R

n. If there exists a function
h : [0, 1] → K satisfying

t ( f1 ◦ h) (t)+ (1− t) ( f2 ◦ h) (t) ≤ tr1 + (1− t)r2 (40)

for all t ∈ [0, 1], then there exists x∗1 , x∗2 ∈ K and t∗ ∈ [0, 1]
for which

t∗ f1(x
∗
1 )+ (1− t∗) f1(x

∗
2 ) ≤ r1

t∗ f2(x
∗
1 )+ (1− t∗) f2(x

∗
2 ) ≤ r2.

We remark that, in our application of Lemma 7, we will
take K is taken to be a closed subset of a finite-dimensional
probability simplex and f1, f2 to be conditional entropies
evaluated for probability distributions in K .

Proof of Lemma 7: Since f1, f2 are continuous and K is
compact, there exists M <∞ such that f1 and f2 are bounded
from above and below by M and −M , respectively. Fix ε > 0,
and partition the interval [0, 1] as 0 = t1 < t2 < · · · < tm = 1,
such that |t j+1− t j | < ε

M . For convenience define xt j := h(t j )
when t j is in the partition.
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Now, for i = 1, 2 define piecewise-linear functions
g1(t), g2(t) on [0,1] by:

gi(t) =

⎧
⎪⎪⎨

⎪⎪⎩

fi (xt j ) if ∃ j ∈ {1, . . . ,m}
such that t = t j ,

θ fi (xt j ) if ∃ j ∈ {1, . . . ,m}
+(1− θ) fi (xt j+1) s.t. t ∈ (t j , t j+1),

⎫
⎪⎪⎬

⎪⎪⎭
(41)

where θ ∈ (0, 1) is chosen so that t = θ t j + (1− θ)t j+1 when
t is in the interval (t j , t j+1).

With g1(t) and g2(t) defined in this manner, suppose t =
θ t j + (1 − θ)t j+1 for some j and θ . Then straightforward
algebra yields:

tg1(t)+ (1− t)g2(t)

= (θ t j + (1− θ)t j+1)
(
θ f1(xt j )+ (1− θ) f1(xt j+1)

)

+ (1− θ t j − (1− θ)t j+1)
(
θ f2(xt j )+ (1− θ) f2(xt j+1)

)

= θ2 [t j f1(xt j )+ (1− t j ) f2(xt j )
]

+ (1− θ)2 [t j+1 f1(xt j+1)+ (1− t j+1) f2(xt j+1)
]

+ θ(1− θ) [(1− t j ) f2(xt j+1)+ (1− t j+1) f2(xt j )

+t j+1 f1(xt j )+ t j f1(xt j+1)
]

≤ θ2 [t j f1(xt j )+ (1− t j ) f2(xt j )
]

+ (1− θ)2 [t j+1 f1(xt j+1)+ (1− t j+1) f2(xt j+1)
]

+ θ(1− θ) [(1− t j+1) f2(xt j+1)+ (1− t j ) f2(xt j )

+t j f1(xt j )+ t j+1 f1(xt j+1)
]+ ε

≤ θ2 [t j r1 + (1− t j )r2
]

+ (1− θ)2 [t j+1r1 + (1− t j+1)r2
]

+ θ(1− θ) [(1− t j+1)r2 + (1− t j )r2

+t j r1 + t j+1r1
]+ ε

= (θ t j + (1− θ)t j+1)r1 + (1− θ t j − (1− θ)t j+1)r2 + ε
= tr1 + (1− t)r2 + ε, (42)

where the first inequality follows since |t j+1 − t j | is small,
and the second inequality follows from the the fact that (40)
holds for each t j in the partition. Notably, this implies that it
is impossible to have

g1(t) > r1 + ε and g2(t) > r2 + ε
hold simultaneously for any t ∈ [0, 1], else we would obtain
a contradiction to (42). Also, since we included the endpoints
t1 = 0 and tm = 1 in the partition, we have the following two
inequalities:

g1(1) ≤ r1, and g2(0) ≤ r2.

Combining these observations with the fact that g1(t) and
g2(t) are continuous, there must exist some t∗ ∈ [0, 1] for
which

g1(t
∗) ≤ r1 + ε, and g2(t

∗) ≤ r2 + ε
simultaneously. An illustration of this is given in Figure 5,
which is a mere variation on the classical intermediate value
theorem.

Fig. 5. A parametric plot of the function ϕ : t �→ (g1(t), g2(t)). Since
ϕ(t) is continuous, starts with g2(0) ≤ r2 + ε, ends with g1(1) ≤ r1 + ε,
and doesn’t intersect the shaded area, ϕ(t) must pass through the lower-left
region.

Applying this result, we can find a sequence
{x (n)1 , x (n)2 , t(n)}∞n=1 satisfying

t(n) f1(x
(n)
1 )+ (1− t(n)) f1(x

(n)
2 ) ≤ r1 + 1

n

t(n) f2(x
(n)
1 )+ (1− t(n)) f2(x

(n)
2 ) ≤ r2 + 1

n

for each n ≥ 1. Since K × K × [0, 1] is sequentially
compact, there exists a convergent subsequence {n j }∞j=1 such

that (x
(n j )
1 , x

(n j )
2 , t(n j ))→ (x∗1 , x∗2 , t∗) ∈ K × K × [0, 1]. The

continuity of f1 and f2 then apply to yield the desired result.

APPENDIX E

STRENGTHENING THE CONVERSE OF THEOREM 6

In this appendix, we prove a stronger version of the converse
of Theorem 6. To be precise, let Ŷ∗n1 and Ŷ∗n2 denote the set of
probability measures on Yn

1 and Yn
2 , respectively. Let d∗1 , d∗2 be

the (extended)-log loss distortion measures defined as follows:

d∗1 (yn
1 , ŷn

1 ) =
1

n
log

(
1

ŷn
1 (y

n
1 )

)

d∗2 (yn
2 , ŷn

2 ) =
1

n
log

(
1

ŷn
2 (y

n
2 )

)
,

where ŷn
1 (y

n
1 ) is the probability assigned to outcome yn

1 ∈ Yn
1

by the probability measure ŷn
1 ∈ Ŷ∗n1 . Similarly for ŷn

2 (y
n
2 ).

Note that this extends the standard definition of logarithmic
loss to sequence reproductions.

Definition 10: We say that a tuple (R1, R2, D1, D2) is
sequence-achievable if, for any ε > 0, there exist encoding
functions

f1 : Yn
1 → {1, . . . , 2nR1}

f2 : Yn
2 → {1, . . . , 2nR2},

and decoding functions

φ1 : {1, . . . , 2nR1} × {1, . . . , 2nR2} → Ŷ∗n1

φ2 : {1, . . . , 2nR1} × {1, . . . , 2nR2} → Ŷ∗n2 ,
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which satisfy

E d∗1 (Y n
1 , Ŷ n

1 ) ≤ D1 + ε
E d∗2 (Y n

2 , Ŷ n
2 ) ≤ D2 + ε,

where

Ŷ n
1 = φ1( f1(Y

n
1 ), f2(Y

n
2 ))

Ŷ n
2 = φ2( f1(Y

n
1 ), f2(Y

n
2 )).

Theorem 12: If (R1, R2, D1, D2) is sequence-achievable,
then (R1, R2, D1, D2) ∈ RDi = RD�

.
Proof: The theorem is an immediate consequence of

Theorem 6 and Lemmas 8 and 9, which are given below.
Remark 5: We refer to Theorem 12 as the “strengthened

converse” of Theorem 6. Indeed, it states that enlarging the
set of possible reproduction sequences to include non-product
distributions cannot attain better performance than when the
decoder is restricted to choosing a reproduction sequence from
the set of product distributions.

Lemma 8: If (R1, R2, D̃1, D2) is sequence-achievable, then
there exists a joint distribution

p(y1, y2, u1, u2, q) = p(q)p(y1, y2)p(u1|y1, q)p(u2|y2, q)

and a D1 ≤ D̃1 which satisfies

D1 ≥ H (Y1|U1,U2, Q)

D2 ≥ D1 + H (Y2|U1,U2, Q)− H (Y1|U1,U2, Q),

and

R1 ≥ H (Y1|U2, Q)− D1

R2 ≥ I (Y2;U2|Y1, Q)+ H (Y1|U1, Q)− D1

R1 + R2 ≥ I (Y2;U2|Y1, Q)+ H (Y1)− D1.

Proof: For convenience, let F1 = f1(Y n
1 ) and F2 =

f2(Y n
2 ), where f1, f2 are the encoding functions correspond-

ing to a scheme which achieves (R1, R2, D̃1, D2) (in the
sequence-reproduction sense). Define D1 = 1

n H (Y n
1 |F1, F2),

so that:

nD1 = H (Y n
1 |F1, F2). (43)

Since nD̃1 ≥ H (Y n
1 |F1, F2) by the strengthened version5 of

Lemma 1, we have D1 ≤ D̃1 as desired. By definition of D1,
we immediately obtain the following inequality:

nD1 =
n∑

i=1

H (Y1,i |F1, F2,Y n
1,i+1)

≥
n∑

i=1

H (Y1,i |F1, F2,Y i−1
2 ,Y n

1,i+1). (44)

Next, recall the Csiszár sum identity:
n∑

i=1

I (Y n
1,i+1; Y2,i |Y i−1

2 , F1, F2)

=
n∑

i=1

I (Y i−1
2 ; Y1,i |Y n

1,i+1, F1, F2).

5See the comment in Section III-C.

This, together with (43), implies the following inequality:

nD2 ≥ nD1 +
n∑

i=1

[
H (Y2,i |F1, F2,Y i−1

2 ,Y n
1,i+1)

−H (Y1,i |F1, F2,Y i−1
2 ,Y n

1,i+1)
]
, (45)

which we can verifiy as follows:

nD2 ≥ H (Y n
2 |F1, F2) =

n∑

i=1

H (Y2,i |F1, F2,Y i−1
2 )

=
n∑

i=1

[
H (Y2,i |F1, F2,Y i−1

2 ,Y n
1,i+1)

+I (Y n
1,i+1; Y2,i |F1, F2,Y i−1

2 )
]

=
n∑

i=1

[
H (Y2,i |F1, F2,Y i−1

2 ,Y n
1,i+1)

+I (Y i−1
2 ; Y1,i |Y n

1,i+1, F1, F2)
]

= H (Y n
1 |F1, F2)+

n∑

i=1

[
H (Y2,i |F1, F2,Y i−1

2 ,Y n
1,i+1)

−H (Y1,i |F1, F2,Y i−1
2 ,Y n

1,i+1)
]

= nD1 +
n∑

i=1

[
H (Y2,i |F1, F2,Y i−1

2 ,Y n
1,i+1)

−H (Y1,i |F1, F2,Y i−1
2 ,Y n

1,i+1)
]
.

Next, observe that we can lower bound R1 as follows:

n R1 ≥ H (F1) ≥ I (Y n
1 ; F1|F2)

=
n∑

i=1

H (Y1,i |F2,Y i−1
1 )− H (Y n

1 |F1, F2)

≥
n∑

i=1

H (Y1,i |F2,Y i−1
1 ,Y i−1

2 )− nD1 (46)

=
n∑

i=1

H (Y1,i |F2,Y i−1
2 )− nD1 (47)

≥
n∑

i=1

H (Y1,i |F2,Y i−1
2 ,Y n

1,i+1)− nD1. (48)

In the above string of inequalities, (46) follows from (43)
and the fact that conditioning reduces entropy. Equality (47)
follows since Y1,i ↔ F2,Y i−1

2 ↔ Y i−1
1 form a Markov chain

(in that order).
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Next, we can obtain a lower bound on R2:

n R2 ≥ H (F2) ≥ H (F2|F1) = H (F2|F1,Y n
1 )+ I (Y n

1 ; F2|F1)

≥ I (Y n
2 ; F2|F1,Y n

1 )+ I (Y n
1 ; F2|F1)

= I (Y n
2 ; F2|Y n

1 )+ I (Y n
1 ; F2|F1) (49)

=
n∑

i=1

I (Y2,i ; F2|Y n
1 ,Y i−1

2 )

+
n∑

i=1

H (Y1,i |F1,Y n
1,i+1)− nD1 (50)

≥
n∑

i=1

I (Y2,i ; F2|Y n
1 ,Y i−1

2 )

+
n∑

i=1

H (Y1,i |F1,Y i−1
2 ,Y n

1,i+1)− nD1

=
n∑

i=1

I (Y2,i ; F2,Y i−1
1 ,Y i−1

2 |Y1,i ,Y i−1
2 ,Y n

1,i+1)

+
n∑

i=1

H (Y1,i |F1,Y i−1
2 ,Y n

1,i+1)− nD1 (51)

≥
n∑

i=1

I (Y2,i ; F2,Y i−1
2 |Y1,i ,Y i−1

2 ,Y n
1,i+1)

+
n∑

i=1

H (Y1,i |F1,Y i−1
2 ,Y n

1,i+1)− nD1. (52)

In the above string of inequalities, (50) follows from (43)
and the chain rule. (51) follows from the i.i.d. property of
the sources, and (52) follows by monotonicity of mutual
information.

A lower bound on the sum-rate R1+ R2 can be obtained as
follows:

n(R1 + R2) ≥ H (F1)+ H (F2) ≥ H (F2)+ H (F1|F2)

≥ I (F2; Y n
1 ,Y n

2 )+ I (F1; Y n
1 |F2)

= I (F2; Y n
1 )+ I (F2; Y n

2 |Y n
1 )+ I (F1; Y n

1 |F2)

= I (F2; Y n
2 |Y n

1 )+ I (F1, F2; Y n
1 )

≥
n∑

i=1

I (Y2,i ; F2,Y i−1
2 |Y1,i ,Y i−1

2 ,Y n
1,i+1)

+
n∑

i=1

H (Y1,i)− nD1. (53)

Where (53) follows in a manner similar to (49)-(52) in the
lower bound on R2.

Now, define U1,i � F1, U2,i � (F2,Y i−1
2 ), and Qi �

(Y i−1
2 ,Y n

1,i+1). Then we can summarize our results so far as
follows. Inequalities (44) and (45) become

D1 ≥ 1

n

n∑

i=1

H (Y1,i |U1,i ,U2,i , Qi )

D2 ≥ D1 + 1

n

n∑

i=1

H (Y2,i |U1,i ,U2,i , Qi )

−H (Y1,i |U1,i ,U2,i , Qi ),

and inequalities (48), (52), and (53) can be written as:

R1 ≥ 1

n

n∑

i=1

H (Y1,i |U2,i , Qi )− D1

R2 ≥ 1

n

n∑

i=1

I (Y2,i ;U2,i |Y1,i , Qi )

+H (Y1,i |U1,i , Qi )− D1

R1 + R2 ≥ 1

n

n∑

i=1

I (Y2,i ;U2,i |Y1,i , Qi )+ H (Y1,i)− D1.

Next, we note that U1,i ↔ Y1,i ↔ Y2,i ↔ U2,i form a
Markov chain (in that order) conditioned on Qi . Moreover,
Qi is independent of Y1,i ,Y2,i . Hence, a standard timesharing
argument proves the lemma.

Lemma 9: Fix (R1, R2, D1, D2). If there exists a joint dis-
tribution of the form

p(y1, y2, u1, u2, q) = p(q)p(y1, y2)p(u1|y1, q)p(u2|y2, q)

which satisfies

D1 ≥ H (Y1|U1,U2, Q) (54)

D2 ≥ D1 + H (Y2|U1,U2, Q)− H (Y1|U1,U2, Q), (55)

and

R1 ≥ H (Y1|U2, Q)− D1 (56)

R2 ≥ I (Y2;U2|Y1, Q)+ H (Y1|U1, Q)− D1 (57)

R1 + R2 ≥ I (Y2;U2|Y1, Q)+ H (Y1)− D1, (58)

then (R1, R2, D1, D2) ∈ RDi .
Proof: Let P denote the polytope of rate pairs which

satisfy the inequalities (56)-(58). It suffices to show that
if (r1, r2) is a vertex of P , then (r1, r2, D1, D2) ∈ RDi .
For convenience, let [x]+ = max{x, 0}. There are only two
extreme points of P :

r (1)1 =
[

H (Y1|U2, Q) − D1

]+

r (1)2 = I (Y2;U2|Y1, Q) + H (Y1)− D1 − r (1)1 ,

and

r (2)1 = I (Y2;U2|Y1, Q)+ H (Y1)− D1 − r (2)2 ,

r (2)2 =
[

I (Y2;U2|Y1, Q)+ H (Y1|U1, Q)− D1

]+
.

We first analyze the extreme point (r (1)1 , r (1)2 ):

• Case 1.1: r (1)1 = 0. In this case, we have r (1)2 =
I (Y2;U2|Y1, Q) + H (Y1) − D1. This can be expressed
as:

r (1)2 = (1− θ)I (Y2;U2|Q),
where

θ = D1 − I (Y2;U2|Y1, Q)− H (Y1)+ I (Y2;U2|Q)
I (Y2;U2|Q) .
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Since r (1)1 = 0, we must have D1 ≥ H (Y1|U2, Q). This
implies that

θ ≥ H (Y1|U2, Q)I (Y2;U2|Y1, Q)−H (Y1)+ I (Y2;U2|Q)
I (Y2;U2|Q)

= 0.

Also, we can assume without loss of generality that
D1 ≤ H (Y1), hence θ ∈ [0, 1]. Applying the Berger-
Tung achievability scheme, we can achieve the following
distortions:

Dθ
1 = θH (Y1)+ (1− θ)H (Y1|U2, Q)

= H (Y1|U2, Q)+ θ I (Y1;U2|Q)
≤ H (Y1|U2, Q)+ D1 − I (Y2;U2|Y1, Q)

−H (Y1)+ I (Y2;U2|Q) (59)

= D1 − I (Y2;U2|Y1, Q)− I (Y1;U2|Q)
+I (Y2;U2|Q)

= D1,

where (59) follows since I (Y1;U2|Q) ≤ I (Y2;U2|Q) by
the data processing inequality.

Dθ
2 = θH (Y2)+ (1− θ)H (Y2|U2, Q)

= H (Y2|U2, Q)+ θ I (Y2;U2|Q)
= H (Y2|U2, Q)+ D1 − I (Y2;U2|Y1, Q)

−H (Y1)+ I (Y2;U2|Q)
= H (Y2)+ D1 − I (Y2;U2|Y1, Q)− H (Y1)

= H (Y2|Y1,U2, Q)+ D1 − H (Y1|Y2)

= H (Y2|Y1,U1,U2, Q)+ D1 − H (Y1|Y2) (60)

≤ H (Y2|Y1,U1,U2, Q)+ D1 − H (Y1|Y2,U1,U2, Q)

= H (Y2|U1,U2, Q)+ D1 − H (Y1|U1,U2, Q)

≤ D2, (61)

where (60) follows since U1 ↔ (Y1,U2, Q) ↔ Y2, and
(61) follows from (55).

• Case 1.2: r (1)1 ≥ 0. In this case, we have r (1)2 =
I (Y2;U2|Y1, Q)+ I (Y1;U2|Q) = I (Y2;U2|Q). Also, we
can write r (1)1 as:

r (1)1 = (1− θ)I (Y1;U1|U2, Q),

where

θ = D1 − H (Y1|U2, Q)+ I (Y1;U1|U2, Q)

I (Y1;U1|U2, Q)
.

Since r (1)1 ≥ 0, we must have D1 ≤ H (Y1|U2, Q). This
implies that

θ ≤ H (Y1|U2, Q) − H (Y1|U2, Q)+ I (Y1;U1|U2, Q)

I (Y1;U1|U2, Q)
= 1.

Also, (54) implies that D1 ≥ H (Y1|U1,U2, Q), hence
θ ∈ [0, 1]. Applying the Berger-Tung achievability

scheme, we can achieve the following distortions:

Dθ
1 = θH (Y1|U2, Q)+ (1− θ)H (Y1|U1,U2, Q)

= H (Y1|U1,U2, Q)+ θ I (Y1;U1|U2, Q)

= H (Y1|U1,U2, Q)+ D1 − H (Y1|U2, Q)

+I (Y1;U1|U2, Q)

= D1,

and

Dθ
2 = θH (Y2|U2, Q) + (1− θ)H (Y2|U1,U2, Q)

= H (Y2|U1,U2, Q)+ θ I (Y2;U1|U2, Q)

≤ H (Y2|U1,U2, Q)+ D1

−H (Y1|U2, Q)+ I (Y1;U1|U2, Q) (62)

= H (Y2|U1,U2, Q)+ D1 − H (Y1|U1,U2, Q)

≤ D2, (63)

where (62) follows since I (Y2;U1|U2, Q) ≤
I (Y1;U1|U2, Q) by the data processing inequality,
and (63) follows from (55).

In a similar manner, we now analyze the second extreme
point (r (2)1 , r (2)2 ):

• Case 2.1: r (2)2 = 0. In this case, we have r (2)1 =
I (Y2;U2|Y1, Q) + H (Y1) − D1. This can be expressed
as:

r (2)1 = (1− θ)I (Y1;U1|Q),
where

θ = D1 − I (Y2;U2|Y1, Q)− H (Y1)+ I (Y1;U1|Q)
I (Y1;U1|Q) .

Since r (2)2 = 0, we must have D1 ≥ H (Y1|U1, Q) +
I (Y2;U2|Y1, Q). This implies that

θ ≥ 1

I (Y1;U1|Q)
[

H (Y1|U1, Q)+ I (Y2;U2|Y1, Q)

− I (Y2;U2|Y1, Q)− H (Y1)+ I (Y1;U1|Q)
]

= 0.

Also, we can assume without loss of generality that D1 ≤
H (Y1), hence

θ ≤
H (Y1)− I (Y2;U2|Y1, Q)− H (Y1)+ I (Y1;U1|Q)

I (Y1;U1|Q) ≤ 1,

and therefore θ ∈ [0, 1]. Applying the Berger-Tung
achievability scheme, we can achieve the following dis-
tortions:

Dθ
1 = θH (Y1)+ (1− θ)H (Y1|U1, Q)

= H (Y1|U1, Q)+ θ I (Y1;U1|Q)
= H (Y1|U1, Q)+ D1 − I (Y2;U2|Y1, Q)

−H (Y1)+ I (Y1;U1|Q)
= D1 − I (Y2;U2|Y1, Q)

≤ D1,
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and

Dθ
2 = θH (Y2)+ (1− θ)H (Y2|U1, Q)

= H (Y2|U1, Q) + θ I (Y2;U1|Q)
≤ H (Y2|U1, Q) + D1 − I (Y2;U2|Y1, Q)

−H (Y1)+ I (Y1;U1|Q) (64)

= H (Y2|Y1,U2, Q)+ D1 − H (Y1|Y2,U1, Q)

= H (Y2|Y1,U1,U2, Q)+ D1

−H (Y1|Y2,U1,U2, Q) (65)

= H (Y2|U1,U2, Q)+ D1 − H (Y1|U1,U2, Q)

≤ D2, (66)

where (64) follows since I (Y2;U1|Q) ≤ I (Y1;U1|Q) by
the data processing inequality, (65) follows since U1 ↔
(Y1,U2, Q)↔ Y2 and U2 ↔ (Y2,U1, Q)↔ Y1, and (66)
follows from (55).

• Case 2.2: r (2)2 ≥ 0. In this case, we have r (2)1 =
I (Y1;U1|Q). Also, we can write r (2)2 as:

r (2)2 = (1− θ)I (Y2;U2|U1, Q),

where

θ = 1

I (Y2;U2|U1, Q)

[
D1 − H (Y1|U1, Q)

−I (Y2;U2|Y1, Q)+ I (Y2;U2|U1, Q)
]
.

Since r (2)2 ≥ 0, we must have D1 ≤ H (Y1|U1, Q) +
I (Y2;U2|Y1, Q). This implies that θ ≤ 1. Also, (54)
implies that D1 ≥ H (Y1|U1,U2, Q), yielding

θ ≥ 1

I (Y2;U2|U1, Q)

[
H (Y1|U1,U2, Q)− H (Y1|U1, Q)

− I (Y2;U2|Y1, Q)+ I (Y2;U2|U1, Q)
]

= 0.

Therefore, θ ∈ [0, 1]. Applying the Berger-Tung achiev-
ability scheme, we can achieve the following distortions:

Dθ
1 = θH (Y1|U1, Q)+ (1− θ)H (Y1|U1,U2, Q)

= H (Y1|U1,U2, Q)+ θ I (Y1;U2|U1, Q)

≤ H (Y1|U1,U2, Q)+ D1 − H (Y1|U1, Q)

−I (Y2;U2|Y1, Q)+ I (Y2;U2|U1, Q) (67)

= D1,

where (67) follows since I (Y1;U2|U1, Q) ≤
I (Y2;U2|U1, Q) by the data processing inequality.

Dθ
2 = θH (Y2|U1, Q)+ (1− θ)H (Y2|U1,U2, Q)

= H (Y2|U1,U2, Q)+ θ I (Y2;U2|U1, Q)

= H (Y2|U1,U2, Q)+ D1 − H (Y1|U1, Q)

−I (Y2;U2|Y1, Q) + I (Y2;U2|U1, Q)

= H (Y2|U1,U2, Q)+ D1 − H (Y1|U1,U2, Q)

≤ D2, (68)

where (68) follows from (55).
Thus, this proves that the Berger-Tung compression scheme

can achieve any rate distortion tuple (r1, r2, D1, D2) for

(r1, r2) ∈ P . Since RDi is, by definition, the set of rate
distortion tuples attainable by the Berger-Tung achievability
scheme, we must have that (R1, R2, D1, D2) ∈ RDi . This
proves the lemma.

APPENDIX F

A LEMMA FOR THE DAILY DOUBLE

For a given joint distribution p(y1, y2) on the finite alphabet
Y1 × Y2, let P(R1, R2) denote the set of joint pmf’s of the
form

p(q, y1, y2, u1, u2) = p(q)p(y1, y2)p(u1|y1, q)p(u1|y1, q)

which satisfy

R1 ≥ I (Y1;U1|U2, Q)

R2 ≥ I (Y2;U2|U1, Q)

R1 + R2 ≥ I (Y1,Y2;U1,U2|Q)
for given finite alphabets U1,U2,Q.

Lemma 10: For R1, R2 satisfying R1 ≤ H (Y1), R2 ≤
H (Y2), and R1 + R2 ≤ H (Y1,Y2), the infimum

inf
p∈P(R1,R2)

{H (Y1|U1,U2, Q)+ H (Y2|U1,U2, Q)}

is attained by some p∗ ∈ P(R1, R2) which satisfies R1+R2 =
I (Y1,Y2;U∗1 ,U∗2 |Q∗), where U∗1 ,U∗2 , Q∗ correspond to the
auxiliary random variables defined by p∗.

Proof: First, note that the infimum is always attained since
P(R1, R2) is compact and the objective function is continuous
on P(R1, R2). Therefore, let U∗1 ,U∗2 , Q∗ correspond to the
auxiliary random variables which attain the infimum.

If H (Y1|U∗1 ,U∗2 , Q∗) + H (Y2|U∗1 ,U∗2 , Q∗) = 0, then we
must have I (Y1,Y2;U∗1 ,U∗2 |Q∗) = H (Y1,Y2). Thus, R1 +
R2 = I (Y1,Y2;U∗1 ,U∗2 |Q∗).

Next, consider the case where H (Y1|U∗1 ,U∗2 , Q∗) +
H (Y2|U∗1 ,U∗2 , Q∗) > 0. Assume for sake of contradiction that
R1 + R2 > I (Y1,Y2;U∗1 ,U∗2 |Q∗). For any p ∈ P(R1, R2):

I (Y1;U1|U2, Q)+ I (Y2;U2|U1, Q) ≤ I (Y1,Y2;U1,U2|Q).
Hence, at most one of the remaining rate constraints can
be satisfied with equality. If none of the rate constraints are
satisfied with equality, then define

(Ũ1, Ũ2) =
{
(U∗1 ,U∗2 ) with probability 1− ε
(Y1,Y2) with probability ε.

For ε > 0 sufficiently small, the distribution p̃ correspond-
ing to the auxiliary random variables Ũ1, Ũ2, Q∗ is still in
P(R1, R2). However, p̃ satisfies

H (Y1|Ũ1, Ũ2, Q∗)+ H (Y2|Ũ1, Ũ2, Q∗)
< H (Y1|U∗1 ,U∗2 , Q∗)+ H (Y2|U∗1 ,U∗2 , Q∗),

which contradicts the optimality of p∗.
Therefore, assume without loss of generality that

R1 = I (Y1;U∗1 |U∗2 , Q∗)
R1 + R2 > I (Y1,Y2;U∗1 ,U∗2 |Q∗).



760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 1, JANUARY 2014

This implies that R2 > I (Y2;U∗2 |Q∗). Now, define

Ũ2 =
{

U∗2 with probability 1− ε
Y2 with probability ε.

Note that for ε > 0 sufficiently small:

I (Y2;U∗2 |Q∗) < I (Y2; Ũ2|Q∗) < R2

I (Y1,Y2;U∗1 ,U∗2 |Q∗) < I (Y1,Y2;U∗1 , Ũ2|Q∗) < R1 + R2,

and for any ε ∈ [0, 1]:
R1 = I (Y1;U∗1 |U∗2 , Q∗) ≥ I (Y1;U∗1 |Ũ2, Q∗), (69)

and

H (Y1|U∗1 ,U∗2 , Q∗)+ H (Y2|U∗1 ,U∗2 , Q∗)
≥ H (Y1|U∗1 , Ũ2, Q∗)+ H (Y2|U∗1 , Ũ2, Q∗). (70)

Since R2 ≤ H (Y2), as ε is increased from 0 to 1, at least one
of the following must occur:

1) I (Y2; Ũ2|Q∗) = R2.
2) I (Y1,Y2;U∗1 , Ũ2|Q∗) = R1 + R2.
3) I (Y1;U1|Ũ2, Q∗) < R1.

If either of events 1 or 2 occur first then the sum-rate constraint
is met with equality (since they are equivalent in this case).
If event 3 occurs first, then all rate constraints are satisfied
with strict inequality and we can apply the above argument to
contradict optimality of p∗. Since (70) shows that the objective
is nonincreasing in ε, there must exist a p̃ ∈ P(R1, R2) which
attains the infimum and satisfies the sum-rate constraint with
equality.
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