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Abstract—This paper gives non-asymptotic converse bounds
on the cumulant generating function of the encoded lengths in
variable-rate lossy compression and in variable-to-fixed channel
coding. The results are given in terms of the Rényi mutual
information and the d-tilted Rényi entropy. We also illustrate
the application of the non-asymptotic bounds to obtain strong
converses.

I. INTRODUCTION

There have been several recent results on non-asymptotic
bounds for the three major Shannon theoretic paradigms:
fixed-length data transmission (e.g. [1]), fixed-length lossy
compression (e.g. [2]), and variable-length lossless compres-
sion [3]. Those works give their bounds, not in terms of
average quantities such as entropy and mutual information, but
in terms of information spectra (i.e. the cumulative distribution
functions of random variables such as information, information
density and d-tilted information). The evaluation of those
upper and lower bounds yields tight results for blocklengths
as low as 100, and they have also been used to prove not
only the conventional asymptotic fundamental limits but also
to perform central-limit analyses based on the Berry-Esseén
bound. In this paper, we take a different approach by studying
the cumulant generating function (log moment generating
function) of the random encoded lengths. The new non-
asymptotic converse bounds are in terms of average quantities
such as the Rényi mutual information, and are tight enough to
recover the strong converse in the asymptotic regime and the
large-deviation analysis above channel capacity. Together with
achievability results (outside the scope of this paper) they may
lead to alternative simple proofs of the dispersion analysis, as
the authors have shown for lossless source coding in [4].

The normalized cumulant generating function was proposed
by Campbell [5] as a proxy for average length in the design
of prefix codes. Csiszár [6] also used this approach in the
large deviations analysis of fixed-length channel coding and
hypothesis testing. Arikan and Merhav [7] found the asymp-
totic moments of the number of guesses required to obtain an
approximation with given distortion.

In this paper we deal with (a) the variable-length lossy
compression paradigm in which the major available non-
asymptotic converse is due to Kontoyiannis [8] (see also

This work was supported by the NSF Center for Science of Information
under grant agreement CCF-0939370.

[9]), and (b) the variable-to-fixed channel coding paradigm
introduced by Verdú and Shamai [10] for which they gave
asymptotic results showing important gains over the conven-
tional fixed-length setting for non-ergodic channels.

II. INFORMATION MEASURES

For α ≥ 0, α 6= 1, and a discrete probability measure PX ,
the Rényi entropy of order α is defined as1

Hα(X) =
1

1− α
logE [exp{(1− α) ıX(X)}] , (1)

where ıX(x) = log 1
PX(x) is the information with respect to

PX . Given α ≥ 0, α 6= 1, and probability measures P � Q
defined on the same alphabet, the Rényi divergence of order
α between distributions P and Q is defined as

Dα(P‖Q) =
1

α− 1
logE

[
exp

{
α ıP‖Q(Y )

}]
(2)

=
1

α− 1
logE

[
exp

{
(α− 1) ıQ‖P (X)

}]
, (3)

where X and Y are distributed according to P and Q, respec-
tively, and ıP‖Q(x) = log dP

dQ (x) is the relative information.
For a conditional probability measure PY |X : X 7→ Y , let
PX → PY |X → PY , with X ∈ X and Y ∈ Y . Following
Sibson [11], we define the order-α Rényi mutual information

Iα(X;Y ) = inf
QY

Dα(PY |XPX‖QY PX) (4)

= Dα(PY |X‖PYα |PX), (5)

where PYα is implicitly defined by

ıYα‖Y (y) =
1

α
logE [exp {α ıX;Y (X; y)− κα}] . (6)

In (6), the average is with respect to unconditional X , κα is
chosen so that PYα is a probability measure, and ıX;Y (x; y) =
ıPY |X=x‖PY (y) is the information density. We remark that the
term supPX Iα(X;Y ) has been called the channel capacity of
order α by Csiszár [6].

By taking limits as α→ 1 and applying l’Hôpital’s rule, it
is customary to identify H1(X) = H(X) and D1(P‖Q) =
D(P‖Q), where H(X) and D(P‖Q) are the Shannon entropy
and relative entropy, respectively.

1log denotes log2, and exp{·} denotes 2(·).
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For sets S,Z , a given probability measure PS on S, and a
distortion measure d : S × Z → [0,+∞), denote

RS(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (7)

which is equal to the rate-distortion function for a memo-
ryless source with distribution PS and separable distortion
measure with per-letter distortion function d. We will assume
throughout that the infimum in (7) is achieved by some
P ?Z|S satisfying E [d(S,Z?)] = d (e.g., this is true when
max{|S|, |Z|} < ∞). To avoid degeneracy, we impose the
mild condition that RS(d) is finite for some d <∞, and define
dmin = inf{d : RS(d) < ∞}. For d > dmin, and s ∈ S, the
d-tilted information is defined as [2]

S(s, d) = log
1

E [exp{λ?d− λ?d(s, Z?)}]
, (8)

where the expectation is with respect to the unconditional
distribution on Z induced by PS → P ?Z|S → P ?Z , and
λ? = −R′S(d). Analogous to (1), but exchanging information
for d-tilted information, we define the d-tilted Rényi entropy
of order α as

Hα(S, d) =
1

1− α
logE [exp{(1− α) S(S, d)}] , (9)

where S ∼ PS . Applying l’Hôpital’s rule and the
fact that E[S(S, d)] = RS(d) (see [2]), we find that
limα→1Hα(S, d) = RS(d), yielding the lossy counterpart to
H1(X) = H(X).

III. PREVIEW OF RESULTS

We contrast the bounds in this paper to the converse bounds
for variable-length lossless source coding. For any prefix code
f : X → {0, 1}+ (the set of all nonempty binary strings) and
nonzero t > −1, Campbell [5] showed

1

t
logE

[
2t`(f(X))

]
≥ H 1

1+t
(X), (10)

while lifting the prefix restriction (extraneous outside the
domain of symbol-by-symbol encoding) results in [4]

1

t
logE

[
2t`(f(X))

]
≥ H 1

1+t
(X)− log log(1 + |X |). (11)

Our non-asymptotic converses are:
• In variable-length lossy source coding with source alpha-

bet S and reproduction alphabet Z , we show that any
code f operating at distortion-level d must satisfy

1

t
logE

[
2t`(f(S))

]
≥ H 1

1+t
(S, d)−log log(1+min{|S|, |Z|})

(12)

for nonzero t > −1.
• Any variable-to-fixed channel code for PY |X satisfies

1

t
logE

[
2t`(S,f(Y ))

]
≤ sup

PX

I 1
1−t

(X;Y ) + log

(
1 + loge |S|
(2− 2t)1/t

)
(13)

for nonzero t < 1, where `(S, f(Y )) measures the length
of agreement between the source sequence S and the
decoder output f(Y ).

Though a formal presentation of these results must wait,
note the beautiful parallelism among the three inequalities
and the emergence of the fundamental information quantities
ıX(x), S(s, d), and ıX;Y (x; y) in their respective settings
through the Rényi entropy, d-tilted Rényi entropy, and Rényi
mutual information. These non-asymptotic bounds yield sim-
ple proofs of strong converses and can simplify derivation
of dispersion results (central limit regime) and the reliability
function (large deviations) bounds, as shown in [4].

IV. VARIABLE-LENGTH LOSSY SOURCE CODING

Let S and Z be finite sets. Let {0, 1}∗ be the set of
all (possibly empty) binary strings. A variable-length rate-
distortion code operating at distortion d is defined by a pair
of functions

f : S → {0, 1}∗ c : {0, 1}∗ → Z (14)

which satisfy d (s, c(f(s))) ≤ d, for all s ∈ S.

Theorem 1. For d > dmin and nonzero t > −1, any rate-
distortion code operating at distortion d satisfies (12).

Proof: The proof follows immediately from (9) and
Lemmas 3-4, which are given in the appendix.

Letting t → 0 in Theorem 1 and applying l’Hôpital’s rule,
we recover the (weak) converse to the rate-distortion theorem:
E [`(f(S))] ≥ RS(d)− log log(1+min{|S|, |Z|}). In addition,
Theorem 1 also allows us to deduce a non-asymptotic converse
bound for fixed-length lossy compression with little effort.

Corollary 1. Consider a fixed-blocklength code f : S →
{0, 1}m and decoder c : {0, 1}m → Z . For any t ∈ (−1, 0),

1

t
log

1

P [d(S, c(f(S))) ≤ d]

≤ H 1
1+t

(S, d)−m− log log(1 + min{|S|, |Z|}). (15)

Proof: From {f, c}, we construct a variable-length source
code {f ′, c′} which operates at distortion d as follows: If
d(s, c(f(s))) ≤ d, let f ′(s) = f(s) and c′(f ′(s)) = c(f(s)).
On the other hand, if d(s, c(f(s))) > d, put f ′(s) = s (using
at most dlog |S|e bits), and c′(s) = minz d(s, z). Then, a
Chernoff bound

P [d(S, c(f(S))) ≤ d] ≤ E [1{`(f ′(S)) ≤ m}] (16)
≤ E [exp{t(` (f ′(S))−m)}] (17)

followed by Theorem 1 on t ∈ (−1, 0) yields (15).
We remark that Theorem 1 also serves as a non-asymptotic

converse for the lossy guesswork problem considered by
Arikan and Merhav in [7].

An easy consequence of Corollary 1 is the following strong
converse for memoryless sources:

Corollary 2. For finite sets S,Z , let PSn = PS×· · ·×PS be
a product measure on Sn, and let {fn, cn} be blocklength-nR
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rate-distortion codes operating under the separable distortion
measure dn(sn, zn) = 1

n

∑n
i=1 d(si, zi). We have

1

n
logP [dn(S

n, cn(fn(Sn))) ≤ d]

≤ inf
t∈(−1,0)

t

(
H 1

1+t
(S, d)−R− log n

n
+O

(
1

n

))
(18)

Proof: Sn(Sn, d) =
∑n
i=1 S(Si, d) implies

H 1
1+t

(Sn, d) = nH 1
1+t

(S, d). Thus, we apply Corollary
1 using independence of the Si’s to get the desired result.

To see that (18) is indeed a strong converse, recall that
limα→1Hα(S, d) = RS(d). Therefore, if R < RS(d), we can
take t sufficiently close to 0 to infer the existence of a constant
c > 0 such that the probability of faithful reproduction is
exponentially small P [dn(S

n, cn(fn(Sn))) ≤ nd] < 2−nc for
all n sufficiently large. Thus, taking the infimum of (18) over
t ∈ (0, 1) can only make the exponential decay more steep.

V. VARIABLE-TO-FIXED CHANNEL CODING

A channel is defined by a space of inputs X and outputs
Y , and a conditional probability measure PY |X : X 7→ Y .
Let the message space S = {0, 1}m be equipped with the
equiprobable probability measure PS(s) = 2−m for all s ∈ S.
Corresponding to the notion of variable-rate channel capacity
[10], a variable-to-fixed channel code for (S, PY |X) is defined
by encoding/decoding maps c : S → X and f : Y → S.

Let fi(y) denote the i-th coordinate of f(y). That is, if
f(y) = (s1, s2, . . . , sm) ∈ S, then fi(y) = si. The quantity of
interest in our setting is given by `(s, f(y)) = min{i : fi(y) 6=
si}− 1 (i.e., the length of the initial segment on which s and
f(y) agree). As we did for lossy source coding, we will bound
the exponential moments of the random variable `(S, f(Y )),
where S, Y are dependent via PS

c→ PX → PY |X → PY .

Theorem 2. If {c, f} is a variable-to-fixed channel code for
(S, PY |X) and t < 1 is nonzero, then (13) is satisfied.

We remark that the term −t−1 log (2− 2t) is essential.
Indeed, consider the degenerate channel PY |X = PY , in which
case the divergence term is zero and `(S, f(Y )) behaves like
a geometric random variable with success probability 1/2.
Since the moment generating function of a geometric random
variable G ∼ Geometric(1/2) is given by E[2tG] = 1

2−2t , the
term −t−1 log (2− 2t) is necessary.

Letting t → 0 in Theorem 2 and applying l’Hôpital’s rule,
we discover the (weak) converse

E
[
`(S, f(Y ))

]
≤ sup

PX

I(X;Y ) + log (1 + loge |S|) (19)

for variable-to-fixed channel coding which does not depend
on the existence of a strong converse for the channel PY |X
as required in [10]. A direct application of Theorem 2 and a
Chernoff bound yields

Corollary 3. Consider any code {c, f} for (S, PY |X). For any
t ∈ (0, 1)

1

t
log

1

P [S = f(Y )]
≥ log |S| − sup

PX

I 1
1−t

(X;Y )

− log

(
1 + loge |S|
(2− 2t)1/t

)
. (20)

Specializing to the setting of a memoryless channel, we
obtain the following strong converse by applying an identity
of Gallager [12] and Arimoto [13] to Corollary 3.

Corollary 4. Let {cn, fn} be a sequence of codes for
({0, 1}nR, PY n|Xn), respectively, where PY n|Xn=xn(yn) =∏n
i=1 PY |X=xi(yi), and S ∈ {0, 1}nR. For any t ∈ (0, 1),

1

tn
log

1

P [S = fn(Y n)]
≥ R− sup

PX

I 1
1−t

(X;Y ) +O

(
log n

n

)
.

(21)

To first order, the exponent in (21) is that given in [13],
[14], known to be tight at rates above capacity [15].

Proof of Theorem 2: Although the approach applies to
non-discrete alphabets, for simplicity, we assume that X and Y
are both finite. We first treat the case of t ∈ (0, 1). To simplify
notation, for each y ∈ Y , let WX|Y=y be an unnormalized
measure on X defined by

WX|Y=y(x) = (2− 2t)PX(x)E [exp{t `(S, f(y))}|X = x] .
(22)

With this definition, we have the identity

1

t
logE [exp{t`(S, f(Y )}] =

1

t
log

(∑
x,y

PY |X(y)WX|Y=y(x)

)

+
1

t
log

(
1

2− 2t

)
. (23)

For a given y ∈ Y , let x[1,y] �y x[2,y] �y · · · �y x[|X |,y] be
an arbitrary strict order on X so that

PY |X=x[1,y]
(y) ≥ · · · ≥ PY |X=x[|X|,y](y). (24)

Fix y and focus on the term

E[WX|Y (X|y)] =

|X |∑
j=1

PY |X(y|x[j,y])WX|Y (x[j,y]|y). (25)

In view of Lemma 6 from the appendix, we upper bound
(25) by considering the submodular optimization problem with
variable QX|Y=y ∈ RX and 0 < t < 1:

maximize:
|X |∑
j=1

PY |X=x[j,y]
(y)QX|Y=y(x[j,y]) (26)

subject to: QX|Y=y(E) ≤ P 1−t
X (E) for all E ⊆ X , (27)

It is well known that the solution to this optimization problem
is given by (see [16]):

W ?
X|Y=y(xj) = P 1−t

X (Aj(y) ∪ {xj})− P 1−t
X (Aj(y)), (28)
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where Aj(y) = {x[1,y], x[2,y], . . . , x[j−1,y]}. Note that, by def-
inition, we maintain the property that W ?

X|Y=y(E) ≤ P 1−t
X (E)

for all E ⊆ X and∑
y

∑
x

PY |X=x(y)W ?
X|Y=y(x) (29)

=
∑
y

|X |∑
j=1

PY |X=xj (y)
(
P 1−t
X ({Aj(y), xj})− P 1−t

X (Aj(y))
)
.

Defining Ny(j) = |{s ∈ S : c(s) ≺y c(sj)}| + 1 it is
straightforward to express the right side of (29) as

∑
y

2m∑
k=1

PY |X(y|c(sk))P 1−t
S (sk)

(
N1−t
y (k)− (Ny(k)−1)

1−t
)

≤
∑
y

2m∑
k=1

PY |X=c(sk)(y)P 1−t
S (sk)N−ty (k) (30)

≤
∑
y

(
2m∑
k=1

P
1

1−t
Y |X=c(sk)(y)PS(sk)

)1−t(
2m∑
k=1

N−1
y (k)

)t
(31)

=
∑
y

(∑
x

P
1

1−t
Y |X=x(y)PX(x)

)1−t( 2m∑
k=1

k−1

)t
(32)

≤
∑
y

(∑
x

P
1

1−t
Y |X=x(y)PX(x)

)1−t(
loge(2

m) + 1
)t
, (33)

where (30) holds since z1−t − (z − 1)
1−t ≤ z−t for t > 0

and z ≥ 1, (31) is Hölder’s inequality, and (32) follows since
{Ny(k)}2mk=1 = {1, 2, . . . , 2m} for each y.

Recalling (23) and taking logarithms of (33), we find

1

t
logE [exp(t`(S, f(Y ))]

≤ 1

t
log

∑
y

(∑
x

P
1

1−t
Y |X=x(y)PX(x)

)1−t


+ log (1 + loge |S|) +
1

t
log

(
1

2− 2t

)
(34)

= inf
QY

D 1
1−t

(
PY |XPX

∥∥∥QY PX)+log

(
1+ loge |S|
(2− 2t)1/t

)
, (35)

where (35) follows from Lemma 5 in the appendix. Supremiz-
ing over PX only weakens the inequality; recalling (4) proves
the theorem for t ∈ (0, 1). The proof for t < 0 follows mutatis
mutandis.

APPENDIX

A. Fixed-to-Variable Lossy Source Coding Lemmas

The following result follows similarly to [4, Lemma 1]:

Lemma 1. Let f : X → {0, 1}∗ be injective. Then∑
x∈X

2−`(f(x)) ≤ log(1 + |X |). (36)

Lemma 2. [2] Fix d > dmin. The following hold:

1) For PZ? -almost every z

S(s, d) = ıS;Z?(s; z) + λ?d(s, z)− λ?d. (37)

2) For all z ∈ Z and S ∼ PS ,

E
[
exp

{
S(S, d)− λ?d(S, z) + λ?d

}]
≤ 1. (38)

Lemma 3. Fix d > dmin. For any nonzero t > −1, we have
PZ? -a.e.

1 + t

t
logE

[
exp

{ t

1 + t
S(S, d)

}]
≤ logE

[
exp

{
λ?(d(S,Z?)− d)− `(f(S))

}∣∣∣Z?]
+

1

t
logE

[
exp

{
t `(f(S))

}]
, (39)

Proof: Denote

α(s) =
(

exp
{
− ıS|Z?(s|z) + λ?(d(s, z)− d)− `(f(s))

}) t
1+t

β(s) =
(

exp
{
− ıS(s) + t `(f(s))

}) 1
1+t

. (40)

For t > 0, Hölder’s inequality states

∑
s∈S

α(s)β(s) ≤

(∑
s∈S

α
1+t
t (s)

) t
1+t
(∑
s∈S

β1+t(s)

) 1
1+t

. (41)

Taking the logarithm of both sides, we find:

logE
[
exp

{
t

1 + t

(
ıS;Z?(S; z) + λ?d(S, z)− λ?d

)}]
≤ t

1 + t
logE

[
exp

{
λ?(d(S,Z?)− d)− `(f(S))

}∣∣∣Z? = z
]

+
1

1 + t
logE

[
exp

{
t `(f(S))

}]
. (42)

Multiplying both sides of (42) by (1 + t)/t and applying
the first claim of Lemma 2 proves (39) for t > 0 as desired.
If −1 < t < 0, Hölder’s inequality is reversed. Nonetheless,
running through the argument again, we arrive at the same
inequality since multiplying through by (1 + t)/t reverses the
inequality a second time.

Lemma 4. Fix d > dmin and let {f, c} be a variable-length
rate-distortion code operating at distortion d. For PZ? -a.e.

E
[
exp

{
λ?(d(S,Z?)− d)− `(f(S))

}∣∣∣Z?]
≤ log(1 + min{|S|, |Z|}), (43)

Proof: For notational convenience, define ŝ = c(f(s)) ∈
Z , and let Z̄ = {c(f(s)) : s ∈ S} ⊆ Z . Assuming,
without essential loss of generality that the decoder mapping
is injective, define the probability measure QZ on Z̄ by

QZ(z) =
1

κ
2−`(c

−1(z)) (44)

with κ =
∑
z∈Z̄ 2−`(c

−1(z)).
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By definition of {f, c}, we have

2−`(f(s)) = 2λ
?(d(s,ŝ)−d)−λ?(d(s,ŝ)−d)−`(f(s)) (45)

≤ 2−λ
?(d(s,ŝ)−d)−`(f(s)) (46)

= κ2−λ
?(d(s,ŝ)−d)QZ(ŝ) (47)

since λ?(d(s, ŝ)− d) ≤ 0. Summing (47) over all ŝ yields

2−`(f(s)) ≤ κE [exp {−λ?(d(s, Z)− d)}] , (48)

where Z ∼ QZ . Next, let (S,Z?, Z) ∼ PSZ? ×QZ . Then,

E [exp {λ?(d(S,Z?)− d)− `(f(S))} |Z? = z]

= E [exp {ıS;Z?(S; z) + λ?(d(S, z)− d)− `(f(S))}] (49)
= E [exp {S(S, d)− `(f(S))}] (50)
≤ κE [exp {S(S, d)− λ?(d(S,Z)− d)}] (51)
≤ κ (52)
≤ log(1 + min{|S|, |Z|}), (53)

where (49), (50), (51), (52), (53) follow from a change of
measure, the first claim of Lemma 2, (48), the second part of
Lemma 2, and Lemma 1, respectively

B. Variable-to-Fixed Channel Coding Lemmas

Lemma 5. [6], [11] Let t < 1 be nonzero. For given
PX , PY |X and corresponding finite spaces X ,Y ,

inf
QY

D 1
1−t

(
PY |XPX

∥∥∥QY PX)
=

1

t
log

∑
y∈Y

(∑
x∈X

P
1

1−t
Y |X=x(y)PX(x)

)1−t
 . (54)

Lemma 6. For all E ⊆ X ,

WX|Y=y(E)

 ≤ P
1−t
X (E) 0 < t < 1

= PX(E) t = 0
≥ P 1−t

X (E) t < 0
(55)

where WX|Y is defined in (22).

Proof: It suffices to prove the claim when E = {x}, the
argument for general events E ⊆ X with WX|Y=y(E) > 0
proceeds identically. To this end, first we assume t ∈ (0, 1)
and we set out to show∑

s:c(s)=x

PS(s) exp{t`(s, f(y))} ≤
P 1−t
X (x)

2− 2t
. (56)

Fix f(y), and denote Sx = {s ∈ S : c(s) = x}, and let
integers k,∆ be such that

2k ≤ |Sx| = 2k + ∆ < 2k+1. (57)

Observe that the left side of (56) is maximized (over f) when
the elements in {0, 1}m matching the longest initial segments

of f(y) are greedily assigned to Sx. Though details are omitted
due to space constraints, an analysis of this assignment yields

|Sx|
PX(x)

×
∑

s:c(s)=x

PS(s) exp{t`(s, f(y))}

= |Sx| × E
[
exp{t`(S, f(y))}

∣∣∣c(S) = x
]

(58)

≤ 2tm
2k(1−t) + ∆(2− 2t)2−t(k+1)

2− 2t
. (59)

Since PX(x) = (2k + ∆)/2m, we have for t ∈ (0, 1)

(2− 2t)P t−1
X (x)

∑
s:c(s)=x

PS(s) exp{t`(s, f(y))}

= (2− 2t)
(2k + ∆)t

2tm

∑
s:c(s)=x

PS(s) exp{t`(s, f(y))} (60)

≤ 2k(1−t) + ∆(2− 2t)2−t(k+1)

(2k + ∆)1−t . (61)

If t < 0, then
∑
s PS|X=x(s) exp{t`(s, f(y))} is minimized

by repeating the same argument, reversing the inequality (61).
Therefore, to complete the proof, it suffices to verify that

t2k(1−t) ≤ t
(

(2k + ∆)1−t −∆(2− 2t)2−t(k+1)
)

(62)

for t < 1. To this end, note that equality holds at the endpoints
∆ ∈ {0, 2k}, and that the right side of (62) is concave in ∆.
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