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Abstract—This paper analyzes the distribution of the code-
word lengths of the optimal lossless compression code without
prefix constraints both in the non-asymptotic regime and in the
asymptotic regime. The technique we use is based on upper
and lower bounding the cumulant generating function of the
optimum codeword lengths. In the context of prefix codes, the
normalized version of this quantity was proposed by Campbell
in 1965 as a generalized average length. We then use the one-
shot bounds to analyze the large deviations (reliability function)
and small deviations (normal approximation) of the asymptotic
fundamental limit in the case of memoryless sources. In contrast
to other approaches based on the method of types or the Berry-
Esséen inequality, we are able to deal with sources with infinite
alphabets.

I. INTRODUCTION

In this paper, we study the fundamental limits of optimal
variable-length lossless data compressors without imposing
prefix constraints, which coincide with those of almost-lossless
data compressors. Recently, Kontoyiannis and Verdú [1] gave
non-asymptotic upper and lower bounds on the distribution
of codeword length, which they went on to use, along with
Berry-Esséen’s inequality, to prove rigorously the Gaussian
approximation put forward by Strassen [2] for memoryless
sources. In this paper, we follow an alternative approach
based on the normalized cumulant generating function of the
codeword lengths in order to obtain non-asymptotic bounds.
We then show how to use those bounds to obtain simple proofs
for the asymptotic normality and the reliability function of
memoryless sources allowing countable source alphabets.

L. L. Campbell [3], [4] proposed the normalized cumulative
generating function of the codeword lengths as an alternative
to average length as a design criterion for lossless data
compression codes subject to prefix constraints. He was able
to upper and lower bound the minimum “generalized average
length” of a prefix code in terms of the Rényi entropy.

II. RÉNYI ENTROPY

For α ≥ 0, α 6= 1, and a discrete probability measure PX ,
the Rényi entropy of order α is defined as (log = log2 and
exp(a) = 2a throughout)

Hα(X) =
1

1− α
logE

[
2(1−α)ıX(X)

]
, (1)
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where ıX(x) , log 1
PX(x) is the information in x (with

respect to PX ). The mean and variance of ıX(X) are the
entropy H(X) and varentropy V (X), respectively. Customar-
ily, H1(X) = H(X) (which coincides with limα→1Hα(X),
provided Hα0(X) < ∞ for some α0 < 1). Furthermore,
H∞(X) = minx∈X ıX(x).

For a discrete random variable X ∼ PX and α ∈ (0, 1), the
α-scaled version of X , denoted Xα, is defined by the relation

ıXα(x) , α ıX(x) + (1− α)Hα(X). (2)

By rearranging (2) and taking expectations, we make note of
the following identity which will be useful later

αD(Xα‖X) = (1− α) (H(X)−H(Xα)) . (3)

The Rényi entropy can be seen to be a reparametrized version
of the cumulant generating function of the information random
variable ıX(X), denoted ΛıX(X)(·):

Hα(X) =
1

1− α
ΛıX(X)(1− α) (4)

Accordingly, it can be shown that if ζn(X) denotes the nth
cumulant of ıX(X) (in units of bitsn), then the following series
expansion holds about t = 0

tH1−t(X) = tH(X) + log e

∞∑
n=2

ζn(X)

n!

(
t

log e

)n
(5)

III. OPTIMAL SOURCE CODE

A lossless source code is an injective function f : X →
{0, 1}∗ = {∅, 0, 1, 00, 01, 10, 11, 000, . . . }. If x ∈ {0, 1}∗,
`(x) denotes its length.

For a countable set X equipped with probability measure
PX , a PX -optimal source code is a lossless source code that
satisfies:

(i) PX(x) ≥ PX(x′) ⇐⇒ ` (fX(x)) ≤ ` (fX(x′)) for all
x, x′ ∈ X .

(ii) If ` (fX(x′)) = k ∈ {0, 1, 2, . . . } for an x′ ∈ X , then
|{x ∈ X : ` (fX(x)) < k}| = 2k − 1.

Note that a PX -optimal source code is not unique. In-
deed, swapping codewords of the same length preserves PX -
optimality. Nonetheless, the distribution of the length is the
same for any choice of the optimal source code. With this in
mind, it is convenient to adopt the code f?X that assigns the
lexicographically ordered strings in {0, 1}∗ to X ordered in
descending probabilities under PX .
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Convention 1. We assume that X = {x1, x2, x3, . . . } and PX
satisfies

PX(xi) ≥ PX(xj)⇐⇒ i ≤ j. (6)

It is easy to show that [1]

` (f?X(xk)) = blog kc. (7)

The normalized cumulant generating function of the lengths
of the optimal code satisfies the following bounds:

Theorem 1. For nonzero t > −1,

H 1
1+t

(X)− log log(1 + |X |) ≤ 1

t
logE

[
2t`(f

?
X(X))

]
(8)

≤ H 1
1+t

(X) (9)

If t ≤ −1

H∞(X)− log log(1 + |X |) ≤ − logE
[
2t`(f

?
X(X))

]
(10)

≤ H∞(X) (11)

In contrast, for prefix codes, Campbell [3] showed that
for nonzero t > −1, the normalized cumulant generating
function belongs to [H 1

1+t
(X), H 1

1+t
(X) + 1). Bounds for

t ≤ −1 were outside the scope of [3], but have appeared in
the context of guesswork (e.g., [5, Lemma 1]). To be precise,
we note that guesswork effort under optimal guessing is in
exact correspondence with the codeword lengths given in (7).
Indeed, Arikan rediscovered Campell’s bounds roughly three
decades later in the context of guessing in [6]. The relationship
was later discussed by Arikan and Merhav [7], and Hanawal
and Sundaresan [8].

In light of these connections, we remark that Theorem 1 has
appeared in various forms dating back to Campbell’s original
1965 paper. Our goal in the present paper is pedagogical
in nature. Using Theorem 1, we give a self-contained and
rigorous derivation of Strassen’s Gaussian codeword-length
approximation, and also recover the source reliability function
for lossless compression. In both cases, we do not restrict
ourselves to finite alphabets, which distinguishes the present
paper from prior work on lossless compression (e.g,. [1] and
references therein), and the studies on guesswork discussed
above.

IV. APPLICATIONS OF THEOREM 1

We now proceed toward demonstrating how Theorem 1 can
be used as a key tool for establishing two of the fundamental
results for lossless source coding: the source reliability func-
tion and the asymptotic normality of codeword lengths under
optimal encoding. For both results, Theorem 1 contains all the
information theoretic ideas, while the remainder of the effort
consists of invoking standard limiting results. The proofs can
be found in Section V.

In order to simplify the presentation, we restrict our at-
tention to memoryless sources in this paper. Thanks to the
non-asymptotic nature of Theorem 1, with modest effort, our
arguments can be modified to handle more general sources
under suitable constraints (e.g., finite-state Markov sources).

A. Reliability function

For a countable set X and a sequence of distributions PXn
on Xn, we define the source reliability function

E(R) , lim inf
n→∞

1

n
log

1

P {` (f?Xn(Xn)) > nR}
. (12)

In other words, the reliability function E(R) characterizes
the large-deviations behavior of codeword lengths for the
optimal encoder f?Xn . In the equivalent problem of almost-
lossless fixed-length data compression the following result was
announced by Shannon [9] in 1956 for finite-alphabet sources.

Theorem 2. Let PX be a discrete probability distribution on
a countable set X with H(X) < ∞. For H(X) < R <
log |X |, the reliability function for the memoryless source with
distribution PX is given parametrically by

E(R) = D(Xα‖X) R = H(Xα) for α ∈ (0, 1). (13)

It is important to note that the reliability function for lossless
source coding is traditionally established using the method
of types, and hence the source alphabet is typically assumed
to be finite (e.g., [10, Chapter 2]). Following our approach,
the source alphabet can be countably infinite, and the only
hypothesis required is that H(X) <∞ which is necessary for
the reliability function to be meaningful. Therefore, within the
context of memoryless sources, Theorem 2 has full generality.

We appeal to the Gärtner-Ellis Theorem in our proof of
Theorem 2. This is the same approach employed in the large
deviations analyses of guesswork (e.g., [5], [8]) under a finite-
alphabet assumption. There, the established large deviations
principle was shown to hold for a general class of finite-
alphabet sources under modest assumptions [5], [8].

B. Asymptotic normality of codeword lengths

Let X be a countable set. For a sequence of distributions
PXn on Xn, we define

R?(n, ε) , inf {R : P {` (f?Xn(Xn)) > nR} ≤ ε} . (14)

In words, R?(n, ε) is smallest R for which the best code
(with respect to source distribution PXn ) exceeds rate R with
probability no larger than ε. As with the reliability func-
tion, Theorem 1 provides an effective tool for characterizing
R?(n, ε), even in the setting where X is countably infinite.
The finite-alphabet version of Theorem 3 was given in [1]
following a more cumbersome approach based on the Berry-
Esséen non-asymptotic bound.

Theorem 3. Let X be a countable set equipped with probabil-
ity measure PX which satisfies H(X) <∞, 0 < V (X) <∞,
and, under the assumptions of Convention 1,

∞∑
k=2n

PX(xk) log
1

PX(xk)
= o

(
1√
n

)
. (15)

For the discrete memoryless source with distribution PX ,

R?(n, ε) = H(X) +

√
V (X)

n
Q−1(ε) + o

(
1√
n

)
. (16)
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We remark that the constraint (15), which is effectively a
constraint on the tail probabilities of PX , can be significantly
weakened at the expense of a less concise form.

V. PROOFS
A. Proof of Theorem 1

In light of our comments following Theorem 1, we remark
that various proofs have appeared previously (e.g., [3]–[8]).
Nonetheless, the proof is elementary and since our goal is to
give a self-contained treatment of lossless compression, we
provide a short proof here for completeness.

Lemma 1. Let f : X → {0, 1}∗ be injective. Then∑
x∈X

2−`(f(x)) ≤ log(1 + |X |). (17)

Proof. The claim follows by greedily assigning 2` elements
of X to codewords of length `, with ` = 0, . . . , n − 1 and
assigning the remaining |X | − 2n + 1 < 2n elements to
codewords of length n = blog2(1 + |X |)c. In such case,∑

a∈X
2−`(f(a)) = (|X | − 2n + 1)2−n +

n−1∑
`=0

2`2−` (18)

= log2(1 + |X |)− (1 + ∆− 2∆) (19)
≤ log2(1 + |X |) (20)

where ∆ = log2(1 + |X |)− blog2(1 + |X |)c ∈ [0, 1).

We can now prove Theorem 1 by considering two cases:
1) t ≤ −1: Since the most likely element of X is

mapped to the null string under f?X , logE
[
2t`(f

?
X(X))

]
≥

log [maxx∈X PX(x)] which is (11). Now, assume X is finite,
and note that we also have

logE
[
2t`(f

?
X(X))

]
≤ logE

[
2−`(f

?
X(X))

]
(21)

≤ log

[
max
x∈X

PX(x)
∑
x∈X

2−`(f
?
X(x))

]
(22)

≤ −H∞(X) + log log(1 + |X |), (23)

where (23) follows from Lemma 1. (See also [5, Lemma 1].)
2) t > −1: The remainder of the proof follows Campbell’s

original argument [3]. Inequality (8) follows by Lemma 1 and
choosing f(x) := 2`(f(x)) in the following:

Lemma 2. Let f : X → [0,∞). For nonzero t > −1,

1

t
logE

[
f t(X)

]
≥ H 1

1+t
(X)− log

∑
x∈X

1

f(x)
. (24)

Proof. Set α(x) = f−
t

1+t (x), β(x) = P
1

1+t

X (x)f
t

1+t (x). The
claim for t > 0 is proved by invoking Hölder’s inequality

∑
x∈X

α(x)β(x) ≤

(∑
x∈X

α
1+t
t (x)

) t
1+t
(∑
x∈X

β1+t(x)

) 1
1+t

,

and the reverse Hölder inequality for −1 < t < 0.

To show (9), recall from (7) that f?X satisfies `(f?X(xk)) ≤
log k. Hence for t > 0, we have the Chernoff bound

2t`(f
?
X(xk)) ≤ kt ≤

[∑
x′∈X

(
PX(x′)

PX(xk)

)1/(1+t)
]t
, (25)

from which it easily follows that

E
[
2t`(f

?
X(X))

]
≤
∑
x∈X

PX(x)

[∑
x′∈X

(
PX(x′)

PX(x)

)1/(1+t)
]t

=

(∑
x∈X

(PX(x))
1/(1+t)

)1+t

. (26)

Taking logarithms and dividing through by t gives the desired
result. On the other hand, if t ∈ (−1, 0), then

2t`(f
?
X(xk)) ≥ kt ≥

[∑
x′∈X

(
PX(x′)

PX(xk)

)1/(1+t)
]t
, (27)

and therefore logE
[
2t`(f

?
X(X))

]
≥ tH 1

1+t
(X). Dividing

through by t yields (9).

B. Proof of Theorem 2

To handle the case when |X | = ∞, we invoke Lemmas 4
and 5 from Appendix A. We define the monotonically non-
decreasing function

Λ(t) , lim
n→∞

1

n
logE

[
2t`(f

?
Xn (Xn))

]
(28)

=

{
tH 1

1+t
(X) t > −1

−H∞(X) t ≤ −1,
(29)

where (29) follows from Theorem 1 and Lemma 4. Further-
more, we denote the critical threshold

tc , sup
t>−1
{t : Λ(t) <∞}, (30)

which is finite only if |X | = ∞. Invoking Lemma 5 if
necessary (i.e., if |X | =∞), we find that Λ(t) is differentiable
on the interval (−1, tc) containing the origin, with derivative
given by

Λ′(t) = H
(
X 1

1+t

)
for −1 < t < tc. (31)

This implies

G = {Λ′(t) : − 1 < t < tc} = (H(X∞), log |X |) (32)

which holds regardless of whether |X | =∞.
Next, define the Fenchel-Legendre transform of Λ(·) by

Λ∗(R) = sup
t∈R

{
tR− Λ(t)

}
= sup
t>−1

{
tR− Λ(t)

}
. (33)

Recalling (3), and applying the identity (31) once more
combined with convexity of Λ∗(·), we find that

Λ∗(R) = D
(
X 1

1+t∗
‖X
)
, (34)

where t∗ ∈ (−1, tc) attains the supremum in (33) and satisfies
R = H

(
X 1

1+t∗

)
. By letting t∗ ∈ (−1, 0), we sweep the

whole interval H(X) < R < log |X |.
For any H(X) < R < log |X |, we apply the Gärtner-Ellis

Theorem (see Theorem 4 in Appendix B) to the sequence of
random variables Zn , 1

n` (f?Xn(Xn)) to obtain:
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− inf
x≥R

Λ∗(x) ≥ lim sup
n→∞

1

n
logP

[
1

n
` (f?Xn(Xn)) ≥ R

]
(35)

≥ lim inf
n→∞

1

n
logP

[
1

n
` (f?Xn(Xn)) > R

]
(36)

≥ − inf
x∈G∩(R,∞)

Λ∗(x) = − inf
x≥R

Λ∗(x), (37)

where (37) follows from the fact that G ∩ (R,∞) =
(R, log |X |) and the continuity of Λ∗(·). Since Λ∗(·) is mono-
tone increasing, we can conclude that

lim
n→∞

− 1

n
logP

[
1

n
` (f?Xn(Xn)) > R

]
= Λ∗(R). (38)

Recalling (34) and reparameterizing in terms of α = 1
1+t∗

completes the proof.

C. Proof of Theorem 3

Assume first that |X | <∞. Our proof consists of showing
the following convergence in distribution

`(f?Xn(Xn))−H(Xn)√
V (Xn)

D−→ N (0, 1). (39)

To that end, Curtiss’ Theorem [11] asserts that it suffices
to show pointwise convergence of the moment generating
function

lim
n→∞

E

[
expe

{
λ

(
`(f?Xn(Xn))−H(Xn)√

V (Xn)

)}]
= eλ

2/2,

where expe{x} , ex, and convergence need only occur in a
neighborhood of the origin. For notational convenience, define

tn =
λ log e√
V (Xn)

, (40)

in view of the cumulant expansion (5), and the fact that
ζ2(Xn) = V (Xn) = nV (X), we obtain

tnH 1
1+tn

(Xn)− tnH(Xn) =
V (Xn)

2 log e

t2n
1 + tn

+O

(
1√
n

)
=
λ2 log e

2
+O

(
1√
n

)
. (41)

Invoking Theorem 1 with X ← Xn, PX ← PXn and t← tn
establishes the desired convergence and establishes the proof
assuming |X | <∞.

Now, assume X is countably infinite. We will only treat the
case where λ ≥ 0 (the case where λ ≤ 0 follows similarly).
Since the upper bound (9) does not involve |X |, the previous
argument also applies to yield the pointwise bound for λ ≥ 0:

lim sup
n→∞

E

[
expe

{
λ

(
`(f?Xn(Xn))−H(Xn)√

V (Xn)

)}]
≤ eλ

2/2.

Define Y = {x1, . . . , xkn}, and let Y be equal to X condi-
tioned on the event X ∈ Y . Since we have assumed λ ≥ 0,

Lemma 3, Theorem 1, and (5) together imply

logE

[
expe

{
λ

(
`(f?Xn(Xn))−H(Xn)√

V (Xn)

)}]

≥ logE

[
expe

{
λ

(
`(f?Y n(Y n))−H(Xn)√

V (Xn)

)}]
(42)

≥ tnH 1
1+tn

(Y n)− tnH(Xn)−O
(

log (n log kn)√
n

)
(43)

=
λ2 log e

2

V (Y )

V (X)
+O

(
log (n log kn)√

n

)
+O

(√
n(H(Y )−H(X))

)
. (44)

If we choose the sequence kn = 2n, n = 1, 2, . . . , then the
tail bound (15) implies limn→∞

√
n(H(Y )−H(X)) = 0, and

we obtain the desired convergence.

APPENDIX A
TECHNICAL LEMMAS |X | =∞

When |X | =∞, the proof of Theorem 2 uses the following
technical lemmas.

Lemma 3. Let PX be a discrete probability distribution on
X , and let PY be the discrete probability distribution on the
finite subset Y = {x1, x2, . . . , xk} ⊆ X defined by

PY (y) = P
[
X = y|X ∈ Y

]
. (45)

Then,
1

t
logE

[
2t`(f

?
X(X))

]
≥ 1

t
logE

[
2t`(f

?
Y (Y ))

]
for t 6= 0. (46)

Proof. By Convention 1, f?Y (y) = f?X(y) for all y ∈ Y . Since
Y consists of the k most likely elements of X , the claim is
immediate.

Lemma 4. Let PX be a discrete probability measure on X
with H(X) < ∞, and let Xn ∼ PX × · · ·PX . If t > −1 is
nonzero,

lim inf
n→∞

1

nt
logE

[
2t`(f

?
Xn (Xn))

]
≥ H 1

1+t
(X). (47)

On the other hand, if t ≤ −1,

lim inf
n→∞

− 1

n
logE

[
2t`(f

?
Xn (Xn))

]
≥ H∞(X). (48)

Proof. We assume |X | = ∞ since otherwise the claim is
a direct application of Theorem 1. Consider first the case
t > −1. For each n, define the truncated alphabet Xkn =
{x1, x2, . . . , xkn} ⊂ X , and let Xkn be the random variable
X conditioned on the event X ∈ Xkn . For a given n, define
the random variable Y n ∈ (Xkn)n according to

PY n(yn) = P [Xn = yn|Xn ∈ (Xkn)n] . (49)

Noting that Y n consists of n i.i.d. copies of Xkn and satisfies
the conditions of Lemma 3,

1

nt
logE

[
2t`(f

?
Xn (Xn))

]
≥ 1

nt
logE

[
2t`(f

?
Y n (Y n))

]
(50)

≥ 1

n
H 1

1+t
(Y n)− log (n log(1 + kn))

n
(51)

= H 1
1+t

(Xkn)− log (n log(1 + kn))

n
, (52)
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where (51) follows from (8). Taking kn = n, for exam-
ple, it is easy to see that Xkn

TV−→ X . Using the lower-
semicontinuity property of Rényi entropy [12, Theorem 5],
we find lim infn→∞H 1

1+t
(Xkn) ≥ H 1

1+t
(X), which proves

the claim for t > −1. If t ≤ −1, the proof proceeds in a
similar manner, except we invoke (10) instead of (8).

Lemma 5. Define τ0 , supt>−1{t : H 1
1+t

(X) < ∞},
assuming H(X) < ∞. The function tH 1

1+t
(X) is finite and

differentiable on the interval t ∈ (−1, τ0) with derivative
d

dt

{
tH 1

1+t
(X)

}
= H

(
X 1

1+t

)
. (53)

Proof. First, we remark that [12, Theorem 1] implies that τ0 >
0. Consider any interval [a, b] with−1 < a < b < τ0. Let X(n)

be defined by the distribution

PX(n) =

(
PX(x1), PX(x2), . . . , PX(xn−1),

∞∑
k=n

PX(xk)

)
.

Note that tH 1
1+t

(X(n)) converges uniformly to tH 1
1+t

(X) <

∞ on [a, b], due to uniform convergence of the series
∞∑
k=1

P
1

1+t

X (xk) (54)

since
∑∞
k=1 P

1
1+t

X (xk) <
∑∞
k=1 P

1
1+τ0

X (xk) <∞ for t < b <
τ0. Since X(n) has finite support, we obtain the identity

d

dt

{
tH 1

1+t

(
X(n)

)}
= H

(
X

(n)
1

1+t

)
. (55)

Note that (2) implies

H
(
X 1

1+t

)
=

1

1 + t
H(X)− t

1 + t
H 1

1+t
(X) <∞ on [a, b],

where finiteness follows by our assumption that H(X) < ∞
and monotonicity of Rényi entropy. Therefore,

d

dt

{
tH 1

1+t

(
X(n)

)}
−H

(
X 1

1+t

)
(56)

= H
(
X

(n)
1

1+t

)
−H

(
X 1

1+t

)
(57)

=
1

1 + t

(
H(X(n))−H(X)

)
+

t

1 + t

(
H 1

1+t
(X)−H 1

1+t
(X(n))

)
, (58)

which converges uniformly to zero on [a, b] (again, due to uni-
form convergence of (54)). Thus, tH 1

1+t
(X) is differentiable

on [a, b], and the derivative is given by (53) (cf. [13]).

APPENDIX B
THE GÄRTNER-ELLIS THEOREM

Here, we quote [14, Theorem 2.3.6], adapted slightly for our
purposes. To this end, consider a sequence of random variables
Zn ∈ R, where Zn possesses the law µn and has cumulant
generating function

Λn(λ) , logE
[
2λZn

]
. (59)

Assume the limit Λ(λ) , limn→∞
1
nΛn(nλ) exists as an

extended real number and that the origin belongs to the interior
of DΛ , {λ ∈ R : Λ(λ) <∞}. Let

Λ∗(x) = sup
λ∈R

{
λx− Λ(λ)

}
(60)

be the Fenchel-Legendre transform of Λ(·). Let D ⊆ DΛ be
any open set on which Λ(·) is differentiable, and put G =
{Λ′(λ) : λ ∈ D}.

Theorem 4 (Gärtner-Ellis). Under the above assumptions, the
following hold:

(a) For any closed set F ,

lim sup
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
Λ∗(x). (61)

(b) For any open set G,

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G∩G
Λ∗(x). (62)

Proof. Theorem 4 is a slightly modified version of [14,
Theorem 2.3.6]. Claim (a) is precisely [14, Theorem 2.3.6(a)].
Next, [14, Theorem 2.3.6(b)] states that

lim inf
n→∞

1

n
logµn(G) ≥ − inf

x∈G∩F
Λ∗(x), (63)

where F is the set of exposed points of Λ∗(·) (cf. [14,
Definition 2.3.3]). However, [14, Lemma 2.3.9(b)] implies that
G ⊆ F , and therefore

inf
x∈G∩G

Λ∗(x) ≥ inf
x∈G∩F

Λ∗(x), (64)

which completes the proof of Claim (b).
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[12] M. Kovačević, I. Stanojević, and V. Šenk, “Some properties of Rényi
entropy over countably infinite alphabets,” Problems of Information
Transmission, vol. 49, no. 2, pp. 99–110, 2013.

[13] W. Rudin, Principles of mathematical analysis, 3rd ed. McGraw-Hill
New York, 1964.

[14] A. Dembo and O. Zeitouni, Large Deviations Techniques and Appli-
cations, 2nd ed., ser. Stochastic Modelling and Applied Probability.
Springer, 1998, vol. 38.

2014 IEEE International Symposium on Information Theory

2498


